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Abstract 12	  

We previously demonstrated that the phase of oscillations modulates neural 13	  
activity representing categorical information using human intracranial recordings and 14	  
high-frequency activity from local field potentials (Watrous et al., 2015b).  We extend 15	  
these findings here using human single-neuron recordings during a navigation 16	  
task.  Cells with firing rate modulations were observed primarily in entorhinal and frontal 17	  
cortices.  Using a novel oscillation detection algorithm, we identify phase-locked neural 18	  
firing that encodes information about a person’s prospective navigational goal. These 19	  
results provide evidence for contextual accounts of human MTL function at the single-20	  
neuron level and identify phase-coded neuronal firing as a component of the human 21	  
neural code. 22	  
 23	  
Introduction 24	  

Single-neuron firing forms a fundamental basis of the neural code during 25	  
perception and memory.  In addition to the well-established role for behavior-related 26	  
changes in neuronal firing rates, converging evidence across species and behaviors 27	  
suggests that interactions between single-neuron spike timing and network oscillations 28	  
observed in the local field potential (LFP) also contribute to the neural code (Hyman et 29	  
al., 2005; Huxter et al., 2003; Rutishauser et al., 2010; Belitski et al., 2008; Ng et al., 30	  
2013; Kayser et al., 2009; Siegel et al., 2009).  For instance, rodent hippocampal cells 31	  
show phase precession relative to theta oscillations during navigation (O’Keefe & Recce, 32	  
1993; Terada et al., 2017), in which the theta phase of neuronal firing represents 33	  
information about a rat’s position (Jensen & Lisman, 2000).  Synthesizing these findings 34	  
in Spectro-Contextual Encoding and Retrieval Theory (SCERT), we have hypothesized 35	  
that frequency-specific and phase-locked neuronal firing at different phases (i.e. phase 36	  
coding) also forms a basis of the human neural code (Watrous & Ekstrom 2014; Watrous 37	  
et al., 2015a).  We previously reported evidence for SCERT (Watrous et al., 2015b) 38	  
using high-frequency activity in the LFP as a proxy for single-cell spiking (Crone et al., 39	  
1998; Manning et al., 2009; Miller et al., 2014).  However, given the uncertain 40	  
relationship (Ekstrom et al., 2007; Rey et al., 2014) between single neurons and high-41	  
frequency activity in the human medial temporal lobe (MTL), it is unclear whether phase 42	  
coding manifests in MTL neurons.  We clarify this issue here by testing new aspects of 43	  
SCERT, seeking to extend our previous findings of phase coding (Watrous et al., 2015b) 44	  
to the single-neuron level. 45	  

Several lines of evidence indicate that the human MTL forms active 46	  
representations of spatial context (Ranganath & Ritchey, 2012) such as navigational 47	  
goals (Watrous et al., 2011; Brown et al., 2016), yet how such representations are 48	  
instantiated at the single-neuron level remains largely unknown.  Drawing upon SCERT, 49	  
we hypothesized that phase-coding in single neurons also supports spatial contextual 50	  
representations for prospective goals.   51	  
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We analyzed a dataset that simultaneously measured human single-neuron and 52	  
oscillatory activity from MTL, frontal, and lateral temporal regions during a goal-directed 53	  
navigation task (Jacobs et al., 2010; Miller et al., 2015).  Following the analytic strategy 54	  
from our previous work (Watrous et al., 2015b), we first tested for frequency-specific 55	  
phase locking and then directly tested for phase coding, which would appear as 56	  
individual neurons that spiked at different phases according to the prospective goal. We 57	  
examined these patterns first in the medial temporal lobe and then extratemporal areas.  58	  
Our results confirmed the existence of rate and phase coding for navigational goals in 59	  
individual neurons, thus providing the first evidence for the oscillatory phase coding of 60	  
spatial contextual information in the human MTL.   61	  
 62	  
Results  63	  
Slow theta oscillations (3Hz) in the MTL during virtual navigation 64	  

