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Abstract

Learning to exploit the contingencies of a complex experiment is not an easy task for animals. Individ-
uals learn in an idiosyncratic manner, revising their approaches multiple times as they are shaped, or
shape themselves, and potentially end up with different strategies. Their long-run learning curves are
therefore a tantalizing target for the sort of individualized quantitative characterizations that sophis-
ticated modelling can provide. However, any such model requires a flexible and extensible structure
which can capture radically new behaviours as well as slow changes in existing ones. To this end,
we suggest a dynamic input-output infinite hidden semi-Markov model, whose latent states are asso-
ciated with specific components of behaviour. This model includes an infinite number of potential
states and so has the capacity to describe substantially new behaviours by unearthing extra states;
while dynamics in the model allow it to capture more modest adaptations to existing behaviours.
We individually fit the model to data collected from more than 100 mice as they learned a contrast
detection task over tens of sessions and around fifteen thousand trials each. Despite large individ-
ual differences, we found that most animals progressed through three major stages of learning, the
transitions between which were marked by distinct additions to task understanding. We furthermore
showed that marked changes in behaviour are much more likely to occur at the very beginning of ses-
sions, i.e. after a period of rest, and that response biases in earlier stages are not predictive of biases
later on in this task.

1 Introduction

Engaging with a new environment or experiment raises a multitude of questions: which sensory signals
are pertinent to the task at hand, and which are just noise? What actions are relevant to performance?
How should observations inform actions? How can reward be maximized? Particularly if the experimenter
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changes the task suddenly in order to shape behaviour, but also in stable environments, animals solve
these problems through a mixture of apparent leaps in performance and slow accumulation of improve-
ments (Breland & Breland, 1951; Epstein, Kirshnit, Lanza, & Rubin, 1984; Gallistel, Fairhurst, & Balsam,
2004; Köhler, 1948; Krueger & Dayan, 2009; Luft & Buitrago, 2005; Maier, 1931; Moore & Kuchibhotla,
2022; Rescorla, 1972). This process of learning is marked by substantial variability across individuals,
who progress at different speeds and over distinct intermediate stages (Piaget, 1952). Even if the ulti-
mate behaviour is indistinguishable, this initial variability can make comparisons across groups during
learning challenging (The International Brain Laboratory et al., 2021). More generally, the particulari-
ties of the learning path may never be fully overcome, so that their trace is detectable in performance
even after learning has finished and behaviour has stabilised (Dayan, Roiser, & Viding, 2020).

Despite the richness and importance of these dynamics, much of the work on the modelling of learning
has ignored this sort of acquisition, generally considering the adjustments that occur to adapt to ongoing
changes in modest facets of tasks, such as reversing reward schedules. By this point, most of the problem
has been solved, or subjects who failed to learn have been discarded. One of the main reasons for this
is that each animal provides only one sample of a learning curve, whereas for fully acquired behaviour,
every trial can typically be viewed as another sample from the learned behaviour. This means that
learning curve data are generally sparse, further aggravating the problem of large variability. Here, we
make use of the large-scale approach to data collection embodied by the International Brain Laboratory
(The International Brain Laboratory et al., 2021), and base our analysis on the multi-session learning
curves of more than 100 mice coming to solve a perceptual decision-making task.

Nevertheless, there has been some work on quantifying acquisition. One set of results concerns the
point in time at which an animal can be said to have ”learned” a task, often defined as reliably above
chance performance (Smith et al., 2004). This kind of change-point detection is a difficult challenge,
as behaviour is generally probabilistic and can be erratic, prompting the development of a number of
approaches (see e.g. Jang et al. (2015); Papachristos and Gallistel (2006)). These methods are however
more concerned with finding changes in general, in particular making a binary distinction between
uninformed and learned behaviour, rather then describing used strategies in detail, or finding possible
intermediate stages. Recent work addressing strategy inference more specifically, which does consider
learning, includes the approach of Maggi et al. (2022). They combined a set of simple, pre-selected
strategies with an inference mechanism for performing strategy inference on a trial-by-trial basis. By
exponentially decaying evidence over time, they were able to track the arrival and departure of various
strategies. Their framework does however require formalising possible strategies ahead of time, and
cannot incorporate probabilistic strategies. There has also work on forms of progressive meta-learning in
humans (Jain et al., 2023).

To accommodate the complexities of learning curves, a descriptive modelling framework must fulfil
a number of desiderata. First, at any point along the curve, it should capture the current repertoire of
behaviours, characterizing performance. Second, it needs to track this repertoire as behaviour evolves,
introducing new components (which we identify as behavioural ’states’) when change is abrupt (e.g.
Durstewitz, Vittoz, Floresco, and Seamans (2010); Gallistel et al. (2004)), detecting the re-use of a past
state if it re-emerges, and allowing for slow, gradual shifts in a component, for instance, with the steady
development of skilled performance (e.g. Song, Baah, Cai, and Niv (2022)). A third requirement is that
the collection of components should be potentially unbounded, since it is not generally possible to pin
down ahead of time how many distinct behaviours any individual animal might exhibit. Finally, it should
be possible to switch between the states within a current repertoire, as rapidly as from one trial to the
next.

We satisfy all three requirements by building a model that combines and extends two recent
approaches. One is from Ashwood et al. (2022) (see also Calhoun, Pillow, and Murthy (2019)), who
described decision-making performance after learning with a hidden Markov model (HMM). In this, each
hidden or latent state of the model captures a single component of behaviour in the form of a map
from task-relevant variables to distributions over choices, for instance via logistic regression. In the case
of perceptual decision-making, this generalizes a psychometric function to include factors such as per-
severation, by considering previous choices as an input feature. The overall description of behaviour is
in terms of a mixture of different policies (such as engaged or disengaged motivational states) that can
switch rapidly. However, the HMM approach of Ashwood et al. (2022) assumes stationarity of behaviour
across time, and is constrained to a fixed level of complexity, by specifying the number of states, and
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thereby the number of parameters, a priori. This makes it ill-suited to characterising the dynamic and
idiosyncratic progression through training. To address these issues, we adopted the HMM framework
to capture abrupt changes, except that (i) along with the motivational factors, the latent states can
describe what the animal knows about the task at any point; that (ii) we used a semi-Markov model
so that latent states can persist for non-exponentially distributed numbers of trials; and that (iii) the
states come from a Bayesian non-parametric structure, allowing for a degree of behavioural complexity
that is only constrained by an inbuilt Occam’s razor, and enabling the introduction of new states for
suddenly appearing new behaviours (Beal, Ghahramani, & Rasmussen, 2001; Gershman & Blei, 2012;
Heald, Lengyel, & Wolpert, 2021; Johnson & Willsky, 2013; Teh, Jordan, Beal, & Blei, 2006).

The second approach is that of Roy, Bak, Akrami, Brody, and Pillow (2021), which effectively consid-
ers just a single state, but allows the weights of the logistic regression to be dynamic, tracking changes
in behaviour through appropriate changes in the weights. We used this so that the characteristics of our
hidden states can evolve slowly, capturing the other prevalent form of acquisition of skilled performance.

Using our combined model, we show that learning progressed over a small number of distinct stages
which are present in almost all animals. These stages apparently correspond to the sequential acquisition
of elements of the task – in our case, particularly associated with taking into account different aspects of
the sensory environment inherent to the task. Although this pattern was shared across all the mice, the
duration and diversity of the stages differed greatly between individuals. We also found other prevalent
patterns, including regression from newer states affording good performance to older ones affording worse
performance over the course of the learning curve.

We first describe the IBL task and our way of characterising the behaviour mice exhibit; then dis-
cuss the details of the model by studying a representative fit to one animal in detail; and conclude by
summarising the fits of our model to 119 subjects, highlighting similarities and differences across the
population.
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2 Results

We analysed the choices of 119 mice learning a perceptual decision-making task, each of them going
through on average 24.2 (total: >2800) sessions and on average ∼14700 trials (total: >1.7 million) (The
International Brain Laboratory et al., 2021). In this task, head-fixed mice were shown a sinusoidal grating
of a controlled contrast, with equal probability on either the right or left side of a screen. They then had
to center it (within 60 s) by turning a steering wheel in the appropriate direction. Successful trials led
to water reward; unsuccessful trials to a noise burst and a 1 s timeout. Trials were self-paced, with mice
signalling their readiness by keeping the wheel still for a period.

