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Abstract

Restoring the epidermal barrier after injury requires spatial and temporal orchestration of migration,
proliferation, and signaling across many cell types. The mechanisms that coordinate this complex
process are incompletely understood. In vitro wound assays are common model systems for examining
these mechanisms in wound healing. In the scratch assay, a cell-free gap is created by mechanical
removal of cells from a monolayer, followed by monitoring cell migration into the gap over time. While
simple and low-cost, manual scratch assays are limited by low reproducibility and low throughput.
Here, we have designed a robotics-assisted automated wound healing (AWH) assay that increases
reproducibility and throughput while integrating automated live-cell imaging and analysis. Wounds
are designed as computer-aided design (CAD) models and recreated in confluent cell layers by the
BioAssemblyBot (BAB) 3D-bioprinting platform. The dynamics of migration and proliferation in
individual cells are evaluated over the course of wound closure using live-cell fluorescence microscopy
and our high-performance image processing pipeline. The AWH assay outperforms the standard
scratch assay with enhanced consistency in wound geometry. Our ability to create diverse wound
shapes in any multi-well plate with the BAB not only allows for multiple experimental conditions to
be analyzed in parallel but also offers versatility in the design of wound healing experiments. Our
method emerges as a valuable tool for the automated completion and analysis of high-throughput,
reproducible, and adaptable in vitro wound healing assays.

Introduction

Cutaneous wound healing requires coordinated signaling across cell types in four major phases:
hemostasis, inflammation, re-epithelialization, and tissue remodeling [1–4] (Figure 1). Injury to the
skin triggers the formation of a fibrin clot to initially reestablish the epidermal barrier. Immune cells
attracted to the site of injury release bioactive factors that stimulate migration and proliferation of
fibroblasts and keratinocytes. Activated fibroblasts reconstruct the extracellular matrix (ECM), while
keratinocytes re-epithelialize the tissue [4, 5]. Disruptions to this system can lead to excessive scar
formation or the development of diabetic ulcers, keloids, and other chronic non-healing wounds [4, 6,
7]. The repercussions of impaired wound healing also extend beyond chronic wounds to severe skin
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injuries where precise cellular responses are paramount for optimal tissue regeneration. In cases of
deep skin trauma and thermal burn wounds, the intricacies of the wound healing cascade become even
more crucial.

Figure 1: Overview of the wound healing process. Hemostasis, inflammation, re-epithelialization, and tissue
remodeling are overlapping phases that take place throughout the course of wound healing. During re-epithelialization,
cellular migration and proliferation are delicately balanced to close the wound and restore tissue function.

Two-dimensional in vitro wound healing assays incorporating primary skin cells are frequently
used to investigate migration and proliferation dynamics. Traditional methods, like the scratch assay,
are simple and cost-effective but suffer from limited reproducibility, low throughput, and inflexibility
in experimental design [8]. Likewise, while culture insert or barrier-based methods have high repro-
ducibility, they are low throughput and must be frequently replaced [8, 9]. Several technologies have
been developed to automate the creation of scratch wounds in 96-well plates [10, 11]. However, these
methods create uniform scratches in all wells simultaneously which limits versatility in testing multiple
experimental conditions or diverse wound types (e.g. incisions, lacerations, punctures).

The integration of robotic systems in biological research has revolutionized our ability to conduct
complex assays [12, 13]. Within the context of wound healing, robotics-assisted automation provides
a compelling opportunity to develop a reproducible, high-throughput, and adaptable wound healing
assay. Herein, we present the automated wound healing assay (AWH)—a robotically-controlled ap-
proach to consistently create monolayer wounds and analyze cellular migration and proliferation across
those wounds throughout the course of wound closure. Our method enables researchers to implement
a wound healing assay in any-sized cell culture well plate, with the novel ability to generate customized
wounds using an intelligent six-axis robotic arm, termed the BioAssemblyBot (BAB). The BAB is
designed for 3D bioprinting and the completion of complex assays. Using the BAB’s built-in printing
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workflow and 3D modelling software, wounds are designed as 3D shapes flattened onto the culture
surface of a pre-calibrated well plate. CAD wound models are then sent to the BAB as a “3D print”,
where the AWH is executed and the designed wounds are created in confluent cell layers. Wound
closure is monitored over time (typically 2-4 days) via live-cell fluorescence microscopy, enabling both
the migratory and proliferative activities of individual cells to be tracked throughout the course of
healing.

