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Rare genetic variation in Fibronectin 1 (FN1) protects against APOEe4 in Alzheimer’s disease
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Abstract

The risk of developing Alzheimer’s disease (AD) significantly increases in individuals carrying the APOEs4
allele. Elderly cognitively healthy individuals with APOEe4 also exist, suggesting the presence of cellular
mechanisms that counteract the pathological effects of APOEe4; however, these mechanisms are
unknown. We hypothesized that APOEe4 carriers without dementia might carry genetic variations that
could protect them from developing APOEs4-mediated AD pathology. To test this, we leveraged whole
genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study
(NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de
Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating
exclusively among unaffected APOEe4 carriers. In homozygous unaffected carriers above 70 years old, we
identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed
significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of
functional modifications in ECM proteins. We prioritized two genes that were highly represented in the
ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to
be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies.
The FN1 and COL6A2 protein levels were increased at the BBB in APOEe4 carriers with AD. Brain expression
of cognitively unaffected homozygous APOEe4 carriers had significantly lower FN1 deposition and less

reactive gliosis compared to homozygous APOEe4 carriers with AD, suggesting that FN1 might be a
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downstream driver of APOEe4-mediated AD-related pathology and cognitive decline. To validate our
findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b —the ortholog for human
FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated
the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein
clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to
the pathogenicity of APOEg4, LOF variants in FN1 may reduce APOEe4-related AD risk, providing novel

clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Introduction

Alzheimer’s disease (AD) is typically characterized clinically with progressive memory impairment and
decline in other cognitive domains; however, there is a long pre-symptomatic period without clinical
manifestations?. At death, pathological hallmarks in brain include extracellular B-amyloid protein in diffuse
and neuritic plaques and neurofibrillary tangles made of hyper-phosphorylated tau protein. AD, a
progressive neurodegenerative disorder, is currently unpreventable, and, with available drugs only
marginally affecting disease severity and progression, remains effectively untreatable. A critical barrier to
lessening the impact of late-onset AD (LOAD) is the slow development of drugs that prevent or treat AD
due, in part, to an incomplete characterization of the basic pathologic mechanisms. Determining which
genes and gene networks contribute to AD could reveal the biological pathways for drug development,
and inform the development of genetic testing methods for identifying those at greatest risk for AD.

Presence of the APOEe4 allele is among the most prominent genetic risk factors for AD in white, non-

Hispanic populations ?

, but the associated risks observed in African-Americans and Hispanics are
somewhat lower 3. Relative risk of AD associated with a single copy of APOEe4 is 2.5-fold in Caucasians
compared to 1.0 and 1.1 in African Americans and Hispanics respectively . However, in every population,
homozygosity for the APOEe4 allele is associated with increased risk and nearly complete penetrance **.
APOE, a critical player in lipid metabolism and transport, has been extensively studied for its role in
Alzheimer's disease (AD) and other neurodegenerative disorders 7°. The APOEe4 allele is a well-
established risk factor for late-onset AD, with carriers of this allele exhibiting an increased susceptibility to
cognitive decline and dementia and earlier age at onset of clinical symptoms. However, within the
population of APOEe4 carriers, there is variability in age of onset and severity of AD symptoms. Some
"resilient" or "cognitively normal, unaffected" individuals who carry the €4 allele do not develop AD or
experience a delayed onset of symptoms. Several potential factors might contribute to the variability in
AD risk and presentation among APOEe4 carriers. Genetic modifier mutations outside of the APOE gene

might interact with APOEe4 to influence the risk of AD. APOEe4 carriers might also be influenced by other

risk factors for AD, such as vascular health, inflammation, and metabolic conditions. Interactions between
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APOEeg4 and these factors could modify the course of the disease. Certain rare protective variants in other

genes could offset the risk posed by APOE&4.

Amid the well-documented association between APOEe4 and AD risk, a growing body of evidence suggests
intriguing nuances in the effects of this allele, particularly in certain subsets of individuals who defy the
expected trajectory of cognitive decline and remain remarkably resilient to neurodegenerative diseases.
Notably, heterozygosity of APOEe4 has incomplete penetrance °, and the polygenic risk of the rest of
genome could stratify APOEe4 carriers into high and low risk strata. In this study we aimed to identify
putative protective mechanisms, influenced by genetic modifiers that might counteract the detrimental
effects of the APOEe4 allele. We sought to identify “protective” genetic factors that can modify or reduce
the effect of APOEg4 on AD risk and to identify new pathogenic mechanisms, proteins and pathways that

inform development of therapeutic targets and diagnostics.

Results

Whole Genome Sequencing identifies putative protective variants in cognitively unaffected elderly

APOE€4 carriers.