Mice learned the task according to a rigorous shaping protocol, which introduced more difficult
stimuli gradually and actively removed action biases. Accordingly, shaping started with gratings of the
highest contrasts: 100% and 50%. At this initial stage, there was no perceptual difficulty, but the animals
had to learn the basic contingencies and requirements of the task. Once they had reached sufficient
performance on these contrasts (≥ 80% correct for each contrast type on the last 50 trials), 25% strength
contrasts were introduced. After performance was good on this extended set as well (same criterion for
each contrast), the remaining contrasts were introduced in a staggered manner: 12.5%, 6.125%, and 0%,
while the 50% contrast was dropped from the task. For the 0% contrast, one side was rewarded randomly
(with probabilities 50% each). A debiasing protocol increased the probability of repeating the stimulus
that was just shown when the mouse made a mistake on an easy (100% or 50%) contrast. This served to
motivate the animals away from perseverative or biased strategies, and could lead to reward rates lower
than 50% (as would otherwise be expected from pure chance).

Fig. 1 Visual representation of the main components of the model. Each state, represented by a circle, has an observation
distribution associated with it, shown inside its circle. This distribution is implemented via logistic regression, to consider
the contrast of the current trial and a weighted history of previous choices (the latter is not shown here). The weights
underlying these regressions can change from session to session, resulting in shifts of the psychometric functions (PMFs)
they represent; we depict this evolution here with varying shades of grey. States are connected to other existing states
via transition probabilities p. In addition to that, states also have the option to transition into a new state, to describe a
type of behaviour which is not well captured by any of the existing states. Lastly, staying in the same state for more than
one trial is not modelled via a self-transition probability, but instead each state has its own duration distribution, which
determines for how many trials it remains active.

In order to characterise the course of learning across every trial, we developed a flexible model which
segments the behaviour of an animal into discrete states that last for variable numbers of trials within
a session and can recur in multiple sessions. As this is a descriptive model, we equate a behaviour with
its corresponding state, and generally will not distinguish between the two in the text. We first describe
how a single state generates choice probabilities on a trial for which it was responsible (Fig. 1 within
circles); and then how we treat multiple states (Fig. 1 arrows).

As in previous work (Ashwood et al., 2022; Roy et al., 2021), we formalise the response probabilities for
the binary choices of mice through logistic regression (omitting the rare trials in which the animal timed
out by not responding within 60 s). Trial t of session n is described by features fffn,t comprising: (i) the
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stimulus, i.e. the contrast on the left and right of the screen; separated, to allow for different sensitivities
to leftwards and rightwards stimuli, which is important because mice were frequently differently sensitive
to the screen sides in this task (ii) task history, in the shape of an exponentially decaying average of the
last 5 actions; since mice appear not to have used reward information to implement win-stay lose-shift
strategies, but rather employed a perseverative bias to repeat previous actions (as was also observed in
Miller, Botvinick, and Brody (2021), Beron, Neufeld, Linderman, and Sabatini (2022), and, in the same
task at a later stage, by Findling et al. (2023)) (iii) a bias term to allow for side preferences regardless
of other features. If we label the state that is active on this trial as xn,t, the response yn,t ∈ {L,R} (for
Left and Right) is modelled by the distribution

P (yn,t = R) = sig
(
fffn,t ·wwwxn,t,n

)
, (1)

where the weights of the states wwwx,n,∀x are also indexed by session n as they can drift across sessions.
Here sig(·) is the standard logistic sigmoid function.

The model generalises a standard hidden Markov model (HMM) in three ways that make it especially
suited to describe the phases of learning, see also Fig. 1: (i) it is non-parametric about the number of
states, i.e. the number of states appropriate for describing the behaviour of each individual is separately
determined, thus accommodating inter-individual differences. This characteristic also allows the model
to capture sudden changes in behaviour, as it is able to introduce a new state when behaviour changes
systematically (we call this the ’fast process’). (ii) States are dynamic over sessions n (see equation 6.2),
allowing the nature of behaviour implied by a state to change gradually across session boundaries (Roy et
al., 2021) (we call this the ’slow process’). (iii) Whereas for HMMs, the numbers of trials for which a single
state remains active always follows an exponential distribution, we adopt a semi-Markovian approach,
allowing for more general distributions (which duly provided a better fit to the data). The prior over these
duration distributions encourages temporally extended states, in order to extract persistent behavioural
modes, rather than single trial deviations which are more likely noise. Taking all these additions together
we end up with a dynamic infinite input-output hidden semi-Markov model (abbreviated as diHMM).

The transition matrix over a flexible number of states and the evolution of the psychometric weights
are defined by priors, and the Bernoulli observation model provides a likelihood for each trial, allowing
for approximate Bayesian inference (further details in Methods). We performed this via a Markov chain
Monte-Carlo algorithm, namely Gibbs sampling. For a single animal, the entire response and feature data
across all training sessions were fitted together (individuals were fitted entirely separately). Integrating
across a number of Gibbs samples from multiple Markov-chains led to a set of behavioural states defined
by their session-varying weights wwwx,n and duration distributions, as well as a hard assignment of every
training trial onto one of these states (we discuss a way to estimate how strongly a trial is connected to
its state in the Methods). While all other relevant random variables are specified hierarchically or ruled
by vague priors, the variance allowing slow changes within states is set, as inference over this variable
proved problematic. We revisit this parameter in the discussion.

3 Single animal fit

We visually summarise the model fit to an individual at the resolution of entire sessions as shown in Fig.
2. This particular animal exemplified many of the interesting properties that can be found across the
wider population of trained mice. The inferred model contains eight states, but these states were generally
active for only a small number of sessions, before being replaced by others. Thus, in a typical session,
the mouse used only a small number of states (usually, the majority of trials in a session is explained
by a single state). Later states generally represented more adept behaviour, though not exclusively. The
mouse started out with state 1 that exhibited a flat psychometric function (PMF; far right of the plot),
indicating that the animal did not take into account the relevant feature, the side of the sensory input
that was presented on the screen. This particular state only explained the very first session, before being
replaced by state 2, which also has a flat PMF, only notably shifted. This shift in bias was strong enough
to warrant a new state (rather than using the slow process to change the existing state), but there is no
evidence that the animal advanced in its understanding of the underlying task.

State 2 lasted for four sessions, meaning behaviour stayed relatively consistent during this time,
before being predominantly replaced by state 3, with yet another flat PMF, which showed extremely
biased behaviour (leading to an even lower reward rate, due to the bias correction). However, in the same

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.573001doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.573001
http://creativecommons.org/licenses/by-nc-nd/4.0/


session as the appearance of this state, we also finally saw the introduction of state 4 with a non-flat
PMF. This new state showed very good performance on one side (the leftwards side in this case), and
more or less random performance on the other side. It seems that the mouse was only taking sensory
information from one side of the screen into account when making its choice, and performed randomly if
that side was uninformative. It is important to keep in mind that such random behaviour for the other
side was more rewarding than always giving the same answer. This is partly since this random answer
will sometimes have been correct, by chance, and partly because the bias correction foiled perseverative
behaviour by repeating mistaken trials. Thus, random behaviour would lead to more trials on the side
at which the animal was proficient (though it would indeed have been better to choose the opposite side
deterministically if the stimulus did not appear on the attended side). Along with state 4 we also saw
the introduction of state 5, describing the behaviour at the ends of sessions 7, 8, 9, and 11 (and later
also the ends of session 14 and 15). Puzzlingly, this state had a good PMF on both sides and a higher
reward rate than state 4, but even though this better state was available, the animal seemed incapable
or unwilling to use it for the majority of a session.

The ”one-sided” state 4 remained active for some sessions, over the course of which the chance-
performance side of the PMF gradually improved through the slow process, as can be seen in the evolving
PMF (with darker colours showing later sessions). The last major step in learning however appeared
abruptly again, as the animal showed a state (6) in which its performance was good on both sides (notably,
this new behaviour was yet again different from state 5, though they both had the quality of being good
on both sides). Together with state 6 we also saw the introduction of state 7, which captured a strong but
transient decline in the quality of behaviour during sessions. Lastly, state 8 represented another notable
change in behaviour, as the performance on 100% contrasts approached perfection sufficiently abruptly
to warrant a new state, which allowed the mouse to conclude this part of training soon thereafter. Note
that this model lacks a formal lapse or trembling ’hand’ process, but it captures errors on easy contrasts
by setting the psychometric weights of a state such that the PMF asymptotes at that error rate for the
given range of contrasts.