Our primary aim was to test if human MTL neurons encode behavioral 65	  
information by modulating their spiking based on the phase of slow oscillations. 66	  
Examining this hypothesis required that we accurately identify the presence and phase 67	  
of slow oscillations, particularly because human MTL oscillations are lower frequency 68	  
and less stationary compared to the stable theta oscillations observed in rodents 69	  
(Watrous et al., 2013; Vass et al., 2016). We developed a novel method, the Multiple 70	  
Oscillations Detection Algorithm (“MODAL”; Figure 1A-C), to detect and characterize 71	  
neural oscillations in adaptively identified band(s) whose frequency ranges are 72	  
customized for each recording site according to its spectral properties.  MODAL 73	  
identifies narrow-band oscillations exceeding the background 1/f spectrum (Figure 1A) 74	  
and calculates the instantaneous phase and frequency of oscillations in each band (see 75	  
Methods) while excluding timepoints without oscillations or that exhibited epileptogenic 76	  
activity (Gelinas et al., 2016).  Thus, MODAL allowed us to test for phase coding of 77	  
spikes during the presence of narrowband oscillations. 78	  

	  79	  
Figure 1 Multiple Oscillation Detection Algorithm (“MODAL”) 80	  
A-C) Key steps in the algorithm, shown for an example electrode from the right hippocampus of 81	  
patient 9.  A) Mean log power averaged over time (black) and a fit line of the 1/f background 82	  
spectrum (gray).  A slow theta band (blue) and a beta band (green) are identified as contiguous 83	  
frequencies exceeding the fit line.   B) Example output from MODAL depicting a raw trace 84	  
example of the LFP (upper) with the detected oscillations in each band (lower).  The 85	  
instantaneous frequency of the detected oscillation in each band is overlaid on a spectrogram 86	  
and gray portions of the spectrogram indicate power values exceeding a local fit (similar to A but 87	  
using a 10s epoch).  C) Accumulating detections over time reveals the prevalence of oscillations 88	  
at each frequency on this electrode (black).  Blue and green bars indicate the overall prevalence 89	  
of oscillations in each frequency, independent of the exact frequency within a band.  D) 90	  
Population data demonstrating low frequency oscillations.  Grey line indicates the percent of LFP 91	  
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channels with a detected band as a function of frequency.  Of those channels with a detected 92	  
band, the black line indicates the average amount of time each frequency was detected.  Slow 93	  
theta oscillations (below 5Hz) are observed using both metrics. 94	  

 95	  
MODAL reliably identified oscillations at multiple frequencies that were visible in 96	  

the raw trace (Figure 1B-C).  Analyzing each of 385 LFP signals across the entire task 97	  
period using MODAL, we found that most signals showed a band of activity centered at 98	  
“slow theta” (~3Hz; 93% of signals; Figure 1D, gray line). Analyzing the overall amount 99	  
of time each frequency was detected on these electrodes, we found that slow theta was 100	  
detected most often (Figure 1D, black line).  These results are consistent with previous 101	  
work showing the prevalence of slow theta in the human MTL (Watrous et al., 2011; 102	  
Watrous et al., 2013; Vass et al., 2016, Jacobs, 2014; Bohbot et al., 2017). We 103	  
subsequently restricted our analysis to the low-frequency band (1–10 Hz) in order to 104	  
mirror the approach from our previous work (Watrous et al., 2015b). 105	  

 106	  
Phase-locked neuronal firing  107	  

We leveraged MODAL’s ability to precisely track the instantaneous phase during 108	  
oscillations to probe how phase coordinates the activity of individual neurons.  Focusing 109	  
first on the MTL, we analyzed 441 (83%) neurons that each had a simultaneously 110	  
recorded LFP with an oscillation at 1–10 Hz.  In many cells we observed significant 111	  
phase-locking, an overall tendency for firing to increase at particular phases of the LFP 112	  
oscillation (Jacobs et al., 2007; Rey et al., 2014). Phase locking is evident by examining 113	  
the LFP phase distribution for all spikes which occurred during oscillations from a given 114	  
cell (Figure 2A upper, Rayleigh p<.005).  Across our population of recordings, we 115	  
identified phase-locked neural firing in 119 neurons (111/441, 25%, Rayleigh test, 116	  
p<.005), a proportion significantly above chance (Binomial p<.00001).  We observed that 117	  
phase locked neural firing was clustered just after the trough of the oscillation for these 118	  
cells (Figure 2B, Rayleigh test p<.00001) and most phase locking occurred to slow-theta 119	  
oscillations below 5 Hz (Figure 2C). 120	  

