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ABSTRACT 

The analysis of protein dynamics or turnover in patients has the potential to reveal altered protein 

recycling such as in Alzheimer disease, and to provide informative data regarding drug efficacy, or 

certain biological processes. The observed protein dynamics in a solid tissue or a fluid is the net result 

of protein synthesis and degradation, but also transport across biological compartments. We report 

an accurate 3-biological compartment model able simultaneously account for the protein dynamics 

observed in blood plasma and the cerebrospinal fluid (CSF) including a hidden central nervous system 

(CNS) compartment. We successfully applied this model to 69 proteins of a single individual 

displaying similar or very different dynamics in plasma and CSF. This study put a strong emphasis on 

the methods and tools needed develop this type of model. We believe it will be useful to any 
researcher dealing with protein dynamics data modeling. 
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INTRODUCTION 

Brain research and in particular investigations interested in brain diseases have identified the 

cerebrospinal fluid (CSF) as a convenient source of information regarding the central nervous system 

(CNS) proteome (Bastos et al., 2017). Indeed, the CNS is in close contact with the CSF through the 

CNS-CSF barrier, and it exports a large number of proteins to the CSF. Other CSF proteins originate 

from blood, which is also in close contact with the CSF at the choroid plexus through the blood-CSF 

barrier. These proteins can be imported by the CNS. That is, alterations of the CNS functioning are 

likely to yield an alteration of the CSF proteome, which is accessible for diagnosis purposes. 

Numerous studies hence searched for CSF biomarkers of brain disorders, degenerative diseases 

predominantly (Bader et al., 2020; Karayel et al., 2022; Johnson et al., 2023). An even more 

accessible body fluid for patient diagnosis is blood, which naturally led to search for other biomarkers 

that would go to circulation through the blood-brain barrier directly or through the CSF (Leuzy et al., 
2022). 

Clinical and research proteomics have established powerful methods to determine protein 

abundance in tissues (Meyer and Schilling, 2017). Parallel and complementary to these efforts, 

techniques were developed to map the dynamics – or turnover – of proteins (Doherty and Whitfield, 

2011). Protein dynamics has the potential to reveal specific disease alterations in protein degradation 

or clearing. This has been for instance demonstrated for amyloid-β (Aβ), Tau, or sTREM2 in Alzheimer 

disease (AD) (Mawuenyega et al., 2010; Sato et al., 2018; Suárez-Calvet et al., 2016), retinol-binding 

protein 4 (RBP4) in diabetes (Jourdan et al., 2009). The measure of protein dynamics is commonly 

performed by mass spectrometry (MS), and it relies on the introduction of an isotopic tracer that 

labels newly synthesized proteins through a mass shift (Bateman et al., 2006; Jaleel et al., 2006; 

Doherty et al., 2012; Claydon et al., 2012; Wilkinson, 2018). The ratio of labeled versus unlabeled 

protein MS signals is named the relative isotope abundance (RIA). Protein dynamics parameters are 

obtained from the change of RIA over time by mathematical modeling. 

In this study, we explore how the simultaneous acquisition of proteome dynamics in blood plasma 

and CSF can be related. In particular, by adapting methods of pharmacokinetics designed to model 

the diffusion of drugs in the various organs and body compartments, we propose mathematical 

models including hidden or implicit CNS proteome dynamics. The approach is illustrated using unique 

unpublished data obtained from a patient with serial blood and CSF collection over 36 hours. 

Different procedures are available to introduce the isotopic tracer. Here, we applied a protocol that 

entails the intravenous injection of 13C6-Leu for nine hours with serial collection of blood and 

ventricular CSF over an extended period of time (Paterson et al., 2019; Lehmann et al., 2015), see 

Figure 1A. It is slightly adapted from the stable isotope labeling kinetics (SILK) protocol (Bateman et 

al., 2006). This pulse-chase protocol both unravels a new protein synthesis phase and its clearance. It 

reveals patient physiology since protein dynamics in CSF and blood result from potential local 

synthesis and degradation, but also transport from or to different organs such as the CNS and the 
liver (Figure 1B). 

In a previous report, we introduced a mathematical model able to accurately capture protein 

dynamics in a single tissue at a time (Lehmann et al., 2019). The models presented here extend this 

elementary modeling effort to the multiple biological compartments situation. Interestingly, the 

respective dynamics in blood and in CSF may display distinct patterns (Figure 1C). This indicates a 

nontrivial contribution of the CNS to induce the observed dynamics. 
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Figure 1. Experimental setting and data available. (A) Schematic of the SILK protocol. 13C6-Leu was injected for 

the first nine hours, and samples were collected roughly every three hours, starting at 𝑡 = 0 [h]. (B) Connections 

between the considered biological fluids with specific barriers. (C) Three typical patterns of simultaneously 

observed dynamics. Serpin family F member 1 (SERPINF1) harbored comparable dynamics in both CSF and 

plasma. Transthyretin (TTR) displayed faster dynamics in the CSF. Apolipoprotein H (APOH) displayed the 

opposite difference with faster plasma dynamics. The black curve 𝛽(𝑡) models the dynamics. The blue dashed 

curve 𝛼(𝑡) represents the availability of the tracer for the specific protein synthesis. Dot sizes are on an arbitrary 

scale proportional to the square-root of the 13C6-Leu-labelled peptide MS intensities. Vertical gray l ines at 9 [h] 

indicate end of tracer injection. 
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MATERIALS AND METHODS 