Results

Automated wound healing assay design

For AWH, we programmed BAB to mechanically remove cells from a monolayer with consistent speed
and pressure using a dispensing tip on its Printing Tool (Figure 2A). This approach produced highly
consistent wound dimensions and minimal damage to the cells and culture surface.

AWH was implemented in three parts: 1) wound design, 2) plate calibration, and 3) execution
(Figure 2B). Wounds were first designed as 3D CAD models, where wound shape, size, and placement
within the wells were customized. Plate calibration was performed on the same type of multi-well plate
as the prepared cultures and the same type of dispensing tip on the BAB arm. X, y, and z coordinates
were programmed for the center of all wells relative to the print stage. The 3D wound models were
then sent to the BAB, where the calibrated plate was selected as the container for printing, and the
AWH assay was executed.

Figure 2: Overview of automated wound healing. The BioAssembly Platform, including the BioAssemblyBot 400
(BAB) and the TSIM design software, was used for the automation of wound healing assays to increase reproducibility,
scalability, and controllability of wound healing experiments. (A) BAB is programmed to mechanically remove user-
defined regions from cell monolayers. Processes such as migration and proliferation can be monitored during wound
closure. (B) Workflow to implement AWH. First, 3D models of the wounds are designed using TSIM software. Next,
the well plate is calibrated with BAB. This involves determining the x, y, and z coordinates of each corner of the plate
relative to the print stage with BAB’s Printing Tool. Lastly, the CAD wound files are exported to BAB, where AWH
is executed in the BAB user interface.
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Automated wound healing generates consistent wound dimensions with con-
trol over wound shape

To compare the performance of the AWH assay against the standard scratch assay, simple scratches
were applied to human fibroblasts by the BAB and manually. Images of each well were taken at 5x
magnification, and manual- and BAB-generated scratches were compared for their consistency and
positioning. The AWH assay produces wounds with increased consistency in wound shape across all
wells compared to wounds that were created manually (Figure 3A). We observed smaller deviations
in scratch width for scratches generated by the BAB (σ = 44.9 µm) compared to manually-generated
scratches (σ = 103.1 µm) (Figure 3B). The positioning of the scratches across all wells was more
variable for manual scratches compared to the AWH assay, which exhibited uniform positioning of each
scratch near the center of the well (Figure 3C). The BAB’s 3D-printing workflow can create complex
wound shapes with high precision (Figure 3D). To evaluate the impact of geometry on wound closure,
we designed an AWH assay to create different shapes and performed live-cell imaging at 20 minute
intervals over 88 hours. Representative images of the circle and triangle wounds closing over time are
depicted in Figure 3E. As expected, the area of the wound determined wound closure time (Table
1). This emphasizes the importance of reproducibility in wound healing assays—manually-generated
wounds with higher error in wound geometry can affect the experimental outcomes. Thus, in a given
experiment, wounds need to be carefully designed and created in order to make accurate comparisons
within and across different conditions.

Wound Area (mm2) ± SD Closure time % Closure (t = 88 hr)

Triangle 21.6 ± 0.4 >88 hr 98.8%

Square 17.6 ± 0.9 >88 hr 99.9%

Circle 17.2 ± 1.1 >88 hr 99.6%

Line 4.4 ± 0.3 32 hr 100%

Table 1: Average area and wound closure times for different wound shapes (n = 3).

Live-cell fluorescent microscopy enables monitoring of migration and pro-
liferation in individually tracked cells

Live-cell imaging enables capture of proliferation and migration dynamics after wounding. We lever-
aged BAB’s built-in capacity for interfacing with other lab equipment to couple AWH with live-cell
imaging to build a fully automated workflow (Figure 4A).