We accessed whole genome-sequencing data in 3,578 individuals from over 700 non-Hispanic White and
Caribbean Hispanic families multiply affected by AD (Table 1). After harmonization and QC of the WGS
data we identified rare (MAF<1% in GnomAD) coding variants in the healthy elderly (over the age of 70)
APOEe4 homozygous carriers that were absent in non-carriers (Figure 1). We further prioritized exon
coding variants in healthy APOEe4 carriers that bear the potential to be damaging to the resulting protein
product. Supplementary Tables 1-3 provide lists of candidate variants that were identified in cognitively
unaffected elderly APOEe4 carriers. Our strategy and analysis pipeline are summarized in Figure 2. We
found 510 variants in 476 genes that were present in at least 1% of APOE&4 unaffected homozygous
carriers (388 in EFIGA/WHICAP and 130 in NIA-FBS and 8 variants found in both datasets) (Supplementary
Tables 1 and 2). Two mutations (rs116558455 and rs140926439) in the FN1 gene (Fibronectin-1) were
found in healthy elderly €4 homozygous carriers in EFIGA/WHICAP and NIA AD-FBS cohorts with
MAF=1.85% and 3.33%, respectively (Table 2). In Hispanics, rs116558455 was absent in all APOEe4 carriers
with AD. In non-Hispanic whites rs140926439 was absent in homozygous APOEe4 AD patients but found
in 1% of heterozygous patients. Pathway analysis of the genes harboring variants segregating in APOEe4
carriers identified several biological pathways and molecular functions such “actin binding”, “microtubule
binding”, and “extracellular matrix structural constituent” (Figure 3). These results suggested a strong

correlation with cellular morphologies and the architectural organization of those cells.


https://doi.org/10.1101/2024.01.02.573895

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.02.573895; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Potential protective alleles against APOE&4 enrich extracellular matrix components.

To determine the molecular mechanisms enriched in the protective alleles that we identified, gene
ontology review as performed with term analyses for biological processes, cellular compartments, and
molecular functions (Figure 3). We found a strong enrichment for extracellular matrix (ECM)-related
processes such as cell adhesion, ECM organization, integrin binding and structural component of the ECM
(Figure 3). This suggested that functional alterations in the ECM composition could act as a protective
mechanism in APOE&4 carriers, both heterozygotes and homozygotes without dementia. We hypothesized
that APOE g4-related increase in ECM components could be counteracted by loss-of-function (LOF) variants
in those genes, leading to protection through rescue of pathological mechanisms that those ECM

components partake.

To test our hypothesis, we selected two genes from the variant lists that were common in ECM-related
gene ontology classes (Figure 3), collagen type VI alpha 2 chain (COL6A2) and fibronectin 1 (FN1). These
genes are well-known ECM components that harbored putatively protective variants in APOEe4 cognitively
unaffected carriers. Additionally, FN1 was present in both Hispanic and non-Hispanic white cohorts
(Supplementary Table 1, Supplementary Table 2). COL6A2 variation (rs777822883) generates a
substitution of Arginine at the 862" residue to Tryptophan, while FN1 variation (rs140926439) converts
the Glycine at the 357" position to Glutamic acid. Since both alterations result in change in charged
residues (loss in COL6A2, gain in FN1), we hypothesized that these variations could have detrimental effect
on the protein function, as charged interactions are essential for matric proteins and their stability "3,
Therefore, we analyzed the AlphaFold structures of these proteins in Ensembl (www.ensembl.org) and
found that both variations are potentially detrimental according to SIFT, REVEL and Metal R predictions
(Supplementary Figure 1). Arginine in COL6A2 at 862" position may coordinate with Valine 859 and
Glutamic acid 858 in the alpha helix structure, while Glycine at 357" position in FN1 may provide structural
stability by coordinating with Glutamic acid 358 and Serine 355 (Supplementary Figure 1). Therefore, we

categorized these variants as likely loss-of-function alleles based on loss of electrostatic interactions.
FN1 deposition correlates with APOE g4 dosage.