Human samples collection 

Samples were generated following the clinical protocol “In Vivo Alzheimer Proteomics (PROMARA)” 

(ClinicalTrials Identifier: NCT02263235), which was authorized by the French ethical committee CPP 

Sud-Méditerranée IV (#2011-003926-28) and by the ANSM agency (#121457A-11). The enrolled 

patient (P017) was hospitalized in neurosurgery unit due to subarachnoid hemorrhage (posterior 

communicating artery aneurysm), and received a temporary ventricular derivation of the CSF. She 

was 40 years old. Tracer injection and sequential sample collection started 19 days after initial, 

medical ventricular drainage and normalization of CSF clinical chemistry analysis (protein 

concentration at 0.35 g/L to compare with normal range 0.2-0.4 g/L range (Roche et al., 2008); cell 

count per mm3 was 100). CSF and blood plasma were collected at multiple time points after injection 

of the tracer (roughly every 3 hours) for 36.2 hours in total. We applied the ethically approved (see 

above) original SILK 13C6-Leu infusion protocol (Lehmann et al., 2015). Briefly, 13C6-Leu prepared per 

the European Pharmacopeia (Tall et al., 2015) was intravenously administered. After a 10 min initial 

bolus at 2 mg/kg, an 8h50 infusion at 2 mg kg/h was performed.  Ventricular CSF or plasma EDTA 

samples were collected starting at the beginning of the 13C6-leucine infusion, roughly every 3h (3 to 6 

mL). Samples were transported to the laboratory at 4°C, and centrifuged at 2000g for 10 minutes. 

CSF and plasma samples was aliquoted into 1.5-mL polypropylene tubes and stored at –80°C until 
further analysis. 

 

Sample preparation 

1µL of plasma and 150µL of CSF were depleted with depletion columns (High Select™ Depletion Spin 

Columns, A36370, ThermoFisher). The filtrate was collected and evaporated to dryness on SpeedVac 

(50 °C). Samples were reconstituted with 20 µL Ammonium Bicarbonate (ABC) 100 mM, 1% SDS and 

transferred on Eppendorf™ twin.tec™ 96-Well (30129300). Samples were reduced, alkylated and 

digested with autoSP3 protocol (Müller et al., 2020). On AssayMap BRAVO (Agilent), SP3 protocol 

version 1.0.2 was used. Proteins were reduced with 5µL of Dithiothreitol 80mM during 1800s at 60°C. 

Then, they were alkylated with 5µL of Iodoacetamide 200mM during 1800s at 30°C. A 50/50 mix of 

Sera-Mag stock solution A and B was generated at 100 mg/mL and 5µL was added to the sample. 

35µL of acetonitrile was added and sample were incubated 1080s. After this incubation, beads were 

washed two times with 200µL of 80% EtOH and one time with 180µL of acetonitrile. Proteins were 

digested by adding 35µL of ABC 100 mM, 5µL of Trypsin/LysC (0.05 µg/µL, Promega), and incubate 

overnight at 37°C and 450 rpm, well closed with sealing foil. 

Digestion was stopped with addition of 10µL 5% formic acid. Generated peptides were fractionated 

on C18 tips (AssayMAP 5 µL Reversed Phase (RP-S) cartridges, G5496-60033, Agilent T) at basic pH. 

50µL of 200mM ammonium formate pH10 were added to samples and “Fractionation V2.0” was ran 

on AssayMap BRAVO (Agilent T). Briefly, cartridges were primed with 100µL of 90% acetonitrile, 

equilibrated with 50µL 20mM ammonium formate pH10, before sample loading. Cartridges were 

washed with 50µL 20mM ammonium formate pH10 before sequential elution with 35µL. For the CSF, 

5 fractions were generated: 15%, 20%, 25%, 30% and 80% acetonitrile in 200mM ammonium formate 

pH10. For the plasma samples, 4 fractions were generated: 15%, 20%, 25% and 80% acetonitrile in 
200mM ammonium formate pH10. In this condition, the fractions at 15% and 80% were mixed. 
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Fractions were diluted with 0.1% formic acid and loaded on evotip following the manufacturer 

procedure. 

 

Chromatography and MS analysis 

LC-MS acquisitions were performed on Evosep One using 8cm x 150µm, 1.5µm (EV1109, Evosep) 

with 60SPD method coupled to TIMS TOF HT (Bruker Daltonics) through a captive spray ion source. 