Fig. 2 Dynamic infinite hidden Markov model (diHMM) fit to mouse KS014. The topmost row shows the overall per-
formance during the session, as percent correct, and the current stage of learning as the background colour (we elaborate
on learning stages later in the text). Vertical lines with shaded circles at the top indicate the sessions during which new
contrasts were introduced. The remaining rows show the prevalent behavioural states (label to the right) ordered by appear-
ance, indicating which percentage of trials they explained during each session. To the far right of every state we show its
psychometric functions (PMFs) across time, ignoring the contribution from the history of previous choices. The saturation
of the colours of the states indicates successive appearance, and match the PMF plots.
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Our model also affords a fine-grained look at the use of behavioural states within a session. Although
the diHMM provides a full posterior over the states for each trial, this is not directly useful, due to
technicalities of the sampling procedure. We therefore processed the chains of samples to extract a
measure of how much a trial belonged to a state (details in Methods). We show an excerpt of this for
session 12 of the animal we discussed so far in Fig. 3. This shows two rather clear transitions between
states. The reasons for the animal to have made such a transition are probably multi-faceted, and may
have been both internal, such as insights into the task leading to changed behaviour and more rewards,
high or low motivation to obtain reward (Berditchevskaia, Cazé, & Schultz, 2016), as well as external,
such as for example a number of low contrast, perchance unrewarded trials serving to demotivate the
animal. We do not model these reasons, and instead only describe observed changes.

The within-session fit showcases two interesting points about the model. First, it is able to find
temporary, but strong deviations in behaviour. State 7 only explained a couple of dozen trials in two
sessions, but while the animal was in this state, it acted in an extremely biased way (comparable,
but flipped relative to its earlier state 4, with the notable difference that state 7 was much briefer in
duration when it appeared, and we know that this state could not have originated from a lack of task
understanding, but was presumably some form of inattention). This change in behaviour can be spotted
directly in the response patterns of the animal, and different Gibbs samples of the model’s posterior
consistently used a separate state to characterize the trials concerned.

The second point is more subtle, and less directly observable in the mouse’s responses: the model
used different states to explain behaviour before and after the biased trials explained by state 7, even
though behaviour looked about equally good in both time periods. Going into the details of the fit, we
can see that the model assigned different error rates on easy contrasts to the two states, and this can
be found in the choices: the proportions of choices for the two different sides are significantly different
for the two states (ANOVA for responses during trials of state 5 or 6 in session 12, with factors signed
contrast and state, the latter having two levels, state 5 and state 6: the factor state is significant with
p=0.0011), which can also be gleaned from response dots marked by arrows in those periods in Fig. 3).

Fig. 3 Excerpt of state assignments in session #12 from the mouse of Fig. 2. The left y-axis serves as a scale for how
connected a trial is to the other trials of that state (see Methods for details). The right y-axis shows the contrast. The dot
colour indicates the animal’s response. One can see how the drastic and sudden change in the response patterns, leftwards
(blue) answers for rightwards (positive) contrasts, from trial ∼330 to ∼380 is detected by the model with a state transition.
The PMFs of state 5 and 6 looked similar, but did in fact represent significantly higher rates of errors on the right and left
side respectively, we highlighted these mistakes with arrows.
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4 Fits across the population

The three-fold progression we observed throughout learning in Fig. 2, from flat PMFs, to ”one-sided”
behaviour, to generally good performance, is typical for the population of mice we fitted. To define this
more objectively, we clustered the states into these three types, based on their reward rate, i.e. for every
state we took its PMF (ignoring perseveration) and computed the expected number of correct responses
on easy trials (100% or 50% contrast, since some PMFs were only well defined for these contrasts,
additionally, including more difficult contrasts can lead to lower reward rates for more broadly defined
PMFs even though they are better on easy contrasts). The boundary between type 1 and 2 is at 60%
reward rate, and between type 2 and 3 at 78% reward rate (details in Methods). We show an overview
and some examples of the different types in Fig. 4. Note that this only exhibits the first PMF of each
state, i.e. the behaviour it described at its inception (as states could change their type via the slow
process), thereby representing response characteristics after a notable discontinuity in behaviour.

In addition to the state types, we define the stage at which an animal is, as the highest type it has so
far used for the majority of any previous session. For instance, if up to session s−1, an animal only used
type 1 states, or type 2 states for fewer than 50% of trials, then it would be in stage 1 for those sessions.
If on session s, it then used type 2 states for more than 50% of trials, it would switch to stage 2 on that
session. Since the state types delineate structurally different aspects of task understanding, the stages
allow us to determine for how many sessions the animals stayed at a certain level of understanding. Stage
1 involves a sequence of one or more states with flat PMFs which could show a whole range of biases,
but share the property that the contrast location seemed not to be taken into account to determine
choices. Stage 2 almost always involves states that showed good performance for stimuli on either the
right or the left side, but close to uniform guessing for the other side. Only rarely were intermediate
PMFs nearly equally good on both sides, Fig. 4b and c account for 85% of intermediate PMFs, and d
for the remaining 15% (those rare cases were still closer to other type 2 states than type 3, which we
verified by looking at their appearance time during training). After some time in such partially sensitive
states, the animals started, in stage 3, apparently paying attention to both sides. The more difficult
contrasts were usually quickly introduced once such states were reached, as they tended to be relatively
symmetric, and therefore the type requirement for this stage (a close to 80% reward rate or higher), also
led to a fulfillment of the criterion for contrast introductions. Generally, it took some further refinement
of initial type 3 states, through the reduction of errors on easy trials on either side, to master this stage
of training and progress to the next level of shaping in the IBL task.

Fig. 4 Summary of the PMFs associated with the different types, for this we use the first PMF of every state in every
animal. Each subplot shows a specific type: (a) type 1 in green; (b-d) type 2 in blue, further split by whether the PMF
is left-biased (b), right-biased (c), or symmetric (d); and (e) type 3 in red. The thick lines indicate the overall mean over
PMFs of the type, the shaded regions show the range in which 95% of the PMFs fell (computed separately for each contrast
level), and the thin lines show samples of individual PMFs of these groups. Text in the bottom right indicates how many
PMFs of this type were present across the entire population.
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The progression through state types was not monotonic, since multiple states of potentially different
types could be simultaneously present in a session, and, e.g. a state of type 2 could dominate in a session
after other states of type 3, as in Fig. 2 on session 11. Nevertheless, the stage classification is monotonic,
as it reports the higher level of performance which the animal is known to have reached.

The three stages segment the learning process. Firstly, we can analyse the proportion of training
time the animals spent in the different stages, by showing these proportions on a simplex (Fig. 5). The
classification into the types proves its behavioural relevance, as the large majority of animals needed some
time in each of the stages (i.e. there are only few mice on the edges of the simplex). As we can see, most
animals spent the longest time in stage 3 – that is to go from moderately competent performance (based
on the prevalence of states that implied at least a reasonable understanding of the task), to behaviour
that sufficed to pass the rather stringent training criteria. This was unexpected, as no fundamental
change in understanding seems necessary, unlike the changes from stage 1 to 2 (where the animal has
presumably to learn to pay attention to the Gabor patch in the first place); and from stage 2 to 3 (where
it must learn to pay attention to both sides of the screen). However, reaching the required accuracy
seemed difficult, even once the principles of the task were understood. Of course, the increase in reward
rate was not great in this period, so there might have been less pressure to improve. Some of the very
longest trajectories (the largest circles) were associated with especially large numbers of sessions in stage
3, but overall the average fractional occupation was remarkably consistent across training lengths (for a
median split on the total training time, the mean relative occupancy for stage 1, 2, and 3 respectively
are: shorter half (0.24, 0.17, 0.59), longer half (0.21, 0.15, 0.64)). Type 2 is the stage which consistently
lasted for the fewest sessions, implying that the mice did manage to pay attention to both sides not too
long after starting to pay attention to one side.

Fig. 5 Proportions of sessions it took each mouse to reach the next major step in training, as defined by the 3 stages,
scattered as circles on a simplex (the larger the proportion of sessions within a specific stage, the closer the dot for that
animal is to that corner of the simplex). Simplex corners are identified by example PMFs from the type of that stage.
Marker area indicates the total number of sessions (min=5, max=80). The magenta star marks the average proportion, the
size of the star indicates the mean number of sessions (which was 24.2). The histogram shows the overall distribution over
the number of training sessions.
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Fig. 6 Evolution of the weights of states on average, through slow and sudden changes. Subplots titled by a type represent
the weight changes from the first appearance of a state of this type to its last, so only state-internal slow changes (we only
considered states which appear on at least 5 sessions, but not more than 15, as both extremes would skew these averages,
since states might have changed their type in this time). Subplots with a title indicating a transition from one type to
another show how much each weight of the new state differed from the weights of the closest previously existing state, and
is based exclusively on the states which first brought the mouse into a new stage (i.e. for ”Type 1 → 2”, we only took into
account the first type 2 state exhibited by the mouse, and only when that state is type 2 from its inception). Coloured
stars on the leftmost and rightmost plot indicate the average value of the weights of only the very first states of each mouse
and the weights of the dominant state on the last session, respectively. We split the bias weights into left-biased and right-
biased, as they would otherwise cancel out. Whereas contrast sensitivities increased both through fast and slow changes, it
is noticeable that biases stayed almost constant throughout the lifetime of a state on average, but changed more noticeably
through sudden transitions.