	  121	  
Figure 2 Phase-Locked Neural Firing 122	  
A)  Spike-triggered average of a phase-locked neuron from the right hippocampus of Patient 1 123	  
(left).  Red tick mark denotes a spike.  Circular histograms (right) show phases at which spikes 124	  
occurred relative to two detected bands.  Spiking was phase-locked to the ascending phase in the 125	  
1.5-5 Hz band (red) but not in the 7.5-9 Hz band (Rayleigh test, p=.004 and p=.34, 126	  
respectively).  B) Population data: Pooling over frequencies, mean spike phases were 127	  
significantly clustered near the initial ascending phase of the oscillation.  C) Population scatter 128	  
plot of the mean phase of firing and maximally detected frequency within the band for each of 119 129	  
phase-locked neurons.   130	  
  131	  
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The LFPs associated with 48 neurons displayed oscillations at two distinct 132	  
frequency bands in the 1–10Hz range.  We next tested if the spike–LFP phase locking 133	  
was specific to an individual frequency band or present for both bands. 12.5% of these 134	  
cells (6/48) showed frequency-specific phase locking, showing phase-locked firing in 135	  
only one LFP frequency band (Figure 2a; p<.005 in one band, p>.1 in all other 136	  
bands).  Extending previous findings (Jacobs et al., 2007) by examining phase-locking to 137	  
adaptively-identified narrowband signals, we find that human neuronal firing is 138	  
modulated by the phase of low-frequency oscillations in a band and frequency-specific 139	  
manner, as predicted by SCERT (Watrous & Ekstrom, 2014). 140	  
  141	  
LFP-spike phase coding of goal information 142	  

Previous work has identified single neurons responsive to navigational goals 143	  
(Ekstrom et al., 2003). To understand the behavioral relevance of phase-tuned neuronal 144	  
activity, we tested whether neurons also used phase-tuned neural firing to encode 145	  
contextual information about the patient’s prospective navigational goal, analogous to 146	  
the phase coding for location in the rodent hippocampus (O’Keefe & Recce, 1993).  We 147	  
identified 160 goal cells (36%) whose firing rates were significantly modulated by the 148	  
patient’s navigational goal (Figure 3A-B, all χ2(5)>, p<.0001). These cells were present 149	  
in 11 of 12 patients.  This result replicates previous studies implicating the MTL in the 150	  
representation of navigational goals (Ekstrom et al., 2003; Watrous et al., 2011). 151	  

 152	  
Figure 3  Example cells showing goal coding by firing rate and spike-LFP phase 153	  
A) Example neuron from patient 4 whose firing rate was significantly modulated by navigational 154	  
goal (chi-square test, p<.00001) but not by spike-LFP phase (decoding p>.05, not shown).  Firing 155	  
rate is plotted as a function of each navigational goal.  B) Another example neuron showing firing 156	  
rate modulation by goal from patient 11. C) Example neuron from patient 1 showing significant 157	  
spike-LFP phase coding for goal 4 (difference score (DS) = 2) compared to goals 5 and 6.  158	  
Circular histograms show spike counts separately for different goals, and only goals with a 159	  
difference score greater than zero are plotted for clarity. Black line at center of each plot shows 160	  
the resultant vector and the colored arc indicates the 95th percentile confidence interval of the 161	  
circular mean. D) Example cell from patient 6 showing phase coding for goal 6. Each cell in 162	  
Figure 3 is unique and from a different patient.  LEC/REC: Left/Right entorhinal cortex; LH/RH: 163	  
Left/Right hippocampus 164	  
 165	  