Based on our findings, we hypothesized that APOE&4 dosage might correlate with deposition of COL6A2
and FN1, at the blood-brain barrier (BBB) basement membrane, one of their prominent expression
locations, as FN1 is an important signaling molecule that interacts with specific integrins ** expressed in
various vascular niche cell types ¥*. We immunostained and analyzed the brains of 27 individuals with
known APOE ¢ genotypes (8 APOE&£4/4 homozygous carriers with AD, 8 APOE&3/4 heterozygote carriers
with AD, and 11 APOE&4 non-carriers (APOE&3/3) with AD (Supplementary Table 4) for FN1 and CD31
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(endothelial cell marker), and COL6A2 and COL4 (a vascular basement membrane marker) (Figure 4,
Supplementary Dataset 1, Supplementary Dataset 2). We found that FN1 levels (Figure 4A-C’)
significantly increased with APOEg4 dosage (Figure 4D). Compared to APOE&£3/3 individuals, FN1
expression increased significantly in APOE&£3/4 (8.1%, p = 3.4e-02) and in APOE&4 homozygous individuals
(26.6%, p = 3.1e-09). Least squares linear regression and non-linear fit comparison of FN1 intensities
according to the diameter of the vessels showed that compared to APOE<3/3, FN1 expression is more
prominent with increasing vessel size in APOE&3/4 and APOE&4/4 individuals (adjusted R*: APOE¢ 3/3:
0.81, APOE&£3/4 0.86, APOE&4/4: 0.89; all p values are less than 1.0xE-15 for non-zero significance of the
slopes) (Figure 4E). Immunostainings for COL6 (Figure 4F-H’) showed a non-linear relationship between
APOEe4 dosage and COL6 expression. APOE&4 heterozygotes show reduced (7.7%, p = 9.9e-03)
homozygotes show increased levels of COL6 (6.7%, p = 3.4e-02) (Figure 4l). COL4 expression is only
reduced in APOEe4 heterozygotes (8.6%, p = 1.4e-03) but remain unchanged in homozygotes (Figure 4l).
The changes in COL6 expression with blood vessel size was less pronounced (adjusted R%: APOEe 3/3:
0.67, APOE&3/4 0.50, APOE&4/4: 0.55; all p values are less than 1.0xE-15 for non-zero significance of the

slopes) (Figure 4)).
FN1 deposition is different between demented and cognitively unaffected APOEs4/4 carriers.

Based on our findings that FN1 deposition is increased in patients with AD and APOE dosage correlates
with FN1 levels, we hypothesized that FN1 deposition could be a downstream driver of the pathological
effects of APOE&4 in AD. We tested this hypothesis by comparing FN1 and GFAP (marker for reactive
gliosis) levels in APOE&3/3 (control, n = 2), APOEs4/4AD (n = 2), and APOEc4/4 unaffected (n = 6)
individuals (Figure 5, Supplementary Table 5, Supplementary Dataset 3). We found elevated reactive
gliosis and FN1 deposition in APOE&4/4 carriers with AD compared to APOE&£3/3 controls (ANOVA adjusted
p=1.5E-02 for GFAP intensity, 4.1E-11 for FN1 intensity) (Figure 5A,B,E,F,1). APOE c4/4 unaffected carriers
had FN1 and GFAP levels that were similar to that in controls (ANOVA adjusted p=0.5245 for GFAP intensity,
p=0.8884 for FN1 intensity) (Figure 5A,C,E,G,H). This implies that the unaffected/resilient APOE&4 carriers

may be protected from gliosis and FN1 deposition (Figure 5H, I).

Fibronectin loss of function zebrafish model enhance gliovascular endfeet retraction and microglial

activity while reducing gliosis after amyloid toxicity.

To determine whether Fibronectin activity is related to cellular responses after amyloid toxicity, we used
our established amyloid toxicity model in the adult zebrafish brain ¢, Zebrafish has two fibronectin 1
genes: fnla and fnlb #. Our single cell transcriptomics analyses in the zebrafish brain showed that fn1b

but not fnlais expressed in the zebrafish forebrain (Figure 6A). fn1b expression is predominantly detected
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in vascular smooth muscle cells and immune cells, while endothelia and astroglia expresses fnib at
considerably lower levels (Figure 6B). Amyloid toxicity results in increased fn1b expression in immune cells
and vascular smooth muscle cells (Figure 6B), similar to what we observed in AD brains (Figures 4 and
Figure 5). To determine the effects of fibronectin function in amyloid-induced pathology, we used a fn1b
full knockout zebrafish line (fn1b”"), which was previously functionally validated 2. After treating wild type
and fn1b”" animals with AB42, we performed immunohistochemical stainings for astroglia (red, GS) and
tight junctions that mark vascular structures (green, ZO-1) (Figure 6C-F, Supplementary Dataset 4).
Compared to wild type animals treated with AB42, fn1b”" animals with AB42 showed less co-localization
of GS and Z0O-1 (-16.3%, p = 5.3E-09), suggesting the gliovascular interactions are reduced with fibronectin
loss of function (LOF) (Figure 6G). Based on our previous findings that reduced gliovascular contact upon
amyloid toxicity is a protective mechanism through enhancing clearance of toxic protein aggregates and
immune systems activity 8, our results suggest that fibronectin could be negatively regulating the amyloid
beta clearance and therefore a LOF variant could be protective against disease pathology. By performing
intensity measurements for astroglia with GS immunoreactivity, we observed that GS intensity reduces
with fn1b LOF (-24.7%, p = 4.7E-03; Figure 6H, Supplementary Dataset 5), indicative of reduced gliotic
response upon AB42. To determine the effect of Fibronectin on synaptic density and the number and
activation state of microglia, we performed immunostainings (Figure 6l-J, Supplementary Dataset 6) and
found that loss of Fibronectin leads to increased numbers of total (41.5%, p = 8.7E-04) and activated
microglia (64.3%, p = 2.9E-04). We did not observe change in the synaptic density when AP42-treated

fnlb”’ were compared to AB42-treated wild type animals (Figure 61-K, Supplementary Dataset 7).
Discussion