Ion source parameters were 1500V on capillary with 3.0L/min at 180°C for the drying gas. DDA-PASEF 

method was used in positive ion mode. MS1 range was 100-1700 m/z. TIMS settings were 1/K0 0.75-

1.25, Ramp and Accumulation time of 100ms. At MS2 level, 10 PASEF Ramps were performed per 
cycle of 1.17s. Plasma fractions were analyzed in duplicate. 

Data acquisitions were submitted and interrogated inside the Paser Box (Bruker Daltonics). Uniprot 

database (2021) was used with human as the only taxonomy. Contaminants were added during the 

database indexation on Paser Box server. CID mode was selected for the fragmentation with 

monoisotopic precision at precursor and fragment level. Mass tolerance was 20ppm at the precursor 

level and 30ppm at the fragment level. Precursor mass range was between 600 and 6000 Da. 

Proteins were digested with trypsin with strict specificity and maximum 2 missed cleavages. Minimal 

peptide length was set to 6 amino-acids with a maximum of 2 potential variable modifications as 

deamidation (N, Q) and oxidation (M). Carbamidomethylation was used as fixed modification of 

cysteine. XCorr was used as primary score, Zscore in the secondary score, and TIMScore was used. A 

minimum of 1 peptide identified per protein was required. False discovery rate (FDR) less than 1% 

was imposed at the protein level. 

Identification results were exported with mzIdent files (mzid and mgf files). The se files were used to 

import Peptide Search into skyline. Peptide and precursor ions in the library were uploaded on 

skyline file. Retention time tolerance was 1.5 min on MS/MS scan ID, 0.2 on ion mobility value 

coming from the experimental library, 3 isotopes at resolution 60000 at MS1 level. Isotope 
modification was added for 13C6-leucine. 

 

Individual fluid mathematical model 

Computing the ratio of tracer-containing MS signals versus the total (tracer-containing and non-

tracer-containing) signals defined the RIAs such as illustrated in Figure 1C (salmon dots). Detailed 

derivation of our 2-compartment mathematical model to fit data from an individual sample was 

published (Lehmann et al., 2019). For clarity, we provide a brief summary. For a given peptide and 

time point, the observed RIA is defined by the ratio of the heavy Leu signal 𝐻 (observed at +6 Da per 

Leu) and the total signal 𝐿 +𝐻, 𝐿 being the signal at the nominal mass. The curve traced by RIA 

values over time is modeled by 𝛽(𝑡). Our 2-compartment model comprises a first compartment 

representing the rate of tracer availability denoted 𝛼(𝑡). The second compartment represents the 

rate 𝛽(𝑡) of newly synthesized peptides. Modeling at the protein level is achieved by pooling all the 

peptide RIA values at all available times, and fitting the same mathematical model on the pooled 
data. The system of ODEs defining 𝛼(𝑡) and 𝛽(𝑡) is 

{
  
𝑑𝛼

𝑑𝑡
= (𝜆𝑓(𝑡) − 𝛼)𝑘𝑐

  
𝑑𝛽

𝑑𝑡
= (𝛼 −𝛽)𝑘𝑐

 ,                                                                                          (1)  
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with 𝛼(0) = 0 = 𝛽(0). Figure 1C illustrates three typical proteins in each fluid. It is important to 

observe that the parameter 𝜆 essentially acts as a scale parameter, whereas 𝑘𝑐, the clearance rate 
primarily acts as a shape parameter that strongly conditions protein half-life. 

A peculiarity in modeling RIAs, which results from noise and the large differences of intensities 

between 𝐿 and 𝐻 (ratio 10 to 100 usually), is that observed RIA values may contain a slight vertical 

shift (see SI for an explanation of this phenomenon and Figures S1-S2). Therefore, parameter fitting 

in (1) must include the computation of a shift 𝑠 along with 𝜆 and 𝑘𝑐 to adjust 𝛽(𝑡) to the data. 

Classically, minimizing the summed squared errors between 𝛽(𝑡) and the observed RIAs minus the 

shift 𝑠 provides the solution. We empirically found that weighing squared errors proportionally to 

√𝐻 lead to better fit since RIAs with stronger 𝐻 signals were more accurate. Minimization was 

achieved by a quasi-Newton iteration (function optim in R with method BFGS). The system (1) was 

numerically integrated by RADAU5 method (Hairer and Wanner, 1996) available from R deSolve 
package (function radau). 

Robustness against outlier RIA values caused by noisy data was obtained thanks to a 2-step empirical 

procedure. A first model was fitted using all the available RIAs, and then RIAs located at a distance 

larger than half the difference between the minimum and maximum values of the first fitted 𝛽(𝑡) 

model were considered outliers. A second application of the quasi -Newton method without the 

outliers was then performed to determine the final parameter values. In addition, RIAs at time 0 

were always considered outliers since no tracer incorporation had occurred yet. The bootstrap was 

used to estimate confidence intervals around parameter estimates. To use RIAs obtained at 𝑡 = 0 to 
estimate the shift 𝑠 does not work, most likely due to variable co-eluting material. 