We then asked if neurons additionally represent information about the 166	  
prospective goal via phase coding.  We first examined the LFP phase distribution for 167	  
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each cell’s spiking using a difference score (DS) approach, in which we use circular 168	  
statistics to compare distributions of spike phases between individual goals (Watrous et 169	  
al., 2015b).  This analysis revealed cells that fired at significantly different LFP phases 170	  
(p<.0001) according to the patient’s goal (Figure 3C-D).  For instance, Figure 3C shows 171	  
the spike–phase distribution from a right hippocampal neuron that fired preferentially 172	  
near the oscillatory peak when the patient was seeking goal #4 and near the trough for 173	  
goals 5 and 6.  To more systematically quantify phase coding and probe whether this 174	  
phenomenon is distinct from rate coding, we examined the 158 neurons whose firing 175	  
rates were not goal-modulated (p>.05).  Of these, we identified 28 neurons (17%) with 176	  
significantly different spike phases for different goals (DS>0 for at least one goal), a 177	  
proportion significantly above chance (Binomial test, p<.000001, chance = .237 cells). 178	  
Thus, independent information about the patient’s prospective goal could be recovered 179	  
by considering the LFP phase at which these neurons fired. 180	  

To verify this interpretation and further ensure that these phase differences were 181	  
robust, we used a decoding approach (Watrous et al., 2015) to test whether the patient’s 182	  
prospective goal could be predicted from the phase of neuronal spiking for cells that did 183	  
not demonstrate rate coding.  We observed significant decoding of goal information from 184	  
spike phase in 19 of 158 (12%) neurons for at least one band (Binomial test, p<.00014, 185	  
chance = 7.9 cells). Cells that exhibited phase coding of goal information were present in 186	  
7 of 12 patients.  We observed a similar proportion of phase-coding neurons (67/441, 187	  
15%) when considering all neurons in our dataset, indicating that our exclusion of rate-188	  
modulated cells did not bias our results.   189	  

Finally, we explored the anatomical distribution of rate and phase-coding cells 190	  
across our dataset (see Methods).  We found that rate-coding cells were differentially 191	  
clustered in particular regions (χ2(5)=70.5, p <10-12).  The entorhinal cortex (58% of 162 192	  
cells) and frontal cortex (44% of 355 cells) had the largest proportions of cells with firing 193	  
rate modulations for goals.  In contrast, phase coding cells were not significantly 194	  
clustered by brain region (χ2(5)=7.3, p=.19). Together, these results extend our previous 195	  
findings (Watrous et al., 2015b) to single neurons, providing the first evidence for single-196	  
neuron phase coding during navigation in humans.   197	  
 198	  
General Discussion 199	  

Analyzing recordings from epilepsy patients performing a goal-directed 200	  
navigation task, we expand our previous observation of phase-coding with high-201	  
frequency LFPs (Watrous et al., 2015b) to the domain of single neuron spiking. While we 202	  
replicated the earlier finding of firing-rate coding of goal representations in human single-203	  
cell activity (Ekstrom et al., 2003), we also found a distinct population of cells in which 204	  
spike-LFP phase coding contributed to representations in the absence of significant 205	  
changes in firing rate (Rutishauser et al., 2010). Furthermore, we found neurons that 206	  
were phase-locked to frequency-specific narrowband oscillations primarily in the slow-207	  
theta band. Together, these findings provide new, stronger evidence for the SCERT 208	  
model at the single-neuron level. 209	  

Our analyses benefited from employing the MODAL algorithm, which combines 210	  
features of earlier algorithms (Whitten et al., 2011; Lega et al., 2012; Cohen 2014) to 211	  
identify oscillatory bands in a manner that is customized for each recording site.  We 212	  
believe MODAL is an improvement on these methods because it adaptively identifies 213	  
oscillatory band(s) without introducing experimenter bias regarding bands of interest, 214	  
excludes periods when phase is noisy because oscillations are absent, and provides 215	  
exactly one estimate of phase and frequency per band.   216	  

Our findings provide the first evidence of phase coding during human navigation 217	  
and provide a theoretically important link to other model systems where phase coding is 218	  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/202374doi: bioRxiv preprint 

https://doi.org/10.1101/202374
http://creativecommons.org/licenses/by/4.0/


	   6	  

present (Siegel et al., 2009; Kayser et al., 2009; Ng et al., 2013), such as phase-219	  
precession (O’Keefe and Recce, 1993; Terada et al., 2017).  However, we found 220	  
prominent phase-locking and phase-coding to slower frequency oscillations below 5 Hz, 221	  
suggesting that phase coding exists beyond the canonical 8-Hz theta signal seen in rats. 222	  
These findings thus lend further credence to findings indicating that (virtual) navigation-223	  
related theta occurs at a slower frequency in humans (Watrous et al., 2013; Jacobs, 224	  
2014; Bohbot et al., 2017) and demonstrates that these oscillations modulate neuronal 225	  
spiking. 226	  