Connected to this is the question of how the two kinds of change affect behaviour. For the slow process
(gradual changes within a state), we analysed this by comparing the weights of the PMFs at the first
session of a state, to those for its last session. For the fast process (new state introductions), we compared
the weights of a newly introduced state to the closest previous state, as determined by the Wasserstein
metric on their resulting PMFs (ignoring the perseverative weight). To highlight the change most clearly,
we focussed on states which bring the animal into a new stage. These weight evolutions, split by the
different types, can be seen in Fig. 6. As the main driver of performance, contrast sensitivities reliably
increased both over the lifetime of a state and when a new state got introduced. Surprisingly however,
we observed that both the bias and perseverative weights were remarkably stable within a state, even
though these weights were not beneficial to performance. The bias tended to change more substantially
upon the introduction of a new state, marking a decided difference between what the two types of change
accomplished. When comparing the distributions of weight changes of the bias weights (see Fig. A16
and Fig. A17), the changes through the fast process tended to be significantly larger (Mann-Whitney-
U-test on absolute weight changes, 2 biases, 2 fast change points, 3 slow change processes, for 9 out
of these 12 comparisons, the fast changes had a significantly larger change at a 0.05 significance level).
We can also see that the perseveration weight played a small, but consistent role throughout learning
(though its relative influence waned as the sensitivities kept growing).

The introduction of new states signifies notable changes in behaviour, so by studying the patterns
of their occurrences, we gain insight into when behaviour was volatile or when substantial progress was
made. The two histograms in Fig. 7 show when new states first appeared across normalised training and
session time, for the entire population of mice. Of course, all animals needed to introduce at least one new
state in the first session, to explain any behaviour, therefore we excluded this first state so as not to skew
the histograms. In subsequent sessions, gradually fewer states tended to be introduced, indicating that
behaviour saw fewer drastic changes as training progressed. We observed earlier that animals spent most
of their time in stage 3, i.e. perfecting their behaviour, and we can now conclude that this mostly came
about through gradual improvements of behaviour, rather than sudden marked changes. The pattern
of introductions within individual sessions is even more striking: the majority of states were introduced
at the very start of a session. This resonates with previous findings about changepoints in behaviour
occurring at session boundaries (Papachristos & Gallistel, 2006). Apart from this strong trend, there
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seems to be a slight tendency for new states to get introduced towards the end of sessions, which might
have partly been inattentive or demotivated states which the animals often fell into at the end of a
session, and which the model sometimes picked up on when they were consistent and long enough (the
end of a session is triggered if it is longer than 90 minutes, or due to slow response times).

Fig. 7 Histograms of all state introductions, excluding the first state of every animal, across all of training (left) and
within sessions (right). We colour by state type and normalise the entire length of training of an animal, and all individual
sessions, onto the range between 0 and 1 for comparison purposes. The inset on the right plot shows the bar of the first
time bin uninterrupted.

4.1 Inter-individual differences and variability

So far, we have highlighted general patterns during learning, but perhaps even more salient than these
similarities was the wide-ranging variability across animals. Inter-individual differences, especially during
learning, are a known phenomenon (The International Brain Laboratory et al., 2021), though rather less
commonly studied (though, for instance, see Akiti et al. (2022); Kastner et al. (2022)). Such differences
are already visible in many of the plots above. Biases in type 1 states spanned the entire range of possible
response patterns. Similarly, type 2 PMFs appear to have been randomly biased to one side or another,
or, in rare cases, were symmetric and largely unbiased, but did not yet show good performance. We were
particularly surprised to notice that we could find no regularity between type 1 and type 2 biases. Of the
57 mice in which type 2 onset occured suddenly, see Fig. 6, 32 had expressed the same direction of bias
as the new type 2 state in any previous type 1 state, whereas 25 had not (two-sided Binomial test for
whether the proportion of previously expressed biases differs from 0.5 gives p=0.427). Here, we define
leftwards, rightwards, and no bias as whether the average rightwards response probability of a state’s
PMF is below 0.45, above 0.55, or between those two values respectively. This means that one cannot
predict future biases of the animal from its stage one biases.

The number of sessions mice required to learn also varied widely, spanning an entire order of mag-
nitude. Similarly, the number of sessions spent in the different stages was also highly variable. To gain
insight into the factors underlying the learning steps between the stages, we analysed the correlations
between the number of sessions spent in them. The simplex plot does not strongly indicate any patterns,
we quantify this by analysing their correlations to one another: duration of stage 1 to stage 2: Pearson’s
r=0.31, p=0.0007; stage 1 to stage 3: Pearson’s r=-0.004, p=0.96; stage 2 to stage 3: Pearson’s r=0.27,
p=0.0029. Notably, the main chunks of training time, stage 1 and 3, show no correlation whatsoever. A
speedy understanding of the basic contingency of the task therefore did not necessarily go along with the
ability (or will) to perfect this behaviour quickly, suggesting that they required different competences.
The strongest correlation exists between stage 1 and 2, which makes sense in so far as they were both
concerned with discovering how to make use of the stimulus information.

Another phenomenon complicating broad conclusions about the learning trajectory is the prevalence
of sessions in which the animal did not use its current best state (in terms of reward rate) for the majority
of trials. The existence of such sessions prevents us from viewing learning as a process of discovering
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new kinds of behaviour, and then using them based on their performance (as indicated by the amount of
reward collected), which would make behaviour monotonically improving. To analyse these regressions,
we considered the expected reward rate of the PMF of a state, keeping track of which states have been
used so far and updating their performance as they changed slowly across time. We define a session to have
regressed if the state which explained the majority of trials was more than 2.5% worse (corresponding to
5% of the total range, since reward rates were roughly limited to the range of 0.5 to 1) in terms of reward
rate than the best state of previous sessions (for this, as for the state type classification, we computed
an idealised reward rate between 0.5 and 1, not taking into account debiasing and non-strong contrasts).
Such regressions occured multiple times in the example animal shown in Fig. 2: state 5, which was
considerably better than state 4, was introduced towards the end of session 7; nevertheless state 4 was
responsible for the majority of sessions 8 and 9, with state 5 again confined to the end of the sessions.
Similarly, state 4 was used in session 11, even though both states 5 and 6 were better; and session 12
was dominated by state 5 which by then was worse than state 6.

Looking at such regressions across the population, we can see that they occured in more than 85% of
the fitted animals and had a notable effect on the overall training time, see Fig. 8. We were unable to
determine any causes for these regressions, in particular the time between the previous session and the
current one had no significant correlation to the amount of reward lost through the regression (Pearson’s
r=-0.006, p=0.78), and the set of times between the previous and a regressed session was not significantly
different from the set of times between a previous and a non-regressed session (Mann-Whitney-U-test
p=0.74).

15% of mice never had a bad session in the sense of a worse reward rate, and these were generally quite
fast learners. However, we also see that slow learners did not necessarily have many regressed sessions,
as two mice with close to 60 sessions only had 4 and 5 regressed sessions, meaning their performance was
mostly monotonically increasing.

Fig. 8 Scatterplot of the total number of sessions of an animal against the number of sessions in which a state with a
worse PMF than the currently best available one explained the majority of trials. We add an offset to points coinciding at
the same spot for visibility. While there is considerable variability for any given number of regressed sessions, there is a
clear positive correlation (Pearson’s r=0.78, p< 1× 10−24).

5 Discussion

We have presented a highly flexible model which is designed to describe the stages of learning from
the very first day an animal interacts with a task until it becomes an expert. Using it on the shaping
sessions of the IBL decision-making task, we distinguished fast, abrupt transitions in behaviour, and
slower, gradual ones. Learning on this task decomposed into three distinct stages, through which almost
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all animals went: Initial, undifferentiated, and often biased behaviour, partial, one-sided understanding
of task contingencies, and lastly full understanding of the task. While these broad stroke characteristics
were consistent across mice, the details of behaviour in these stages differed largely across the population.
Similarly, the way they progressed through these stages differed widely in duration and composition of
sudden and gradual steps. In addition to improvements through learning however, animals also often
regressed in their performance for large parts of sessions, adding another layer of intricacy to the study
of the learning trajectory.