 

Initial data processing pipeline 

Plasma and CSF MS data were processed separately, essentially following the method we already 

published to extract usable spectra and protein dynamics models in each fluid (Lehmann et al., 

2019). The only differences with respect to this original method was to add additional peptide-level 

qualitative filters. Since each detected peptide could be present in more than one protein fraction 

and at different charge states, we name observation a given peptide in a given fraction at a given 

charge state. Many peptides obviously gave rise to multiple observations. Dynamics estimation is 

based on observations. Starting with Skyline export, a first step implemented in a Perl script 

eliminated peptides devoid of leucine. Otherwise, the analysis was conducted in R. Second step was 

to eliminate observations for which there were too many missing time points or insufficient signal 

intensity. In a third step, the remaining observations data were fitted with mathematical model (1). 

The fitted model enabled us to eliminate aberrant shapes, incompatible with protein dynamics and 

isotopic tracer incorporation. For observations whose shapes were potentially acceptable, we 

defined a band around the model curve 𝛽(𝑡) to call outliers RIAs that fell outside this band. 

Observations harboring too many outliers were eliminated. In addition, we required Spearman 

correlation ≥ 0.75 between non-outlier data points and 𝛽(𝑡) values at corresponding times. We also 

used a piecewise polynomial model (loess) to estimate a 95% confidence area around the non-outlier 

data points, and we required that 𝛽(𝑡) remained within this area at least 75% of the time. Lastly, we 

imposed that at least two non-outlier data points were available before 10 hours and after 20 hours 

to constrain initial and final dynamics. The final stage was to combine all the observations available 

for a protein into a single model. For this purpose, we only considered unique peptides to avoid 

contamination between proteins. As soon as three or more observations were available, we checked 

the parameters 𝑘𝑐 obtained for each one independently at the previous stage. Observations from 
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unique peptides harboring an outlier 𝑘𝑐 value (R function boxplot.stats) were discarded. The 

remaining observations were aligned on the observation with highest median heavy Leu signals 

because of the vertical shift issue. Finally, the mathematical model was fit as above on the pooled 

observations to obtain the protein model complemented by a bootstrap (1,000 times) to estimate 

parameter 95% confidence intervals (CI95). The steps of this pipeline are detailed in SI.  

The pipeline above performed the separate analysis of each fluid. For each fluid, its output consisted 

in a set of protein models with their parameters and, most importantly, all the non-outlier RIAs of all 

the corresponding validated observations. These RIAs constitute the input data for the simultaneous 

CSF-plasma models that are the object of this study as soon as a protein was detected in both fluids.  
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RESULTS AND DISCUSSION 

Mass spectrometry data processing 

Overall, CSF MS data covered 3,156 proteins and 22,842 distinct peptides, 16,913 of which contained 

at least one leucine. Each peptide was subjected to filters for signal quality and the requirement of 

being detected at least 9 out of the 13 time points in the same chromatographic fraction and at the 

same charge state. This resulted in 2,417 distinct peptides usable for dynamics modeling that 

corresponded to 3,179 distinct observations, i.e., a different peptide, chromatography fraction, or 

charge state. Based on the usable observations, we could determine the dynamics of 869 proteins in 

the CSF. In plasma, the same process led to 1,260 proteins covered by 9,243 peptides among which 

6,788 contained at least one leucine. We found 1,264 usable peptides from 1,740 observations, and 

obtained an estimation of the dynamics of 271 proteins in plasma. The number of proteins detected 
with dynamics data in both plasma and CSF was 194. 

In this report, with one patient available only, we focused on the ability to model the dynamics of 

proteins in the CSF and plasma simultaneously. We hence reasoned that we would limit our 

considerations to the proteins that were available with a rather large number of observations. We 

imposed a minimum of four observations in each fluid separately, and it reduced the list of common 

proteins between CSF and plasma from 194 down to 69 (Figures S3-S5). 

 

Initial considerations 

The CSF is rather poor in cells. Most CSF proteins are indeed produced in the CNS, or remote organs 

such as the liver and brought via the blood. The CSF proteome composition as well as its dynamics 

are thus defined by the rates of imports and exports through the CNS-CSF and blood-CSF barriers. 

They marginally depend on CSF local protein synthesis and degradation. Furthermore, remote organs 

and CNS protein dynamics cannot be measured in vivo directly in patients. This forces us to study CSF 

and plasma protein dynamics with models where CNS and remote organ contributions can only be 
implicit. 

Pharmacokinetics literature describes how to model a compound reaching different body 

compartments (Bourne, 2018), and a 2-biological compartment model is often applied (Figure 2A). 