As a proof of concept, AWH was performed on human fibroblasts. We programmed the BAB to
transfer the “wounded” well plate to the Zeiss Celldiscoverer 7 (CD7) live-cell fluorescent microscope
with its Pick n’ Place tool. Time-lapse images of the cells were captured at 5x magnification every 30
minutes over 48 hours. The acquired images were run through our image processing pipeline, which
detects and tracks individual cell nuclei over time (Figure 4B).
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Figure 3: The AWH generates more consistent wounds compared to the standard scratch assay. (A) Rep-
resentative images of simple scratches made by the BAB (top) and by hand (bottom). BAB-generated scratches exhibit
more consistency compared to manually generated wounds. Scale bar = 500 µm. (B) Scratch width measurements.
Scratch widths and standard deviations were calculated as the distance between each wound edge along the full length
of the scratch. Each bar represents one wound. (C) Representative full well images of scratches made by the BAB
(top) and by hand (bottom). White dashed lines indicate the center of the well. Scale bar = 1 mm. (D) Representative
images of complex wound shapes created by the BAB. Scale bar = 1 mm. (E) Image montage of wound closure over
time for circle and triangle wound shapes. Scale bar = 1 mm.
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Figure 4: Workflow for the automated wound healing assay and time-lapse image analysis. (A) The AWH
is performed as described in Figure 2. By use of the BioApps Maker workflow automater, the BAB is programmed to
transfer the well plate to the Zeiss Celldiscoverer7 (CD7) and begin image acquisition. Images are taken at 20-30 minute
intervals over the course of wound closure. Individual cells are detected in each image, and the migration trajectory for
each cell is tracked over time. (B) Representative images of wound closure over time for a simple scratch wound. Scale
bar = 200 µm.

Discussion

The automated wound healing assay demonstrates notable advantages in terms of reproducibility,
scalability, and experimental flexibility compared to traditional methods. The robotic control of the
assay not only minimizes human variability but also ensures consistent wound creation and monitoring.
The scalability and flexibility of our approach allows for high-throughput experimentation, making
it adaptable to various experimental conditions and wound types. The incorporation of live-cell
fluorescence microscopy in our automated workflow opens up avenues for assessing additional biological
processes during wound healing. This real-time imaging capability enables the observation of dynamic
cellular events, such as cell cycle phase transitions [14] or epithelial-to-mesenchymal transition (EMT)
dynamics [15], providing a more comprehensive view of cellular behaviors in response to injury.

An exciting prospect of our automated workflow is its applicability to cellular reprogramming
studies geared towards accelerating the wound healing process. In previous work, we have successfully
reprogrammed human fibroblasts to embryonic stem cells, muscle cells, and other cell types utilizing
our in-house data-guided control algorithm [16]. This framework employs a multi-way dynamical
systems approach to predict combinations of TFs, as well as the specific time point in which TF
activation or suppression will have the greatest effect, for converting one cell type into another desired
phenotype. By leveraging the precision and control offered by the AWH assay, we envision that future
iterations of our model can be refined to explore the modulation of cellular states during wound healing
through transcription factor-guided therapy (Figure 5).

Wound healing has long been recognized as a process akin to cancer metastasis [17, 18]. Ker-
atinocytes have the innate ability to partially and reversibly transition into another phenotype. This
feature of wound healing resembles that of the epithelial-mesenchymal transition (EMT), a process in
which an epithelial cell acquires a mesenchymal phenotype. In cancers, EMT is known to be a key
player in tumor progression, metastasis, and chemo-therapeutic resistance [19, 20]. In wound heal-
ing, this partial EMT is crucial to the restoration of epidermal barrier function. Keratinocyte cells
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Figure 5: The wound healing process under transcription factor-guided control. We envision that we can
expedite the wound healing process through a data-guided cellular reprogramming approach. Delivering algorithmically-
predicted transcription factors to wounded cells has the potential to enhance cellular migration and proliferation, thus
promoting accelerated healing.

proximal to the injury site lose their epithelial characteristics and adopt a motile mesenchymal-like
program, while epidermal cells distal to the wound edge begin to proliferate. As the underlying tissue
repairs, keratinocytes repopulate the wound bed and reestablish their epidermal signature [5, 18].