We found only a small correlation between the time it took individual mice to progress through
some of the behavioural stages, suggesting that they had to draw upon largely different skills to learn
the requirements of the task. Similarly, animals expressed varying biases across the stages of learning,
without notable tendencies to repeat previous biases. This leads us to speculate that there are different
sources of biases: initially, in stage 1, when the mouse paid no attention to the stimulus, it might have
been a motor bias, in stage 2 the bias could have been an expression of which side the animal happened to
notice first as being informative, and in stage 3 the bias might have stemmed from differences in sensory
acuity. In the IBL training scheme, after the sessions we analysed, the mice underwent a further phase
(’biased block training’, in which left or right stimuli dominated in blocks of 20-100 trials). Consistent
with our other results, the length of this phase also turns out not to correlate with the total pre-bias
duration, nor to any of the stage durations (see section 6.5 for details). This shows yet again that learning
was dominated by a large number of factors, and is seemingly difficult to predict.

Our modelling approach has a number of limitations. First, the setting of the slow change variance
parameter which determined how much the behaviour of a state could change from one session to the next
plays a critical role in steering the trade-off between introducing a new state versus adapting an existing
one. We optimised this parameter in terms of cross-validation performance for the entire population,
under the limitation that it be small enough that states were independently meaningful. However, the
magnitude of slow changes may well depend on the individual, or might even vary across training time,
and thus a more differentiated treatment might be appropriate. Furthermore, slow changes may also
occur within a session (Roy et al., 2021), which could be incorporated into the model by adding additional
time points at which weights can change. Another desirable extension would be to allow the duration
distributions also to change over sessions. As training progresses, an animal might e.g. be able to use a
high performant state for longer, which could be reflected via a changing duration distribution.

The model may also be extended by adding more observations for the states to explain, as the binary
choice behaviour may limit the power to distinguish different behavioural modes. One obvious possibility
are the reaction times of the animal’s choices; in principle, this would only require adding a suitable
distribution to produce times for each state (e.g., from a drift diffusion decision-making process; Gold
and Shadlen (2002); Ratcliff and McKoon (2008)). It would likely be necessary to make the distributions
dynamic (by making some of the parameters of the drift-diffusion model dynamic), as the reaction times
will surely improve with training, and may do so in quite rapid ways. Beyond this, one could add details
of mouse posture to the states, such as pupil dilation and bespoke aspects of body posture, though this
would require well-tailored distributions to describe (Wiltschko et al., 2015).

Besides learning, our approach to capturing behavioural evolution should be well suited to model other
progressive changes, such as those occurring during ageing (Nyberg, Lövdén, Riklund, Lindenberger, &
Bäckman, 2012). Fast and slow transitions between stages have also been studied for the acquisition of
movement sequences (Luft & Buitrago, 2005). In this context, changes which occur between sessions are
labelled slow, i.e. improvement through consolidation during breaks. Improvements during a session are
considered fast changes. In our work we divide fast and slow changes via the magnitude of the change
in psychometric weights, but only allow fast changes during a session (the slow process can only change
weights at session breaks), and capture phenomena like an initial warm-up period through the usage of
multiple states. Our results contrast with those in motor skill learning, in that if we examine the new
states which bring the animals forward substantially, the vast majority occur for the first time at the
start of a session, i.e., through what this literature would label as slow learning.

Of particular note are the rather long training trajectories. One might a priori assume that these
are instantiated via the usage of a larger number of states, but this is not the case. Instead, we often
see that few states are taken a long way via small steps, from uninformed to proficient (see Fig. A15).
It will be important to assess the underlying nature of these states and their progression, by tracking
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neural data through the course of learning. Note that recovery analyses show that the model can cope
effectively with such trajectories, without, for instance, inferring wantonly many states (see Fig. 14).

Apart from general insight into learning dynamics, our characterisation could help with the fine-tuning
of shaping protocols to facilitate task acquisition. For instance. we observed that the animals initially
need to learn to connect the stimulus side information with their behaviour, therefore, if quickly reaching
expert behaviour is the only goal, it would seem ideal to make this association as salient as possible, for
instance by making it dynamic (’wiggling’) in early trials. Conversely, having the more difficult contrasts
present from the start might make the task much more difficult to learn, as the connection between
actions and feedback would seem more probabilistic to the animals. We also saw that the last stage of
training takes the longest time, in which the animal brings its performances to a consistent enough level
to pass this stage of training. We found that the biggest contributor to this, i.e. the aspect of behaviour
which held them back the longest (for the IBL-specific requirements), was insufficient consistency on easy
contrasts. To accelerate this process it might be necessary to manipulate the reward rate, as the animals
get a reasonably high reward rate without being too consistent. It might therefore be worth trying to
only reward the animal after two correct responses in a row by the time it gets to stage 3.

Previous work using an HMM-based approach discovered demotivated states in behaviour (Ashwood
et al., 2022), in a component of the IBL task that happened after the learning trials that we modelled.
While we do occasionally find these (as discussed in the first example mouse), they were more rare than
might have been expected from that work. For us, a majority of sessions were explained by just a single
state. The dominant source of behavioural variability in our data came from learning and other large
jumps in psychometric space, therefore the model used its capacity to capture these, rather than more
subtle variations of proficient behaviour which can be found later. Especially towards the end of sessions,
one can see a dip in performance of the animals purely by looking at the reward rate, on the order of tens
of trials, which the model sometimes acknowledged with a separate state (seen in Fig. 2 on a number
of sessions). However, occasionally we just see a decrease in the prevalence of all states (meaning that
these trials did not consistently enough get assigned the same state in the underlying Gibbs samples, see
Methods). We interpret this as behaviour having been too variable during this period, and not reliable
for long enough (even across multiple sessions) to have justified its own particular state in the model.

Our framework can be flexibly adapted to other cases of long-run learning. For instance, it is possible
to tune the model to capture minute changes within sessions as opposed to broad stroke states across
sessions, as here, by adjusting the propensity to infer new states for small changes in behaviour. Equally,
the modular resampling procedure of the model allows it to be adapted to different kinds of observations,
e.g. multinomial or Gaussian , by simply swapping out the inference mechanism of this one component
of the model (although only some distributions are convenient for the gradual dynamics). We therefore
hope that the tool we developed here will enable a wide range of researchers to study the development
of behaviour in a systematic and revealing manner.

6 Methods

We structure these methods as follows: We begin with a detailed description of the infinite hidden semi-
Markov model, i.e. the specification of the priors and how they relate to the other random variables in
the hierarchy. In section 2 we describe inference for the logistic regression observation distributions, with
a focus on the details of resampling, as these are not described in detail elsewhere. These two components
together give us the full dynamic infinite input-output hidden semi-Markov model (diHMM). We cover
how to make sense of the generated collection of samples in section 6.3, dealing with the hurdles of label
switching and multi-modality, ultimately obtaining well-defined states from the samples. This concludes
the details of the model itself. Section 6.4 elaborates how we assign states and their PMFs to the three
types. Extending slightly beyond the scope of this work, section 6.5 relates properties of the initial
learning considered here with the next training step, the biased block training. We conclude the methods
by showing successful recoveries of various generative models in section 6.6.

6.1 Infinite hidden semi-Markov model

We start by describing the diHMM, focussing on Bayesian inference over its random variables. Fol-
lowing Johnson and Willsky (2013), we use Gibbs sampling, a Markov chain Monte-Carlo algorithm
(MCMC), to realise an iterative resampling scheme over the model components, including the PMFs of
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the hidden states and the assignments of the individual trials onto those states. For this purpose, all
distributions are paired up with conjugate priors in this section, to enable simple resampling steps. The
posterior distribution is ultimately represented by a collection of samples, with every component being
assigned an explicit value in each sample.

Overview over quantities and counters
Quantity Meaning Counter

N number of sessions n
Tn number of trials within a session n t,m
J number of MCMC samples j
L number of states in the model i
S number of states employed within a session s

We first describe all the relevant random variables (using the iterator notation from the table above).
The technical backbone of an infinite HMM is an hierarchical Dirichlet process. At the top of the

hierarchy of this process is the prototypical transition vector

βββ ∼ GEM(γ), (2)

where GEM (named after Griffiths, Engen, and McCloskey) is a Dirichlet process without a base distri-
bution, a pure stick-breaking process which samples a probability vector over infinitely many elements
(which will be states in our case). The concentration parameter γ probabilistically determines the size
of the individual sticks, and therefore how many states are practically relevant, with a higher γ allowing
for more states. We put a vague Gamma prior on γ, making it, and thereby the propensity to introduce
new states, part of the inference as well, with γ ∼ Gamma(0.001, 0.001).

At the next level we sample the transition vectors, a classical HMM component, πi of the individual
states i. These are tied together via βββ, which is used as the base distribution for a second Dirichlet process

πiπiπi ∼ DP(α,βββ), i = 1, 2, ..., L, (3)

π0π0π0 ∼ GEM(3) (4)

α is another concentration parameter and determines how closely the πi are related to βββ. Sampling the
individual state transition vectors from this common source formalises an overall kind of state popularity.
The higher α, the more like βββ is πiπiπi,∀i, and so the more the bias in the frequency of state i′ in the
particular sample βββ will be reflected in the transitions from i to i′, and so the more popular i′ will be
overall. We put another vague Gamma prior on it, α ∼ Gamma(0.1, 0.1). The initial state distribution
π0π0π0 is drawn entirely separately, with a concentration of 3 as a trade-off between allowing new states but
not encouraging the invention of new states at the start of sessions.