Assuming classical exponential elimination dynamics in each body compartment 𝐶, written as 𝐶(𝑡) =

𝐵𝑒−𝑏𝑡, the model in Figure 2A is represented by the ODE system 

{
 
𝑑𝐶1(𝑡)

𝑑𝑡
=

𝑘𝑎𝐴GI(𝑡)

𝑉1
− (𝑘10 +𝑘12)𝐶1(𝑡)+ 𝑘21𝐶2(𝑡)

 
𝑑𝐶2(𝑡)

𝑑𝑡
= 𝑘12𝐶1(𝑡)− 𝑘21𝐶2(𝑡)

,                                        (2) 

where 𝐶1(𝑡) and 𝐶2(𝑡) stand for each compartment compound abundance over time, 𝐴GI(𝑡) stands 

for the compound abundance in the gastrointestinal (GI) tract and 𝑉1  for the volume of distribution. 

This model relates to the 2-compartment model we used to derive (1), but in the latter case we only 

had 𝛼(𝑡), the infusion of 13C6-Leu, which is equivalent to 𝐴GI(𝑡), and the RIA 𝛽(𝑡), which is equivalent 

to 𝐶1(𝑡). The reason is that there is one additional compartment 𝐶2(𝑡) in (2) because 

pharmacokinetics nomenclature refers to a 2-compartment model as a model with two biological 

compartments plus the GI tract. Accordingly, in (2), we replace 𝐴GI(𝑡)/𝑉1 by plasma 𝛼(𝑡) and 𝐶1(𝑡) 

by plasma 𝛽(𝑡), and 𝐶2(𝑡) by CSF RIA in, which we denote as 𝜒(𝑡). We hence obtain the system 
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{
 
 

 
   

𝑑𝛼

𝑑𝑡
= (𝜆𝑓(𝑡)−𝛼)𝑘𝑎

  
𝑑𝛽

𝑑𝑡
= 𝑘𝑎𝛼− (𝑘10 + 𝑘12)𝛽+ 𝑘21𝜒

𝑑𝜒

𝑑𝑡
= 𝑘12𝛽− 𝑘21𝜒

                                                     (3) 

that simply establishes linear transfers between plasma and CSF RIA values at rates 𝑘12 and 𝑘21. For 

clarity, the system (3) is referred to as a 2-biological compartment model to distinguish from the 2-

compartment model (1). 

The search for optimal parameters in (3) with an unconstraint quasi-Newton iteration (R optim 

function, BFGS method) led to non-feasible negative values for some transfer rates. Applying bound-

constraint optimization (R optim with L-BFGS-B method) solved this issue. Note that optimization 

included the vertical shifts on RIAs mentioned in Materials and Methods, one independent shift in 

each biological fluid. While (3) provided an accurate model for proteins displaying slower dynamics in 

CSF such as Serpin family F member 2 (Figures 2B and S6A), it sometimes failed for proteins with 

comparable dynamics in both fluids, for instance Clusterin (Figure 2C). Additional successful 

examples are featured in Figure S6B. For proteins harboring faster dynamics in CSF, the model (3) 

systemically failed as for Protein S (Figure 2D) despite trying many initial values for the quasi-Newton 
iteration. Additional failed examples are featured in Figure S6C. 

 

 

Figure 2. Attempts with a 2-biological compartment model. (A) General principle of a 2-biological compartment 

model in pharmacokinetics. (B) Application of such a model to simultaneously capture blood plasma and CSF 

protein dynamics of Serpin family F member 2 (SERPINF2). (C) Application of the model to Clusteri n (CLU). We 

note the limited accuracy achieved (blue arrows). (D) Application of the model to Protein S (PROS1). Left, 

independent models computed in each fluid separately. Right, the best 2-biological compartment model result 

we could achieve. 

 

Before introducing a more complex model, we mention that some authors introduced a notion of 

delay between biological compartments when modeling protein dynamics (Wildsmith et al., 2012). 
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Although this sounds plausible, inspection of all the CSF 𝛽(𝑡) curves in Figures S3-S5 did not reveal 

any obvious delay. The synthesis of new proteins apparently started immediately within the limits of 

the accuracy provided by sample collection every three hours. To nonetheless evaluate the potential 
relevance of introducing a delay, we implemented a modification of (3), where 𝜒 must instead satisfy 

𝑑𝜒(𝑡)

𝑑𝑡
= 𝑘12𝛽(𝑡 − 𝜏) − 𝑘21𝜒(𝑡),                                                      (4) 

with 𝜏 > 0, the delay, and 𝛽(𝑡) = 0 for 𝑡 ≤ 0. Eq. (4) inserted in (3) defined a delay differential 

equation, which we numerically integrated with the function dede of R deSolve package (method set 

to radau). Parameter search was conducted applying bound-constraint optimization as above. 

Introducing a delay did not improve the model accuracy, and it caused some instability: slightly 

different initial values resulted in distinct estimations of 𝜏 and inaccurate solutions. See Figure S7 for 

illustrative examples with CLU. Instability was likely induced by excessive parametrization, but since 
the model was inaccurate there was no point investigating this further. 

Overall, the initial considerations above demonstrate that CSF dynamics cannot be generally 

explained by simply importing proteins from plasma, which was expected and makes a lot of sense 

physiologically. 