In our study, we found that two missense, potential loss-of-function (LOF) variants in FNI may protect
against APOEg4-mediated AD pathology. We based our conclusions on five main observations: (1) FN1
coding variants were present in cognitively unaffected APOE&4 homozygous carriers but not in affected
carriers with clinically diagnosed AD (Supplementary Table 1). (2) Deposition of FN1 at the BBB basement
membrane increases with APOEg4 dosage (Figure 4). (3) Unaffected/resilient homozygous APOE&4
carriers above the age of 70 without AD have FN1 deposition levels similar to APOE& 3 control individuals
(Figure 5). (4) In the zebrafish brain, knockout of fnib alleviates amyloid toxicity-related pathological
changes (Figure 6). These results suggest that the basement membrane thickening and remodeled ECM
composition in the BBB may be a pathological contribution to APOE&4-mediated AD pathology that may
be mitigated by variants in FN1 or other ECM genes (Figure 7). This conclusion is supported by the
presence of mutations in other BBB-related ECM components, such as LAMA1, LAMA3, and HSPG2, in

unaffected elderly APOE&4 carriers but not in carriers with AD (Supplementary Table 1). Therefore, our
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findings propose a new direction for potential therapeutic interventions reducing the impact of APOE4-
mediated risk of AD by targeting the BBB basement membrane. Thus, we propose that Fibronectin loss-

of-function may be a protective mechanism for AD (Figure 7).

APOE&4 has been associated with increased neuroinflammation and neurodegeneration, which can
accelerate the progression of AD 2%, Our results in zebrafish fn1b knockout model showed that reduced
Fibronectin 1 increases the gliovascular (GV) endfeet retraction and reduces the gliosis. We previously
showed that the relaxed GV contact is a beneficial response to amyloid toxicity 8 as it helps enhance the
clearance of toxic aggregates through the bloodstream. Additionally, gliosis is an immediate response in
astroglia to insult, and it prevents functional restoration of neuronal activity in disease 2>, Independent
reports showed that astrocytic removal of APOE protects against vascular pathology %, and gliosis is a
mediator of amyloid-dependent tauopathy in late AD 3°. We propose that the relationship of fibronectin
to these processes are pathogenic, and reduced Fibronectin could be protective by allowing more efficient
clearance through the bloodstream and reduced astrogliosis. The enhanced microglial activity supports

this hypothesis as acute activation of microglia is a beneficial response to toxic protein aggregation 3132,

Our results are consistent with the previous findings on APOE-dependent vascular pathologies and their
relationship to AD #3337, Endothelial fibronectin induces disintegration of endothelial integrity and leads

to atherosclerotic vascular pathologies 3%4°

, supporting our findings that reduced Fibronectin 1 protects
the blood-brain-barrier integrity disrupted by APOE&4. Our findings are coherent with the previous
observations, where AD-related changes in collagen and fibronectin around the blood-brain barrier (BBB)
and alterations in the BBB's structure and function were documented 3. Additionally, the serum levels
of fibronectin increase in AD patients in comparison to healthy individuals **. Collagen and Fibronectin can
also be early pathological markers of AD %, where the increase in the deposition and crosslinking of
basement membrane around cerebral blood vessels lead to a thickening of the basement membrane,
potentially compromising its permeability and function 37%¢*°, Fibronectin expression levels in brain
vasculature increases in AD 22%>°0%2 where remodeling of the BM and replacing ECM with FN1 has been
suggested to indicate hypoperfusion and atherosclerosis-prone state 34383, Additionally, APOE&4 might
regulate the BM remodeling through inhibition of pericyte-mediated matrix proteinase expression °.
Pericyte degeneration, mural cell dysfunction, alterations in cerebrospinal flow dynamics are long-term
consequences of vascular pathologies in aging and AD and is accelerated with APOEe4 33548 Therefore,
based on our findings, we propose that excess ECM deposition and BM thickening with Collagen and
Fibronectin could promote blood brain barrier breakdown. Potential loss of function mutations in ECM
genes are likely to render ECM components non-functional, thus protecting against AD progression.