These results align with work implicating the human MTL in spatial contextual 227	  
representation (Ranganath & Ritchey, 2012) of navigational goals (Ekstrom et al., 2003; 228	  
Watrous et al., 2011; Brown et al., 2016) in support of ongoing behavior (Warren et al., 229	  
2011; Yee et al., 2014) and provide further evidence that the timing of MTL activity is 230	  
critical for behavior (Reber et al., 2017; Rey et al., 2014).  Combined with previous 231	  
human studies (Kraskov et al., 2007; Lopour et al., 2013; Watrous et al., 2015b; ten 232	  
Oever & Sack, 2015), our work indicates that both firing rate and the precise timing of 233	  
activity relative to LFP phase are general coding mechanisms in the human MTL across 234	  
behaviors and tasks, suggesting that other types of contextual information may also be 235	  
encoded using LFP phase.  Future studies can build off these findings to directly assess 236	  
phase coding of other types of contextual information in humans, such as phase-237	  
precession to space or time.   238	  

 239	  
Methods 240	  
Neural Recordings and behavioral task 241	  
 We analyzed data from 12 patients with drug-resistant epilepsy undergoing 242	  
seizure monitoring (surgeries performed by I.F.).  The Medical Institutional Review Board 243	  
at the University of California-Los Angeles approved this study.  Patients were implanted 244	  
with microwire depth electrodes (Fried et al., 1999) targeting the medial temporal lobe 245	  
and medial frontal lobe sites.  Groups were formed for recordings in hippocampus, 246	  
entorhinal cortex, parahippocampal gyrus, amygdala, frontal cortex (orbitofrontal, 247	  
cingulate, motor), and lateral temporal cortices (n=214,162,65,212,355,95 neurons, 248	  
respectively).  Our primary analyses of 441 neurons focused on signals from 249	  
hippocampal, entorhinal, and parahippocampal regions.  Microwire signals were 250	  
recorded at 28-32 kHz and captured LFPs and action potentials, which were spike-251	  
sorted using wave_clus (Quiroga et al., 2004).  Signals were then downsampled to 2 252	  
kHz.   253	  

We examined data from a total of 31 recording sessions in which patients 254	  
performed a virtual-taxi driver game in a circular environment.  Patients were instructed 255	  
to drive passengers to one of 6 goal stores in the virtual environment.  The recordings 256	  
and behavioral task have been detailed in prior publications that have characterized the 257	  
spatial-tuning of neurons using firing rate alone (Jacobs et al., 2010; Miller et al., 2015).  258	  
Here, our primary analyses in this study focused on how contextual information about 259	  
navigational goals may be encoded based on firing rates and spike-LFP interactions.   260	  
 261	  
Detection and Rejection of Epileptogenic signals 262	  
 We implemented an automated algorithm to detect and exclude epochs of signal 263	  
likely resulting from epileptic activity following prior work (Gelinas et al., 2016).  We first 264	  
low-pass filtered (4th order Butterworth) the signal below 80 Hz to remove any spike-265	  
contamination at high frequencies.  Epochs were marked for rejection if the envelope of 266	  
the unfiltered signal was 4 standard deviations above the baseline or if the envelope of 267	  
the 25-80Hz bandpass filtered signal (after rectification) was 4 standard deviations 268	  
above the baseline.  In some cases, we noted short “bad data” epochs lasting less than 269	  
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one second were not detected. We conservatively elected to exclude these epochs by 270	  
marking any “good data” epoch lasting less than one second as “bad”.  Bad data epochs 271	  
were excluded from all analyses.   272	  
 273	  
Multiple Oscillations Detection Algorithm (“MODAL”) 274	  