For our inference scheme, we make use of the weak-limit approximation which puts an upper limit
L = 15 on the number of states rather than employing the full infinite process. This simplifies the
resampling scheme, while still behaving similarly to an infinite HMM if L is sufficiently large. Across the
entire population, there is only one mouse with 15, one with 14, and three with 12 states; all other mice
use fewer states. Furthermore, the minimum fraction of trials captured in states (as described further
below) is 99.35% (mean is 99.996%), justifying the choice of L = 15. In particular, we still perform
inference over the realized state complexity. In the weak-limit framework, Eq. 2, 3, and 4 turn into
L-dimensional Dirichlet distributions

βββ ∼ Dir(γ/L, ...γ/L), (5)

πiπiπi ∼ Dir(αβββ1, ..., αβββL), i = 1, 2, ..., L, (6)

π0π0π0 ∼ Dir(3/L, ..., 3/L) (7)

The transition structure within a session is given by

zn,1 ∼ πππ0, (8)

zn,s ∼ πππzn,s−1 , (9)
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where zn,s ∈ {1 . . . L} is an indicator for the sth state within a session n (which does not align with the
trial number), and π0 is the initial state distribution.

Given the transition vectors, the workings of the hidden semi-Markov model are fairly standard,
except that the duration distributions are specified explicitly rather than being drawn from an exponential
distribution (as in a regular HMM). We therefore also prohibit self-transitions, which makes a data
augmentation scheme for resampling necessary, as described in Johnson and Willsky (2013). Nevertheless,
as in a standard HMM, durations are statistically independent of the target state of transitions. Durations
are drawn from a negative-binomial distribution, with state-specific random variables, coming from their
own priors

ri ∼ U(5, 9, 13, ..., 701), , i = 1, 2, ..., L, (10)

pi ∼ Beta(1, 1), (11)

dn,s ∼ NB(rzn,s , pzn,s). (12)

(Note the difference between state names i, which hold for the entire model, and the session specific state
counters s, which can be used to find the current state name via the indicator zn,s). We chose a uniform
prior over a large range of numbers for the possible values of r, to enable long durations, but excluded
small values for r (in particular r = 1 would give the geometric distribution). Small values of r encourage
transitions after a very small number of trials, which would capture the statistics of the presentation of
left and right stimuli by the experimenter rather than the longer-lasting states that we sought.

States stay active and generate observations for as long as the drawn duration indicates

tn(s) =

k<s∑
k=1

dn,k, (13)

xn,tn(s)+1:tn(s)+ds
= zn,s (14)

P (yn,t = R) = sig
(
fffn,t ·wwwxn,t,n

)
, (15)

where we defined tn(s) to return the trial on which the sth state of a session n starts, which allows for
the definition of xn,t, the state on any given trial t. We denote the logistic sigmoid function as sig. This
takes the dot product between the state weights wwws,n (which we discuss in the next section) and the
input features of the current trial fffn,t and produces the probability over the observation yn,t. The binary
response variable y has 0 representing a leftwards, and 1 a rightwards, choice.

Fig. 9 Visualisation of the different variables across training.

We summarise this collection of variables as

Θ = {γ, α, β,πππ0, {πππi, ri, pi, {wwwi,n}Nn=1}Li=1, {{xn,t}
Nt
n=1}Tt=1},

where N is the total number of sessions. The result of inference is a set of samples {Θj}Jj=1. Each
sample is a full instantiation of the listed random variables, which we can treat as a representation of
the posterior. Gibbs sampling works by iterating through all variables, and re-sampling them from their
distribution, given all other variables of the model. After updating all variables, the result is one new
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sample within the MCMC-chain. The details of how to resample the individual components can be found
in (Johnson & Willsky, 2013).

6.2 Dynamic logistic regression prior and sampling

Gibbs sampling resamples each random variable conditioned on all others. Thus, inference over the
observation distributions of the states is separate from almost all the rest of the model, only using the
information of which trial is currently assigned to which state. We drop the explicit state dependence i
in wi,t for this section, but it is important to keep in mind that this sampling scheme is applied to every
state individually, with each state s being influenced only by trials for which xn,t = s. We implement
slow changes in the characteristics of the states by putting a Gaussian random walk prior on the weights
wwwn, allowing for modest change across session boundaries, parameterised by the variance σ. We choose
a diffuse initial distribution for the weights, and use cross-validation to select the inter-session variance
σ = 0.03 (we performed cross-validation on a constrained range of small values, in order to limit the
state adaptation process to small changes):

www1 ∼ N (0, 8 · I ) (16)

wwwn+1 ∼ N (wwwn, σ · I ) (17)

If a state has no trial assigned to it in a particular session, its weights are held fixed during the next
transition, preventing states from morphing radically during a prolonged absence.

Inference for the logistic regression weights is performed using Pólya-Gamma data augmentation,
which allows for efficient inference in settings with binomial likelihoods (Linderman, Johnson, & Adams,
2015; Polson, Scott, & Windle, 2013), since it is not possible to choose a conjugate prior. We review
the relevant computations here, for a full treatment we refer to (Windle, Carvalho, Scott, & Sun, 2013).
In the first step of the resampling scheme we sample pseudo-observations. This uses a Pólya-Gamma
distribution PG, by first sampling ωn ∼ PG(bn,ψψψn), where ψψψn = fffn ·wwwn is the dot product of features
and weights, and bn is the total number of times this exact instantiation of features was observed in
session n. However, the same state is associated with more than just one specific instantiation of features
(i.e., including contrasts of different strengths and side, and different response histories). To handle
this, we treat a single session as multiple different time points, but prevent weight changes between
time points that belong to the same session. In this way the observations from different features within
the same session are effectively aggregated. To complete the pseudo-observation generation, we need
κn = an − bn/2, where an is the number of rightwards answers observed for the current ψψψn under
consideration. Now zn = κn/ωn can be treated as if they were drawn from N (ψψψn, 1/ωn).

This data-augmentation serves the purpose of having the wwwn emit observations with Gaussian noise
(after combination with the features xxxn into ψψψn). Since the prior on www is a Gaussian random walk, this
places inference in the well studied realm of Kalman filtering. To resample the wwwn we use the forward
filter backward sample algorithm (FFBS, Carter and Kohn (1994); Frühwirth-Schnatter (1994)), which
filters forwards through all the observations using a Kalman filter, then samples the sequence of wwwn

backwards through time. A single resampling step therefore consists of first drawing the Pólya-Gamma
variables to create pseudo-observations, then using them to sample the wwwn using the FFBS algorithm.

We consider four features for the logistic regression: the contrast on the left side, the contrast on the
right side, an exponentially weighted history of five previous choices, and a bias. Separating the features
for left and right contrast allows the sensitivities to the two sides to be different, an obvious property
of mouse responses. Since the notional contrast values do not match the psychophysical difficulty of
the contrasts (100% and 50% are both virtually equally easy to perceive, not a factor of 2 apart), we
apply a transformation to have a better alignment. For this we follow Roy et al. (2021) and use a
tanh-transformation, mapping the actual contrast c onto the input c̃ for our logistic regression through
c̃ = tanh(pc)/tanh(p), where we follow the recommendation and set p = 5, which scales the steepness of
the transformation. This maps the contrasts (1, 0.5, 0.25, 0.125, 0.0625, 0) onto (1, 0.987, 0.848, 0.555,
0.302, 0).

The regressor for previous answers, enabling perseveration as a strategy, proved to be beneficial for
cross-validated performance. It is associated with the famous law of exercise (Gershman, 2020; Thorndike,
1911), and has also been found to be exhibited by the mice in the asypmtotic regime that arises after
the sessions that we are presently analysing (Findling et al., 2023). By contrast, there was no statistical
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support for a regressor sensitive to the interaction between past choice and past reward, as would be
reflected, for instance, in win-stay, lose-shift behaviour. We implement the perseveration regressor as an
exponentially weighted sum over the last few trials. We found that weighting the last 5 trials with an
exponentially decaying filter with smoothing factor 0.3 worked best (though slightly different parameter
settings have almost equal cross validation performance). Thus, we compute this feature on session n
and trial m as such:

1

Z

5∑
k=1

exp (−0.3 · k) · (2 ∗ yn,m−k − 1), (18)

where Z =
∑5

k=1 exp (−0.3 · k) is a normalisation constant, such that the entire exponential filter adds
to 1. The transformation 2 ∗ y − 1 serves to encode responses as -1 and 1, for the purpose of having
the perseverative feature sway the current response appropriately. Therefore, this feature reaches its
maximal value of 1 if all 5 previous responses were rightwards and -1 if they were all leftward, putting it
on the same scale as the other features. For the first five trials of a session, not all these previous trials
are available, so missing ones are encoded as 0 (and we leave the normalisation constant Z unchanged).
Time-out trials, where the animal did not respond before 60 s have passed, while skipped for the logistic
regression of responses, are taken into account for the previous answer regressor, also encoded as 0.