 

Three-biological compartment models 

To be closer to physiology, we introduced an additional biological compartment to the model (3) 

representing CNS protein synthesis and transport. Namely, we have 𝐶1 = plasma with proteins 

produces by blood cells and all the organs but the CNS (major protein producer is the liver), 𝐶2 = CNS, 

and 𝐶3 = CSF (Figure 3A). Following the same mathematical logic that led to system (3), we obtain the 
full model 

{
 
 
 

 
 
 

  

𝑑𝛼

𝑑𝑡
= (𝜆1𝑓(𝑡) − 𝛼)𝑘1

𝑑𝛽

𝑑𝑡
= 𝑘1𝛼− (𝑘10 + 𝑘13 +𝑘12)𝛽 + 𝑘21𝛿 + 𝑘31𝜒

𝑑𝛾

𝑑𝑡
= (𝜆2𝑓(𝑡) − 𝛾)𝑘2

𝑑𝛿

𝑑𝑡
= 𝑘2𝛾− (𝑘20+𝑘23+ 𝑘21)𝛿 + 𝑘12𝛽+ 𝑘32𝜒

𝑑𝜒

𝑑𝑡
= 𝑘13𝛽 + 𝑘23𝛿 − (𝑘30+𝑘31 +𝑘32)𝜒

   .                                   (5) 

The CNS compartment 𝐶2 is hidden (no experimental data available). In 𝐶2, the functions 𝛾(𝑡) and 

𝛿(𝑡) play the same role as 𝛼(𝑡) and 𝛽(𝑡) in 𝐶1. 𝛽(𝑡) must fit plasma data and 𝜒(𝑡) must fit CSF data. 

The role and definition of the model parameters is obvious from (3). In case a few proteins would 

also be synthesizes/degraded in CSF directly, this contribution would be absorbed by 𝐶2 thanks to 

the linear nature of the model. 

The system (5) contains 13 parameters. The absence of direct observations in the CSF might limit our 

ability to estimate their values or, at least, to obtain reasonably accurate estimates. Moreover, CSF in 

situ degradation rate 𝑘30 is physiologically questionable, though some authors reported its existence 

(Ranganathan et al., 2006; You et al., 2005). Mathematically, the parameter 𝑘30 is redundant with 

transfers from CSF towards plasma and CNS, i.e., rates 𝑘31 and 𝑘32, which is likely to lead to 

numerical difficulties. We thus defined a simplified model (10 parameters), where we considered the 

exports from CNS to plasma as already integrated in plasma RIA data, the contribution of plasma 

proteins to CSF via first entry in the CNS as negligible, and no CSF in situ degradation leading to 
(Figure 3B) 
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𝑘12 = 0, 𝑘21 = 0, 𝑘30 = 0.                                                                (6) 

For both models, parameters were searched by bound-constraint optimization as above, including a 

shift 𝑠1 applied to plasma RIAs, and 𝑠3 to CSF RIAs. 

 

 

Figure 3. Three-biological compartment models. (A,B) Model graphical representations. (C) Serpin Family F 

Member 2 (SERPINF2) results. (D) Clusterin (CLU) and Protein S (PROS1) results . 

 

The application of the above two models (full and simplified) to SERPINF2 (Figure 3C) reproduced the 

accurate fit observed for the independent application of model (3) (Figure 2B). The application of the 

3-biological compartment models to CLU (Figure 3D) solved the slight lack of accuracy from which 
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model (3) suffered in Figure 2C. Two more such examples are featured in Figure S8A. Regarding the 

much more difficult case of PROS1, which dynamics model (3) was unable to capture, we found that 

the full model (5) experienced similar difficulties. On the contrary, the simplified model (5-6) 

achieved a perfect fit (Figure 3D). In Figure S8B, we show that both the full and the simplified models 

accurately fitted data for the other two proteins with faster CSF dynamics that caused difficulties to 
model (3) in Figure S6C. 

These results indicate that the 3-biological compartment approach managed to deliver a general 

solution to the simultaneous modeling of plasma and CSF protein dynamics. In most cases, the full 

and simplified 3-biological compartment models yielded accurate solutions. In some cases, the full 

model led to incorrect solutions, e.g., for PROS1 (Figure 3D), while the simplified model (5-6) 

remained accurate. This was most likely due to the removed redundancy between parameters 𝑘30, 

𝑘31, and 𝑘32, which otherwise might make parameter fitting of the full model (5) an ill-posed 

problem (we confirm this in the next section). Accordingly, we decided to keep the simplified model 
(5-6) as a bona fide solution to the simultaneous modeling of protein plasma and CSF dynamics. 

 

A Bayesian formulation 

In the examples above, we used a quasi-Newton iteration to fit the model parameters. This strategy 

might suffer from a dependency to the initial values used to start the iteration, and it does not 

provide any information about parameter variability. Although the second issue could be addressed 

by the bootstrap as we did before (Lehmann et al., 2019), initial value dependency would remain 

unaddressed. We hence decided to apply Bayesian modeling instead, which provides an efficient and 
natural solution to both issues. 