Although it is known that chromosomal aberrations and certain core EMT genes are not apparent
in physiological re-epithelialization [18], the evident similarities between cancers and wound healing
mechanisms prompts the notion that deepening our understanding of the intricate balance between
migration and proliferation during wound healing could augment our abilities to understand cancer
metastasis. Human-relevant in vitro models have recently been approved by the FDA as a viable
alternative to animal testing in preclinical drug evaluations [21]. Recognizing the well-documented
pharmacogenomic variations between animal models and humans, the use of biomimetic cell-based
assays for drug safety and efficacy testing represents a significant step toward more accurate predictions
of human therapeutic responses. In the context of wound healing and cancers, our automated method
can be harnessed to screen for potential EMT regulators and, in the long term, to evaluate the efficacy
of anti-cancer drugs targeting this process.

Conclusion

We have developed an automated workflow for the execution and analysis of in vitro wound healing
experiments. Our automated wound healing assay not only addresses the limitations of traditional
methods but also opens up avenues for exploring diverse biological phenomena during wound healing
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and advancing research in regenerative medicine and cancer biology. The reproducibility, scalability,
and adaptability of our approach, coupled with its potential applications, position it as a valuable
tool in the broader landscape of experimental techniques.

Methods

Automated wound healing assay

The steps described below were completed for each run of the AWH assay reported in the Results.
Multi-well plates from 12 - 96 wells were tested in the AWH assay. The plate calibration steps were
completed once for each plate size used, while the tip to stage offset was determined for each new
dispensing tip.

Wound design

Tissue Structure and Information Modeling (TSIM) software v1.1.227 (Advanced Solutions Life Sci-
ences, LLC) was used for design of the wounds. The plate type was selected and settings included
“print continuously”, “flatten”, and the printer default for “move between layers.” In a new sketch,
the wound shapes were drawn using the software’s sketching tools. Finalized wound shapes were then
copied into other wells as desired for replicates. The z-depth of all objects was set to 0.0001. In the
material settings, printing pressure was set to 0 psi, and printing speed and acceleration were set to 3
mm/sec and 10 mm/sec2, respectively. The design file was saved and sent as a print job to the BAB
human machine interface (HMI).

Plate calibration

For plate calibration, multi-well plates were placed on the BAB Print Stage and de-lidded. In the
BAB HMI, the BAB Printing Tool was retrieved and a new container for printing was created for each
type of plate. The number of rows and columns were input, and the Printing Tool tip was manually
positioned in the center of the first well, designated A1, at an arbitrary z-coordinate since z coordinates
were determined later during tip to stage offset calibration. The x, y, and z-coordinates were recorded
for A1 and the process was repeated for the remaining three corner wells. The coordinates were then
calculated and stored for all wells using the HMI settings Update All Wells (Relative) and Calculate
Wells from Extents. Calibration for tip to stage offset ensured contact between the dispensing tip
of the BAB Printing Tool and the plate surface. The BAB Printing Tool with a tip was manually
positioned to have full contact with the surface of the plate, ensuring no deformation of the tip. The
measured tip offset was recorded for use during print execution.

Execution

The assay was executed using the Print interface of the BAB HMI. The measured tip offset was loaded
in the calibration settings alongside the design file received from the TSIM application. The calibrated
well plate was selected as the container for printing and the location of the BAB Printing Tool was
given.

Cell culture

Human BJ fibroblasts (ATCC CRL-2522) were cultured on standard cultureware in Dulbecco’s Modi-
fied Eagle’s Medium (DMEM, Gibco 11965-092) with 10% Fetal Bovine Serum (FBS, Corning 35-015-
CV), 1% MEM Non-Essential Amino Acids (NEAA, Gibco 11140-050), and 1% penicillin-streptomycin
(P/S, Gibco 15140122). Cells were incubated at 37°C in 5% CO2, and media were exchanged every
48 hours. For the AWH assay, BJ Fibroblasts were seeded at densities ranging from 0.22 - 0.63 x 105
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cells/cm2 in 12-, 24-, 48-, or 96-well plates. After 24 hours, cells were incubated in normal media
containing 0.02 µM Hoechst 33342 (Enzo, ENZ-52401) for 2 hours, followed by executing the AWH
assay. Wells were then washed with PBS. FluoroBrite DMEM (Gibco, A18967-01) with 10% FBS,
1% NEAA, and 1% P/S was added to all wells prior to image acquisition.