Stronger instructive interactions of collagen and fibronectin with their receptors on various BBB cell types
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in AD 35315980 synport this hypothesis. Consistently, FN1 provides attachment surface for immune cells,
which — when becomes chronic — damages the vascular functions, contribute to BBB breakdown and loss

of synaptic integrity.

We found that despite their APOE&4/4 status, unaffected/resilient individuals who do not develop
cognitive decline have lower FN1 deposition and gliosis at the vascular basement membrane that are not
different than APOE&3/3 control individuals but significantly lower than APOE&4/4 AD patients (Figure 5).
This demonstrated that FN1 is a critical component of APOEg4-mediated development of AD, and a yet
unknown protective mechanisms against the effects of APOE&4/4 genotype suppresses FN1 deposition.
We propose that FN1 is a critical downstream effector of APOE &4, and reduced FN1 levels, either through
rare, protective genetic variations in FN1 or through other resilience mechanisms, promotes protection
against AD. An interesting future research could investigate the other rare protective variants of APOE

such as APOE&2 191 and APOEEe3 Christchurch® and their effects on the BBB basement membrane.

The strength of this study is the cross-species design with pathological and functional validation to show
that ECM component fibronectin could be related to key pathological aspects of AD such as toxic protein
clearance, blood brain barrier integrity and microglial activity. We present the first knockout zebrafish for
Fibronectin 1 in relation to amyloid toxicity and identified cellular changes that relate to fibronectin

activity.

Further studies could address some limitations of our study. First, the mechanism by which APOE&4
enhances FN1 requires further investigations. Although in human and zebrafish brains, Fibronectin is
upregulated, the longitudinal relationship of amyloid aggregation to FN1 activity needs to be analyzed.
Additionally, our genetic studies are conducted in clinically assessed individuals, and given the rarity of
the FN1 mutation, we did not have neuropathological assessments of APOE &4/4 individuals with this rare
protective mutation. Future studies in large scale neuropathologic cohorts are necessary to demonstrate
the pathological consequences of the rare FN1 mutations. Finally, mechanistic studies of FN1 with and

without the rare mutation are necessary to demonstrate the nuanced functional consequences.

Materials and Methods
Ethics statement

All human samples were de-identified and the researchers cannot reach to the personal information of
the donors. Institutional Review Board approval in Columbia University Irving Medical Center and Mayo

Clinic was taken before the clinical data generation. Human cohorts and their characteristics are provided
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below. Animal experiments were carried out in accordance with the animal experimentation permits of
the Institutional Animal Care and Use Committee (IACUC) at Columbia University (protocol number AC-
AABN3554). Animals were maintained according to the Institutional Animal Care and Use Committee
(IACUC) standards of the Institute of Comparative Medicine at the Columbia University Irving Medical
Center and to the accepted guidelines®*®®. The animal care and use program at Columbia University is
accredited by the AAALAC International and maintains an Animal Welfare Assurance with the Public
Health Service (PHS), Assurance number D16-00003 (A3007-01). Animal experiments were approved by
the IACUC at Columbia University (protocol number AC-AABN3554). For zebrafish studies, 8-10 months
old wild type AB strains or fn1b”’- homozygous knockout fish lines of both genders were used. In every
experimental set, animals from the same fish clutch were randomly distributed for each experimental

condition.
Human cohort information

NIA AD- Family Based Study (NIA AD-FBS): This study recruited multiplex families across the United
States. Families were included if at least one member had a diagnosis of definite or probable Alzheimer’s
disease ®7%8 with onset after age 60 and a sibling with definite, probable, or possible disease with a similar
age at onset. Demographic information, diagnosis, age at onset for patients with Alzheimer’s disease,
method of diagnosis, Clinical Dementia Rating Scale ®°, and the presence of other relevant health problems
was available for each individual. The age at onset for patients was the age at which the family first
observed signs of impaired cognition. For unaffected family members, we used their age at the time of
their latest examination without impairment. Each recruitment site used standard research criteria for
the diagnosis of Alzheimer’s disease 8. For deceased family members who had undergone autopsy, the
results were used to determine the diagnosis. For analyses, clinical Alzheimer’s disease was defined as
any individual meeting NINCDS-ADRDA criteria for probable or possible Alzheimer’s disease & and definite
Alzheimer’s disease when CERAD pathological criteria ’° was met postmortem.