6.3 Aggregation and interpretation of chains

We generally generated 60,000 samples from each of 16 chains (with different starting points), discarding
the first 4000 as burn-in. We assessed convergence of the chains using the classical measure R̂ (Gelman &
Rubin, 1992). This compares intra- and inter-chain variability of bespoke, state-independent features of
the chains. To detect differences in the variances of the chains, and other problems which R̂ is known to
miss, we also used folded-R̂ and rank-normalised-R̂ (Vehtari, Gelman, Simpson, Carpenter, & Bürkner,
2021). We reduced the memory cost by thinning the chain, using only every 50th sample (we did this
purely for memory reasons, not because it is necessary for MCMC algorithms (Link & Eaton, 2012)). For
a first pass, we sought to discard chains which differed substantially from other chains in the explored
region in parameter space, either because they never reached the relevant parts of it, or because they
spent disproportionate amounts of time in some modes over others. This is a known problem for MCMC
algorithms in multi-modal environments, and can be mitigated by taking non-mixed chains and combining
them via stacking (Yao, Vehtari, & Gelman, 2022). However, since our goal here is not prediction, we
still want to focus on finding and visualising the most important modes of the posterior, which we did
by combining the (possibly not perfectly mixed) chains, and considering the regions of probability space
in which they collectively spent the most time. Given the slow transitions between different modes, we
also did not split our individual MCMC chains when computing R̂, as the two halves of the chains were
often too different.

As scalars underlying R̂, we used the concentration parameters: α and γ, as they are independent
of states, and, as general properties of the fit: the number of trials assigned to the state with the most
trials, and the second-most trials, as well as the overall numbers of states with more than 20%, and
more than 10% of trials assigned to them (we chose multiple cutoffs to gain information about the fit at
different levels of resolution). By greedily discarding the chains which increase R̂ the most, we reduced
the number of chains under consideration from 16 to at least 8. For this we considered all features and
all variants of R̂ (normal, folded, rank-normalised) at once, so we were minimising the maximum over
all these R̂s. We only further processed the chains when R̂ < 1.05, which is more conservative than some
recommendations, but, in light of the strong multi-modality, more lenient than the newest ones (Vehtari
et al., 2021).

However, it is still not trivial to extract information from the remaining chains given the multi-
modality. There are two main sources of multi-modality: (i) genuine uncertainty in the usage of states
or the exact setup of the random variables of the states, and (ii) mode equivalence with permuted labels
(e.g., state i = 1 in the first chain might explain roughly the same set of trials as state i = 2 in the
second). Although the second source makes evaluating the results more complicated, it is in fact just the
sampling scheme working correctly, as there is nothing special about the particular state labels – solutions
with permuted state labels are functionally equivalent. For the same reason, even within a single chain,
a relatively consistent set of trials might be explained by one label for some part of the chain, but by a
different label in another. Indeed, we frequently observed this kind of label switching, where one state

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.573001doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.573001
http://creativecommons.org/licenses/by-nc-nd/4.0/


completely took over the trials of another within a few sampling steps. In the limit of infinitely many
samples, we can expect any trial to have a uniform distribution over the state label assigned to it; the
only important question is which other trials were usually accounted for by the same state as the given
trial within suitably similar samples.

To formalise the necessary abstraction from direct state assignments, we computed co-occupancy
matrices Cj for each sample j. Cj is a matrix of size T ×T , with T being the total number of trials across
all sessions of a mouse, whose t,mth entry reports whether trials t and m (for convenience, dropping the
additional session label) used the same state in sample j

Cj
t,m = 1(xt = xm). (19)

We used these co-occupancy matrices as a basis for two different processing steps: (i) at a coarser
resolution across trials, we applied dimensionality reduction to find posterior modes; (ii) at full resolution,
we averaged Cj across similar samples j to derive a matrix that describes the mutual affiliation of trials,
allowing us to overcome the labelling issues. Both steps are reminiscent of representational similarity
analysis (Kriegeskorte, Mur, & Bandettini, 2008), in that, instead of comparing two samples directly, we
compare state co-occurrence within the samples.

In principle, to explore the posterior, we could have flattened each Cj into an T 2 vector and apply
principal components analysis (PCA). However, there were too many trials per mouse (of the order of
13000) to do this at full resolution, so we binned the trials into 170 bins, ignoring session boundaries, and
then used the Wasserstein distance to measure state co-occurence between the bins. That is, we define
modified matrices C ′j as

C ′j
t,m =

L∑
i=1

1− |pjt,i − pjm,i| (20)

where pjt,i is the proportion of trials in bin t which is assigned to state i in sample j. C ′j reduces to Cj

for bins comprising a single trial. We then plotted individual samples in the first three dimensions of the
PCA-space arising from flattened versions of C ′j , as shown in Fig. 10.

Fig. 10 Individual MCMC-samples can be scattered in 2D principal component (PC) space, to find regions of high
probability. To make those regions more salient, we colour individual samples according to a Gaussian density estimation
(the density estimation occurs in 3D PC space). We can see, that there are multiple modes of varying importance, with
one mode being particularly dominant.

In doing this, we found that the posterior for a number of animals wanders itinerantly between
different modes, reflecting true uncertainty. These modes are distinct solutions and should not be blended.
To isolate them, we performed Gaussian density estimation in the 3D PCA space to identify the ones
that were most prevalent, as the regions of highest estimated density. We used this clustering to select
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samples j ∈ J η that were sufficiently similar as to comprise an individual mode J η. For now, we did
this by hand; however, the process could be made more formal by fitting a mixture of Gaussians to the
posterior, and then selecting samples around the means of the Gaussians with sufficiently large mixture
weights.

Next, we sought to understand how trials within that mode were co-assigned to states. To do this,
we averaged the co-occurrences Cη = 1

|J η|
∑

j∈J η Cj , and treated C̃η = 1 − Cη as a distance matrix,

where trials were close if they share a state in most samples in the mode. We then performed hierarchical

clustering on C̃η, using as a cluster distance d(υ, ν) = max
(
C̃η

υ[k],ν[l]

)
, k ∈ υ; l ∈ ν, which took as

distance between clusters the maximum distance between any two trials in the clusters υ and ν. The
result of the hierarchical clustering was a tree on the individual trials, and we could extract a clustering
by cutting the tree at a certain level. Cutting at, e.g., 0.6 means that we only have clusters in which every
trial was explained by the same state in at least 40% (1−0.6) of the samples. For most of our plots we cut
at 0.95, which empirically returned good results. Even though this meant that trials needed to use the
same state in only 5% of samples to be in one cluster, most trials were assigned to the same state much
more often, see Fig. 11. Fig. 11 also shows a number of alternative clustering from different thresholds,
demonstrating that there is little change across a wide range of thresholds: The 95% threshold leads to
8 states with 100% trial coverage, an 80% cutoff leads to 9 states and 99.92% coverage, a 50% cutoff
gives 12 states with 98.77% coverage, and lastly a threshold at 20% gives 15 states and 95.27%. We can
thus see that low criteria led to trials becoming unassigned and some states splitting apart, which is why
we chose a rather high cutoff. A further verfication that the procedure and its threshold gave a faithful
representation of the collection of samples comes from comparing the overall solution against individual
solutions from single samples. Empirically, these did indeed align.

Fig. 11 Consistency matrix Cη of the animal seen in Fig. 2, with different state assignments, based on cutting the
hierarchical clustering tree at different levels, as noted above the colouring assignment. The ticks on the left mark session
boundaries, with the numbers indicating the total number of trials so far. State colour on the bars to the right was
determined based on the ranking of how many trials are assigned to the state, therefore a colour change need not be a
major change in state assignments. As can be seen, state assignments are robust in a large range of cutoff values, with
large states staying particularly consistent. Most of the change comes from the splitting of smaller states, and some trials
losing a state assignment altogether (a state needed at least 40 trials to be coloured; if the state of a trial had less than
that, we colour it white).
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The states we show are therefore defined at heart by sets of trials. To compute PMFs, we first
considered a single MCMC-sample, and noted which states it assigns to the trials within this set on a
session-by-session basis (though each individual trial only had one state assigned in a single sample, for
the whole set of trials it usually will not just have been a single state, due to random fluctuations, but
mostly a single state). We turned the psychometric weights of these states into PMFs, over which we
then averaged (in a weighted manner, considering how often any state occured in the set of trials). For
a single sample, this resulted in an average PMF of that state for each session. This then got averaged
across samples within a cluster (evenly over all selected samples of a mode), to obtain the ultimate result.