Numerous factors contribute to the presence and characteristics of band-limited 275	  
neural oscillations, broadly including neuroanatomy, behavioral state, and recording 276	  
equipment (Buzsaki et al., 2012).  We developed an algorithm to adaptively detect and 277	  
characterize neural oscillations in bands exceeding the background 1/f spectrum 278	  
motivated by rodent studies that exclude periods of low amplitude theta oscillations 279	  
when assessing phase coding (Lenck-Santini & Holmes, 2008).  To this end, we 280	  
modified the “frequency sliding” algorithm (Cohen 2014), which provides the 281	  
instantaneous phase and frequency of oscillations in a band, in two important ways.   282	  

First, rather than calculating frequency sliding in a priori bands, we defined bands 283	  
for subsequent analysis on each electrode as those frequencies exceeding the 284	  
background 1/f spectrum.  We calculated power values in .5Hz steps from 1 to 50 Hz 285	  
using 6 cycle Morlet wavelet convolution.  We then created a power spectrum by 286	  
averaging values over time (and excluding bad data epochs), and fit a line to this 287	  
spectrum in log-log space using robustfit in Matlab.  Similar approaches have been used 288	  
previously (Lega et al., 2012; Podvalny et al., 2015).  Frequency band edges were 289	  
defined as the lowest and highest frequencies in a contiguous set of frequencies which 290	  
had values exceeding this fit; several bands could be detected on each electrode.  We 291	  
then calculated the instantaneous frequency and phase in each detected band using the 292	  
“frequency sliding” algorithm (Cohen 2014). 293	  

Second, frequency sliding provides a frequency and phase estimate at every 294	  
moment in time, regardless of the presence or absence of an oscillation.  We ensured 295	  
that phase & frequency estimates were only obtained during time periods where there 296	  
was increased power in the band of interest.  We recomputed the power spectrum in 10 297	  
second, non-overlapping windows and recomputed the fit line as described above.  We 298	  
excluded phase and frequency estimates at time points 1) in which the power was below 299	  
the fit line or, 2) were during bad data epochs.  Finally, we also excluded noisy 300	  
frequency estimates outside of the band, which can occur based on “phase slips” 301	  
(Cohen 2014).  All analyses were conducted in Matlab using custom code which is 302	  
available upon request.   303	  
 304	  
Statistical Analyses  We used Rayleigh tests to identify phase-locked neural firing, 305	  
extracting the phase of the LFP during each spike in each detected frequency band.  All 306	  
analyses were done considering each band separately and statistical thresholding was 307	  
set at p<.005 for each cell.  This was chosen to be stricter than p<.05 Bonferroni-308	  
correction across the number of bands detected in the 1-10Hz range.  We identified cells 309	  
with firing rate modulated by navigational goal using chi-square tests.  Under the null-310	  
assumption of Poisson-spiking, which is independent of navigational goal, we derived 311	  
expected spike counts for each goal by multiplying total spike count by the proportion of 312	  
time the goal occurred throughout the task session.   313	  
 Difference scores were calculated identically to our previous work (Watrous et 314	  
al., 2015b) and used the Watson-Williams test to compare phases during spikes that 315	  
occurred for each goal. We again used p<.0001 for statistical thresholding, as it 316	  
corresponded to Bonferroni-correction (p<.05) for the 15 pairwise combinations of 6 317	  
goals. We then used a decoding-based approach to validate our findings, employing a 318	  
linear decoder with fivefold cross-validation to predict the behavioral goal from the phase 319	  
of the LFP during neural spiking.   We first computed the sine and cosine of the phase 320	  
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values before classification following previous work (Lopour et al., 2013; Watrous et al., 321	  
2015b).  Chance performance varies across cells because we classified goal information 322	  
associated with the LFP phase for each spike and the distribution of spikes across goals 323	  
varied between cells.  We accounted for this using a permutation procedure, re-running 324	  
our classification 500 times per cell using shuffled goal information (circshift in Matlab to 325	  
maintain the temporal structure of the session) to get a surrogate distribution of 326	  
classification accuracies per cell.  We then obtained a p-value for classification by 327	  
ranking our observed classification accuracy to the surrogate distribution; p-values less 328	  
than .05 were considered significant.   329	  
 To analyze the regional specificity of rate and phase coding, we expanded our 330	  
analyses to our entire dataset of neurons. We used chi square tests to assess if rate 331	  
coding or phase coding cells were differentially prevalent in each region. 332	  
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