Washington Heights/Inwood Columbia Aging Project (WHICAP): WHICAP is a multiethnic, community-
based, prospective cohort study of clinical and genetic risk factors for dementia. Three waves of individuals

71,72

were recruited in 1992, 1999, and 2009 in WHICAP, all using similar study procedures . Briefly,
participants were recruited as representative of individuals living in the communities of northern
Manhattan and were 65 years and older. At the study entry, each person underwent a structured interview
of general health and function, followed by a comprehensive assessment including medical, neurological,
and psychiatric histories, and standardized physical, neurological, and neuropsychological examinations.
Individuals were followed every 18-24 months, repeating examinations that were similar to baseline. All

diagnoses were made in a diagnostic consensus conferences attended by a panel consisting of at least one
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neurologist and one neuropsychologist with expertise in dementia diagnosis, using results from the
neuropsychological battery and evidence of impairment in social or occupational function. All-cause
dementia which was determined based on Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition criteria . Furthermore, we used the criteria from the National Institute of Neurological and
Communicative Disorders and Stroke—Alzheimer Disease and Related Disorders Association to diagnose

probable or possible AD.

Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA): We used families from a different
ethnic group to identify protective alleles in APOEg4 healthy individuals. This cohort comprises of
participants from a group of families from the Dominican Republic, Puerto Rico, and New York.
Recruitment, study design, adjudication, and clinical assessment of this cohort was previously described
74 as were details of genome-wide SNP data, quality control and imputation procedures of the GWAS data
7578 participants were followed every two years and evaluated using a neuropsychological battery”’, a
structured medical and neurological examination and an assessment of depression 7%7°. The Clinical
Dementia Rating Scale (CDR) 88! and functional status were done and the clinical diagnosis of Alzheimer’s

disease was based on the NINCDS-ADRDA criteria 823,
Whole genome sequencing and quality control

The demographics of the individuals selected for sequencing is shown in Table 1. WGS was performed at
the New York Genome Center (NYGC) using one microgram of DNA, an lllumina PCR-free library protocol,
and sequencing on the Illumina HiSeq platform. We harmonized the WGS the EFIGA families (n=307), and
jointly called variants to create a uniform, analysis set. Genomes were sequenced to a mean coverage of
30x. Sequence data analysis was performed using the NYGC automated analysis pipeline which matches
the CCDG and TOPMed recommended best practices 8. Briefly, sequencing reads were aligned to the
human reference, hs38DH, using BWA-MEM v0.7.15. Variant calling was performed using the GATK best-
practices. Variant filtration was performed using Variant Quality Score Recalibration (VQSR at tranche
99.6%) which identified annotation profiles of variants that were likely to be real and assigns a score

(VQSLOD) to each variant.
Identification of variants segregating in healthy APOEg4 individuals

First, we filtered high quality rare (MAF<0.01 in GnomAD) variants with genotype quality (GQ)=20 and
depth (DP)>10. We then excluded any variant observed in APOE €4 non-carriers. Within variants that
segregated in APOEe4 carriers, we prioritized those that were observed in at least one APOEe4

homozygous healthy elderly (=70 years) and had additional support in healthy elderly (=80 years)
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heterozygous carriers. We further prioritized variants that were absent in AD patients carrying an APOEe4

allele. A simplified pipeline is provided in Figure 2.
Genotyping, amyloid administration, tissue preparation

A previously generated fn1b knockout line using CRISPR-Cas9 gene editing 2 was used in homozygous
form. The full deletion was genotyped as described 2. Amyloid-B42 was administered to the adult
zebrafish brain through cerebroventricular microinjection into the cerebral ventricle 2°. Euthanasia and
tissue preparation were performed as per institutional ethic committee approval and international
guidelines 2%%5, 12-um thick cryo-sections were prepared from these brain samples using a cryostat and

collected onto glass slides which were then stored at -20°C.
Immunohistochemistry

Post-mortem human brain sections from BA9 prefrontal cortex were obtained from New York Brain Bank
at Columbia University and Mayo Clinic Jacksonville as paraffin-embedded blanks and with
neuropathology assessments (Supplementary Tables 4-5). Immunohistochemistry (IHC) was performed
as described %, As primary antibodies FN1 (Proteintech, catalog number 66042-1-lg, 1:250), CD31
(Abcam, catalog number ab134168, 1:250), COL6A2 (Thermofisher, catalog number PA5-65085, 1:200),
COL4 (Thermofisher, 14-9871-82, 1:100), and GFAP (Thermofisher, catalog number OPA1-06100), and as
secondary antibodies goat anti-mouse Alexa Fluor 448 (Thermofisher, catalog number A-21131, 1:500)
and goat anti-rabbit Alexa Fluor 555 (Thermofisher, catalog number A-21137, 1:500) were used. In short,
for deparaffinization and hydration, xylene and alcohol were used. Antigen retrieval was performed with
citrate buffer (pH:6.0) or Antigen Retriever EDTA buffer (pH:8.5) in a pressure cooker or microwave for
18-25 minutes. Sections were blocked in 10% normal goat serum for 1 hour at room temperature and
were incubated with primary antibody combinations (FN1-CD31, COL6A2-COL4 or FN1-GFAP) overnight
at 4°Cin a humidified chamber. Each secondary antibody to respective primaries were applied for 2 hours
at room temperature. Slides were covered by mounting medium with nuclear counterstain DAPI
(Thermofisher, catalog number D1306, 5 ng/ml). Immunohistochemistry for zebrafish was performed as
described?. In short, the slides were dried at room temperature for 30 minutes and washed with PBS with
0.03% Triton X-100 (PBSTx). Primary antibodies combinations (ZO-1 + GS and SV2A + L-Plastin) were
applied overnight at 4°C. Next day, after 3 times with PBSTx appropriate secondary antibodies were
applied for 2 hours at room temperature. The slides were then washed several times before mounting
using 70% glycerol in PBS. The following antibodies were used: mouse anti-Z0-1 (1:500, Thermofisher Cat.
No. 33-9100), rabbit anti-Glutamine synthetase (GS) (1:500, Abcam Cat. No. ab176562), mouse anti-SV2A
(1:500, DSHB Cat. No. SV2), and rabbit anti-L-Plastin (1:3000, gift from Michael Redd), secondary