Denoting RIA𝑖  the 𝑖th observation in plasma and 𝛽𝑖  the corresponding model value, we assume 
normal errors 

RIA𝑖  ~ 𝑁(𝛽𝑖 − 𝑠1, 𝜏1𝑤𝑖), 

with 𝑖 ∈ {1;⋯ ; 𝑛}, 𝑛 the number of plasma RIAs, 𝛽𝑖 = 𝛽(𝑡𝑖), 𝑡𝑖 the time at which RIA𝑖  was observed, 

𝑤𝑖 the weight proportional to √𝑃𝐻 for observation 𝑖, and 𝑠1 the vertical shift of RIAs in plasma. 

𝑁(𝜇, 𝜏) denotes a normal distribution with mean 𝜇 and precision 𝜏 (=1/variance). Employing the 

same notations for RIA𝑗 and 𝜒𝑖 in CSF, 𝑗 ∈ {1;⋯ ;𝑚}, then 

RIA𝑗 ~ 𝑁(𝜒𝑗 − 𝑠3,𝜏3𝑤𝑗), 

with 𝑠3 and 𝜏3 the shift and precision in CSF respectively. Further assuming normal priors for the 
shifts and vague Gamma priors for the precisions, we have (𝑑 ∈ {1;3}) 

𝑠𝑑 ~ 𝑁(𝜇𝑠𝑑,𝜏𝑠𝑑 )

𝜏𝑑 ~ Γ(0.001,0.001)
. 

Regarding the many rate parameters, there log-transformed values are modeled with normal priors 

ln(𝜆1) ~ 𝑁(𝜇𝜆1, 𝜏𝜆1)

ln(𝜆2) ~ 𝑁(𝜇𝜆2, 𝜏𝜆2)

ln(𝑘1) ~ 𝑁(𝜇𝑘1,𝜏𝑘1)

ln(𝑘2) ~ 𝑁(𝜇𝑘2,𝜏𝑘2)

ln(𝑘10) ~ 𝑁(𝜇𝑘10,𝜏𝑘10)

⋮ ⋮ ⋮

, 
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where we set the mean values empirically, or based on the parameters obtained from model (1) 

applied in each fluid separately. Namely, 𝜇𝑠𝑑 was set to 0, ln(𝜆1) mean was set to ln(𝜆) in plasma, 

ln(𝜆2) mean to ln(𝜆) in CSF, ln(𝑘1) and ln(𝑘10) means to ln(𝑘𝑐) in plasma, ln(𝑘2) and ln(𝑘20) 

means to ln(𝑘𝑐) in CSF, ln(𝑘13), and ln(𝑘31) means to ln(0.1), and ln(𝑘23) and ln(𝑘32) means to 
ln(0.05). Precision 𝜏𝑠𝑑 was set to 5000, and all the other precisions were set to 10. 

The model was coded using BUGS. MCMC parameter sampling was performed with OpenBUGS (Lunn 

et al., 2000), the BUGS code is provided in SI. We found that 200,000 iterations including 100,000 

burn-in were sufficient for OpenBUGS safe convergence. We systematically used two Markov chains, 

and convergence diagnostics was achieved comparing within- and between-chain variability (Brooks 

and Gelman, 1998). Each chain was initialized with parameter random values drawn from their 

respective prior distributions, but for the shifts 𝑠1 and 𝑠3 that were initialized with their respective, 
independent fluid quasi-Newton estimates according to model (1). 

In Figure 4A, we report the result of the simplified model with Bayesian parameter estimation for 

SERPINF2. For this protein, the 2-biological compartment model was already able to capture the 

simultaneous plasma and CSF dynamics with good accuracy (Figure 2B). This suggested that CNS 

contribution should remain modest or be associated with rather high parameter variability (no strong 

constraint). Indeed, Figure 4A shows broad uncertainty on the CNS dynamics (left) and CNS transfer 

rates (right). That is, in the absence of direct CNS measurement, the model could not exclude CNS 

contribution, but its precise nature logically remained elusive. In Figure 4B, CLU displays a very 

different behavior. We know from previous attempt that the 3-biological compartment model was 

necessary to achieve accurate modeling (Figures 2C, 3D). This translated into well -constrained CNS 

dynamics (right), and less variable CNS transfer rates (left graphic representation). The higher CNS 

RIA values and elimination rate 𝑘20 compared to SERPINF2 were also in agreement with a more 

important role of the CNS in CLU CSF dynamics. Figure 4 further illustrates two examples harboring 

faster CSF dynamics, PROS1 and transthyretin (TTR). In both cases (Figures 4C-D), we again found 

constraint CNS dynamics and less variable CNS transfer rates. TTR was more pronounced in this 

mode, which can be explained by slightly more accurate experimental data, a higher ratio between 
maximal RIA values in CSF and plasma, and an even faster CSF dynamics compared to PROS1. 