To determine how closely a single trial is connected to its assigned state, we averaged the proportions
of samples in which it was in the same state as all the other trials assigned to this state. That is, for a
given trial t, we took a row of the consistency matrix Cη

t , and considered only the entries corresponding
to other trials within the state under consideration. We then averaged over those entries, yielding the
average proportion of co-assignment. We think of this as a proxy to the posterior over which state a
trial is assigned to, as shown in Fig. 3 (with the caveat that we only determined how strongly a trial is
connected to its state, not how much it is connected to other states).

6.4 Psychometric type classification

We observed by eye that the psychometric functions (PMFs) that the model found for the behavioural
states had a tendency to fall into one of three characteristic classes: flat (type 1), half-tuned (type 2), and
fully-tuned (type 3). However, the boundaries between the classes were blurry, so we sought an objective
distinction, recognizing its inevitable arbitrariness.

The measure we used in the main paper is the mean reward rate implied by the PMF on easy trials
(100% or 50%), ignoring the effects of perseveration (and the debiasing protocol). We chose the reward
rate, since this tends to grow as the animals proceed from ignorance to competence. We chose to assess
only the easy trials since early PMFs were not defined on the lower contrasts (since these stimuli were
not presented). Fig. 12 shows the distribution of such reward rates across all states. It is apparent that
there is a rather clear grouping of PMFs with reward rates below 0.6, defining type 1. The boundary
between types 2 and 3 is less evident, implying that edge cases will be hard to assign. The threshold
reward rate of 0.78 served reasonably, as evidenced in Fig. 4.

Fig. 12 Histogram of the mean reward rates on easy trials of the PMFs of all states, at the moment they first appeared.
Vertical lines indicate the boundaries we used to classify states into the three types. The boundaries we drew do align with
points of low density in the histogram.
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6.5 Bias training analysis

As elaborated, the learning steps that were exhibited by the animals seem rather independent, without
strong patterns across the stages. This becomes even clearer when considering the next period of learning,
the biased training: The basic task stayed the same, but instead of contrasts appearing equiprobably
left or right, there were now unsignalled alternations between blocks, lasting 20-100 trials following
a truncated exponential distribution, during which a contrast was 80% likely to appear on one side
versus 20% on the other. This was of course particularly helpful for 0% contrasts, on which an animal
could now reach a much higher reward rate than chance, given a suitable block inference mechanism (a
detailed analysis of their actual algorithm was performed in Findling et al. (2023)). To finish this part of
training, mice had to show that their behaviour was sufficiently modulated by the current block. Quite
surprisingly, the number of sessions it took them to achieve this shows no correlations to any aspect of pre-
bias training (Correlation to type 1 duration: Pearson’s r=-0.08, p=0.36; to type 2 duration: Pearson’s
r=-0.11, p=0.22; to type 3 duration: Pearson’s r=-0.1, p=0.29; to total pre-bias training: Pearson’s r=-
0.13, p=0.15). This suggests that learning about the biased blocks tapped into yet another type of skill,
unaddressed by the requirements of the pre-bias protocol.

6.6 Model recovery

We tested the model and our inference procedures by fitting to data for which the ground truth was
available. For this we instantiated all the random variables of the model to specific values and generated
responses from it. This was performed for multiple different variable settings, to assess the accuracy of
the fitting procedure in all relevant regimes, and using input data (i.e. contrast sequences) from actual
training trajectories. The data generated this way were processed in exactly the same way as those of
the IBL mice.

We paid particular attention to assessing the strength of the inductive biases of the inference procedure
- particularly in terms of the number of states it inferred (given that this could be potentially unbounded)
and the degree of change between sessions (since slow and fast state changes could interact). We tested
multiple settings in which all the data were actually generated from a single state, to test whether the
model would incorrectly split behaviour into multiple states. In one setting, the psychometric weights of
the state stayed constant throughout all sessions, in the other the weights gradually evolved from poor
performance to proficiency (at constant steps of a magnitude that corresponds to a variance of 0.0311,
the variance of the fitting procedure was still 0.03). Both fits recovered their ground truth successfully,
explaining virtually all trials with a single state, as can be seen for the example of the changing state in
Fig. 13. We also tried a variation of the latter situation, in which the psychometric weights changed in
(proportionally smaller) steps on every single trial, rather than all at once at a session boundary (as the
model assumes). This, too, was recovered by the model with only one state (which we consider the best
possible solution, given that the generative process was outside the model class).

We also successfully recovered settings from 2 to 9 states, with and without session-to-session variation
on the weights, with strongly varying trial proportions between the different states (see Fig. A18),
and of varying overall training lengths (particularly to test whether long training trajectories lead the
model to impose fewer states, making more use of the slow process), as seen in Fig. 14. The model was
also tested on a setting with completely implausible PMFs, but with the added difficulty of having a
larger number of states active within each session, Fig. A19. This, too, was captured accurately. These
successful recoveries suggest that the model is able to uncover states that truly correlate with distinctly
different modes of behaviour in animals.
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Fig. 13 Model recovery where behaviour was generated using only one state, with a changing PMF. The red and black
outlines indicate ground truth, which was almost perfectly recovered. For the changing PMF, we only show the first and
last ground truth (the initial PMFs are not incorrectly recovered for low contrasts, but are just not learnable due to the
limited contrast set during this period)

Fig. 14 Model recovery where behaviour was generated using 9 different states, on a large number of sessions. The red
and black outlines indicate ground truth, which is recovered close to perfectly, in particular correctly recovering the number
of states. On session 9, state 2 is incorrectly split between state 1 and 4, the only major flaw.

Data access. Please follow these instructions to download the data used in this article. Use for example
the following code snippet to download the data using Python.
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from one.api import ONE

import re

# use password as indicated on the website

one = ONE(base_url=’https://openalyx.internationalbrainlab.org’, password=’*****’)

regexp = re.compile(r’Subjects/\w*/((\w|-)+)/_ibl’)

datasets = one.alyx.rest(’datasets’, ’list’, tag=’2023_Q4_Bruijns_et_al’)

# extract subject names

subjects = [regexp.search(ds[’file_records’][0][’relative_path’]).group(1) for ds in datasets]

# reduce to list of unique names

subjects = list(set(subjects))

for subject in subjects:

trials = one.load_aggregate(’subjects’, subject, ’_ibl_subjectTrials.table’)

training = one.load_aggregate(’subjects’, subject, ’_ibl_subjectTraining.table’)

# save data
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Appendix A Extended Data

Fig. A15 State overview for a mouse with a larger number of sessions. As showcased here, especially for these long training
trajectories the model sometimes took some states all the way from uninformed to proficient behaviour, through the slow
change process alone.
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Fig. A16 Distributions of initial weights of states and how they changed across their lifespan, split by types. The red
distributions to the right show the weight change, not the final distribution, to highlight the change through the slow
change process. The blue lines connect the means of two related distributions (we use the mean of the initial distribution
as the 0 point of the delta distributions). The bias is split as in Fig. 6, and the x-axis is shortened due to this, though
the x-ticks are at the same distances across all plots. Red stars mark the average weight of the first and last state of every
animal, as in Fig. 6
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Fig. A17 Distributions of weights of the closest previous states and how they differed in the first introduced state of a
new type. The red distributions to the right show the weight difference, not the final distribution, to highlight the change
through the fast process. The blue lines connect the means of two related distributions (we use the mean of the previous
distribution as the 0 point of the delta distributions). The bias is split as in Fig. 6, and the x-axis is shortened due to this,
though the x-ticks are at the same distances across all plots.
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Fig. A18 Model recovery of 5 states in a typical progression, the red and black outlines indicate ground truth. This
example shows the model’s ability to distinguish between similar states (3 and 4) within a session. A small number of trials
got assigned incorrectly between states 3, 4, and 5, in particular the rare state 5 missed some trials.

Fig. A19 Model recovery of 6 states with some unusual PMFs, which made the states more distinguishable, but the
recovery is made more difficult by the fact that many states co-occured in single sessions. The red and black outlines
indicate ground truth. The model found the correct number of states for this recovery and almost flawlessly discovered the
boundaries between the states in the sessions. Only trials of state 3 and 6, which were the most similar (and state 3 had
the highest variance in its responses), were sometimes noticeably misplaced.
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