antibodies goat anti-mouse Alexa Fluor 448 (Thermofisher, catalog number A-21131, 1:500) and goat anti-
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rabbit Alexa Fluor 555 (Thermofisher, catalog number A-21137, 1:500). For antigen retrieval of ZO-1 and
SV2, slides were heated in 10mM Sodium acetate at 85°C for 15 minutes before primary antibody

incubation.
Image acquisition, quantification, statistical analyses

Five random illumination field images per patient from the immunostained slides were acquired using
Zeiss LSM800 confocal microscope equipped with ZEN software (version blue edition, v3.2, Carl Zeiss,
Jena, Germany). Based on vascular markers, coronally sectioned blood vessels were delineated with the
selection tool of ZEN software. Fluorescence intensity measures, diameter and area was calculated.
Acquisitions were performed in blinded fashion (sample IDs, neuropathology details and genotypes were
revealed after the acquisition) and no vessels were specifically left out unless their diameters were larger
than 50 um. GraphPad Prism software version 9.2.0. was used for the statistical analyses. For multiple
comparisons, one-way Brown-Forsythe and Welch ANOVA test with two-stage linear step-up procedure
of Benjamini, Krieger and Yekutieli comparison with individual calculation of variances was used. For non-
Gaussian distributions, non-parametric Kruskal-Wallis test with Dunn’s multiple comparison test was
performed. For correlation of vessel diameter to fluorescent intensity, simple linear regression model and
second order polynomial robust regression with no weighting was used. Significance is indicated by * (p <
0.0332), ** (p < 0.0021), *** (p < 0.002), **** (p<0.0001). No asterisks indicate non significance. No
sample set was excluded from the analyses unless the histological sections were damaged severely during

the acquisition of the sections (constitutes less than 3% of all sections analyzed).

For zebrafish studies, the effect sizes for animal groups were calculated using G-Power, and the sample
size was estimated with n-Query. 4 zebrafish from both sexes were used per group. For quantification of
SV2-positive synapses, 3D object counter module of Imagel software was used with a same standard cut-
off threshold for every image. For quantification of activated/resting L-Plastin-positive microglial cells, two
different microglial states were classified based on their cellular morphology: slender and branched as
resting microglia; round and regular as active microglia. 6 images each from telencephalon sections were
analyzed per animal. For colocalization studies, vascular fields were determined using ZO-1 staining on
sections (20 for every group), and colocalization with glial endfeet labelled with GS stainings was
performed by using Imagel software (v.2.1.0/1.53c) with its Colocalization Test. Data acquisition was
randomized with Fay (x,y,z translation) to acquire in total 1,670 data points from two experimental
groups. R(and) correlation values from wild type and fn1b” animals were compared using GraphPad Prism
(v.9.2.0). Intensity values for individual fluorescent channels were obtained with modal gray value and

integrated density measurements using Imagel. Comparison of 40 sections from two experimental groups
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was performed. Unpaired non-parametric Kolmogorov-Smirnov t-test was performed for testing the

statistical significance for all analyses.
In silico structure prediction

Protein structures, interspecies similarities and the deleterious effects of mutations were analyzed by
SWISS-MODEL protein structure homology-modelling server through Expasy web server
(https://swissmodel.expasy.org). SWISS-MODEL repository entry for respective proteins were retrieved
and compared to desired protein orthologs using the superposition function. Deleterious mutation
prediction was performed using Ensembl-integrated AlphaFold prediction model with SIFT, MetalR and

REVEL modules of prediction of deleteriousness.