Image acquisition

The Ziess Celldiscoverer 7 (CD7) live-cell imaging system was used to automate capture of time-lapse
images during wound closure. Oblique contrast and fluorescence microscopy was performed with a
Plan-Apochromat 5x/0.35 objective and 0.5x or 1x tube lens. Images were taken using an Axiocam
506 with 14 bit resolution. Cells were imaged at 37°C in 5% CO2. Images were captured every 20 or
30 minutes over the duration of wound closure. For each wound, a multi-channel time-series ome.tiff
file was prepared in the Zen Blue 3.0 software and exported for downstream analysis.

Image processing

Image analysis

Raw images were preprocessed using ImageJ and Python, and analyses were performed with MATLAB

and Python. All scripts may be found at the following URL https://github.com/jrcwycy/wound_

healing.
For wound area calculations, raw oblique images were first preprocessed in ImageJ. Wounds were

identified using the Image Segmenter application in MATLAB and exported as binary masks. Wound
areas were then quantified over time for each shape. For scratch width analysis, individual cell nuclei
were segmented from raw H3342 images using StarDist [22], a deep-learning based method for object
detection and segmentation. Isolated segmentations were then filtered out of the wound bed images
using a nearest neighbors approach [23]. To identify wound edges, contours that separated areas of
high cell density from areas of low cell density were detected using scikit-image [24]. The line of best
fit for each contour served as the wound edge for subsequent analyses. Scratch widths were calculated
as the distance between the two wound edges along the entire length of the scratch for each image.

Automated cell tracking

To automate analysis of wound healing experiments, we constructed an image processing pipeline using
the Python framework Snakemake [25, 26]. The pipeline is designed to manage parallel processing of
large time-series imaging data in a high-performance computing environment. Briefly, the pipeline
produces nuclear segmentations at each timestep using StarDist [22] and predicts cellular movement
using a Bayesian single cell tracking approach [27]. Inputs to the pipeline are multi-channel time-series
ome.tiff files and a set of user-defined parameters controlling the behavior of different filtering and
analysis operations [24]. The outputs of the pipeline are properties of cell nuclei at each time step,
and nuclear linkages between time-steps which we refer to as ‘tracks.’

We describe the operations of the pipeline in Algorithm 1 on a single input. Note that the pipeline
may be run on a set of input images. All software for automated image prepossessing and analysis
may be found at the following URL https://github.com/CooperStansbury/pip-fucci.

Supplementary Material

See the supplementary material for images and data that support the findings of this study.
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Algorithm 1 Automated Cell Tracking

Input: Image H(c×t×y×x×q) where c is the number of color channels, t is the number of timesteps in
the ome.tiff file, y is the number of vertical pixels, x is the number of horizontal pixels, and q is
the RGB index.

Output: Track table X(r×m) where r is the number of segmented nuclei times the number of time-
points in their respective tracks and m is the number of features for analysis, e.g., estimates of
nuclear size, shape, and fluorescent intensity over each color channel.

1: Flatten: The RGB channels of image H are converted to greyscale resulting in a new image
shape H̄(c×t×y×x)

2: Rescale dimensions: Image H̄ is rescaled over spatial dimensions y, x according to user-defined
parameters.

3: Rescale intensities: Image H̄ is rescaled over color channels c to [0, 255]
4: Median filtering: A median filter is applied to H̄ based on user-defined parameters.
5: Histogram equalization: Adaptive histogram equalization is applied to H̄ based on user-defined

parameters.
6: Segment: Image H̄ is segmented using StarDist on the nuclear channel [22]. Segmentation

results are stored as a properties table using skimage.region props() [24].
7: Track: Segmentation results are linked over time using btrack [27]. The resulting table is merged

with the nuclear properties table and stored as X.
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