To finish this section on Bayesian modeling, we wanted to clarify the reasons for the full model 

difficulties. In Figure 5A, PROS1 full model is featured and the estimated parameters (solid lines) 

obviously failed to fit data. The medians of all the 𝛽(𝑡), 𝛿(𝑡), and 𝜒(𝑡) curves (dashed lines) 

generated were much closer to the correct solution. This indicates the existence of multiple solutions 

in the parameter space that led to equally accurate curves. As a matter of fact, in Figure 5B, plotting 

the density of the explored (𝑘30,𝑘31)- and (𝑘30,𝑘32)-spaces, we observe a multimodal distribution. 

The mean values that were used for parameter estimation (black crosses in Figure 5B) were not 

aligned with any local maxima in Figure 5B, thereby explaining why Bayesian parameter estimation 

led to wrong curves. In Figure 5C, we see that similar difficulty happened with the easier SERPINF2 

data indicating that the issue is intrinsic to the full model (due to its redundant parameters). In these 

computations, we set ln(𝑘12), ln(𝑘21) and ln(𝑘30) means to ln(0.1). Increasing the number of 

iterations from 200,000 to 500,000 resulted in the very same results. 
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Figure 4. Bayesian inference with the simplified model. (A) SERPINF2. Left, the dynamics in the three biological 

compartments. The gray areas feature the Bayesian estimates of the 95% credibil ity intervals around 𝛽(𝑡), 𝛿(𝑡), 

and 𝜒(𝑡). Right, graphic representation of the model and its parameters  (in the linear space). Parameter 

magnitude is represented by the line width. Parameter variability is depicted using a color-scale that is based on 

the relative 95% credibil ity interval (re.CI95 in the figure), which is the 95% credibil ity interval range divided by 

the parameter estimate. (B) CLU. (C) PROS1. (D) Transthyretin (TTR). 
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Figure 5. Dissecting the full  model difficulties. (A) PROS1 dynamics in CSF and plasma were not fit by the full  

model (5) when applied with the Bayesian estimation of the parameters (soli d l ines). The medians of all  the 

curves generated during Gibbs sampling (dashed lines) were correct in plasma and better in CSF. (B) The 

parameter space reduced to the likely redundant transfer rates 𝑘30 , 𝑘31 , and 𝑘32 . We see a multimodal 

probability density compatible with the existence of multiple solutions to the parameter fitting problem. 

Averages used for the solid l ines in panel (A) are represented by the black crosses. (C) Similar phenomenon on 

SERPINF2 easier data. In that case, the median curves provided a correct solution, while the solid curves based 

on the means of the sampled parameters failed to fit data. 

 

 

CONCLUSIONS 

We have shown that classical pharmacokinetics methodology can be adapted to the problem of 

modeling protein dynamics in multiple biological compartments simultaneously. This involved first 

order systems of ODEs with linear transfer rates between biological compartments. The dataset we 

analyzed was comprised of experimental measures in ventricular CSF and plasma obtained from a 

human patient in vivo. A first result was that although satisfying in some cases, a 2-biological 

compartment model was not sufficient to account for the observed dynamics of all the detected 

proteins. CSF physiology makes this fluid a compartment at the interface of blood circul ation and the 

CNS, but for obvious reasons there was no possibility to acquire protein dynamics data from the CNS 

directly. Accordingly, a 3-biological compartment model was considered, with the CNS as third 

(hidden) compartment. Our second main result was that this type of model harbored the necessary 
flexibility to account for all the observed protein dynamics. 

Among the 3-biological compartment models, we considered two variants: a full model with all 

possible transfers between biological compartments, and a simplified model without transfers 

between plasma and CNS, and no in situ CSF protein degradation. Although one could argue that the 

full model was physiologically more correct, the estimation of its parameters turned out to be ill -

conditioned (multiple solutions due to redundant parameters in the absence of direct CNS 
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measures). Moreover, CSF in situ degradation is often considered as marginal despite some reports 

indicating it might happen in some circumstances (Ranganathan et al., 2006; You et al., 2005). 

Furthermore, transfers between plasma and the CNS that were removed from the simplified model 

can be regarded as already integrated in the observed plasma data. That is,  the simplified model we 

proposed displayed excellent numerical properties for parameters estimation, it was accurate, and it 

remains physiologically reasonable. This model combined with Bayesian parameter estimation could 

precisely capture the dynamics of all the 69 proteins we their different dynamics. The estimated 

transfer rates between the CSF and CNS compartment reflected the necessity to involve an additional 
source to plasma when modeling the CSF dynamics. 

This very methodological work should provide clear concepts, techniques, and tools for other 
researchers interested in the dynamics of proteomes and physiology.  

 

SUPPLEMENTARY DATA 

The models for all the 69 common plasma-CSF proteins with at least 4 observations are provided as 

Supplementary Data along with convergence test results (Brooks and Gelman, 1998), parameters and 
95% credibility intervals estimates, and control plots (curves and graphic model representations). 
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