Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Steroid signaling controls sex-specific development in an invertebrate

View ORCID ProfileLydia Grmai, View ORCID ProfileErin Jimenez, Ellen Baxter, Mark Van Doren
doi: https://doi.org/10.1101/2023.12.22.573099
Lydia Grmai
1Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lydia Grmai
Erin Jimenez
1Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erin Jimenez
Ellen Baxter
1Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Van Doren
1Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Summary

In vertebrate sexual development, two important steroid hormones, testosterone and estrogen, regulate the sex-specific development of many tissues. In contrast, invertebrates utilize a single steroid hormone, ecdysone, to regulate developmental timing in both sexes. However, here we show that in Drosophila melanogaster, sex-specific ecdysone (E) signaling controls important aspects of gonad sexual dimorphism. Rather than being regulated at the level of hormone production, hormone activity is regulated cell-autonomously through sex-specific hormone reception. Ecdysone receptor (EcR) expression is restricted to the developing ovary and is repressed in the testis at a time when ecdysone initiates ovary morphogenesis. Interestingly, EcR expression is regulated downstream of the sex determination factor Doublesex (Dsx), the founding member of the Dsx/Mab3 Related Transcription Factor (DMRT) family that regulates gonad development in all animals. E signaling is required for normal ovary development1,2, and ectopic activation of E signaling in the testis antagonized stem cell niche identity and feminized somatic support cells, which were transformed into follicle-like cells. This work demonstrates that invertebrates can also use steroid hormone signaling to control sex-specific development. Further, it may help explain recent work showing that vertebrate sexual development is surprisingly cell-autonomous. For example, chickens utilize testosterone and estrogen to control sex-specific development, but when they have a mixture of cells with male and female genotypes, the male cells develop as male and the female cells develop as female despite exposure to the same circulating hormones3. Sex-specific regulation of steroid hormone signaling may well underly such cell-autonomous sexual fate choices in vertebrates as it does in Drosophila.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • Updated text to fix errors and improve readability

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 26, 2024.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Steroid signaling controls sex-specific development in an invertebrate
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Steroid signaling controls sex-specific development in an invertebrate
Lydia Grmai, Erin Jimenez, Ellen Baxter, Mark Van Doren
bioRxiv 2023.12.22.573099; doi: https://doi.org/10.1101/2023.12.22.573099
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Steroid signaling controls sex-specific development in an invertebrate
Lydia Grmai, Erin Jimenez, Ellen Baxter, Mark Van Doren
bioRxiv 2023.12.22.573099; doi: https://doi.org/10.1101/2023.12.22.573099

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (6022)
  • Biochemistry (13697)
  • Bioengineering (10429)
  • Bioinformatics (33141)
  • Biophysics (17097)
  • Cancer Biology (14169)
  • Cell Biology (20098)
  • Clinical Trials (138)
  • Developmental Biology (10866)
  • Ecology (16008)
  • Epidemiology (2067)
  • Evolutionary Biology (20334)
  • Genetics (13392)
  • Genomics (18629)
  • Immunology (13741)
  • Microbiology (32149)
  • Molecular Biology (13380)
  • Neuroscience (70030)
  • Paleontology (526)
  • Pathology (2188)
  • Pharmacology and Toxicology (3741)
  • Physiology (5860)
  • Plant Biology (12020)
  • Scientific Communication and Education (1814)
  • Synthetic Biology (3365)
  • Systems Biology (8163)
  • Zoology (1841)