Amyloid toxicity and single cell sequencing

Amyloid toxicity was induced as described'®2°

in the adult telencephalon, the brains were dissected and
single cell suspensions were generated as previously described®#”. Chromium Single Cell 3’ Gel Bead and
Library Kit v3.1 (10X Genomics, 120237) was used to generate single cell cDNA libraries. Generated
libraries were sequenced via lllumina NovaSeq 6000 as described?>#5#°, The cell clusters were identified
using a resolution of 1. In total, 34 clusters were identified. The main cell types were identified by using
s100b and gfap for astroglia; sv2a, nrgna, grinla, grin1lb for neurons; pdgfrb and kcne4 for pericytes;
cd74a and apocl for microglia; mbpa and mpz for oligodendrocytes; myhl1la and tagin2 for vascular

smooth muscle cells, kdrl for endothelial cells'®*®, The zebrafish gliovascular single cell dataset can be

accessed at NCBI’'s Gene Expression Omnibus (GEO) with the accession number GSE225721.
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Figure legends

Figure 1: Study Design. Comparison of the genomes of elderly APOE€4 carriers with non-carriers
Figure 2: Schematic analytical pipeline for this study.

Figure 3: Pathway analysis of variants segregating in APOE&4 carriers.

Figure 4: Changes in FN1 and COL6A2 according to APOE genotype. A-C’: Double IFS for CD31 (green) and
FN1 (red) with DAPI nuclear counterstain in APOE £3/e3 (APOE3/3; A, A’), APOE £3/4 (APOE3/4; B, B’) and
APOE e4/e4 (APOE4/4; C, C’). D: FN1 and CD31 intensity comparisons in 2,044 blood vessels from 28
individuals. E: Regression model for FN1 intensity with respect to blood vessel diameter in three APOE
genotypes. F-H’: Double IFS for COL4 (green) and COL6A2 (red) with DAPI nuclear counterstain in APOE €3/€3
(APOE3/3; F, F’'), APOE €3/e4 (APOE3/4; G, G’) and APOE €4/e4 (APOE4/4; H, H’). |: COL4 and COL6A2 intensity
comparisons in 1,816 blood vessels from 28 individuals. J: Regression model for COL6A2 intensity with respect
to blood vessel diameter in three APOE genotypes.
Figure 5: FN1 deposition and gliosis reduce to control levels in APOE£4/4 cognitively unaffected individuals
but not in APOEs4/4 AD patients. A-C: Double IFS for FN1 (green) and GFAP (red) with DAPI nuclear
counterstain in APOE €3/3 (A), APOE £4/4 AD (B) and APOE €4/4 unaffected/resilient individuals (C). Black-
white images are individual fluorescent channels for FN1, GFAP and DAPI. E-G: Two blood vessels in every
condition are shown in high magnification together with FN1 channel alone. H: FN1 intensity comparisons. I:
GFAP intensity comparisons.
Figure 6: Fibronectin loss-of-function affects gliovascular interactions, gliosis, and microglial activity after
amyloid toxicity in zebrafish brain. A: Feature plots for fibronectin 1a (fn1a) and fibronectin 1b (fn1b) genes
in zebrafish brain. B: Violin plots in control and AB42-treated brains. fn1b is mainly expressed in vascular
smooth muscle cells and immune cells and is upregulated with AB42. C, D: Double IF for astroglia marker
glutamine synthase (GS, red) and tight junction marker (ZO-1, green) in wild type and fn1b”" animals.
Individual fluorescent channels in C’, C”, D’, and D”. E, F: Individual GS channels. G: Quantification for
colocalization of ZO-1 and GS. H: Comparison of intensity measurements for GS. |, J: Double IF for synaptic
marker SV2 (green) and microglial marker L-Plastin (red) in wild type and fn1b”- animals treated with Ap42.
Individual fluorescent channels in I, I, )/, and J”. Quantifications for synaptic density, total number of
microglia and activated microglia.

Figure 7: Schematic abstract for the protective effect of FN1.

Supplementary Figure 1: Structure and deleteriousness prediction for FN1 and COL6A2.
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Table 1: Demographics of samples sequenced.

Hispanics Non-Hispanic White

N 1840 590

AD Cases 693 455

AD Controls 1147 135

Families with 2 or more individuals

# APOE-¢4 heterozygotes 724 438

# APOE-¢4 homozygotes 189 190

# APOE-¢4 heterozygote AD cases 442 265

# APOE-¢4 homozygote AD Cases 114 155

# APOE-¢4 heterozygote healthy controls 282 161

# APOE-¢4 homozygote healthy controls 75 30

# APOE-¢4 homozygote healthy controls>=70 years of age 27 15

# APOE-¢4 heterozygote healthy controls>80 years of age 75 45

Table 2: FN1 minor allele frequencies
MAF in MAF in
elderly* MAF in all cognitively
cognitively cognitively MAF in unaffected MAF in all MAF in
unaffected unaffected APOE¢&4 elderly* healthy APOE¢4
APOE¢4 APOE¢4 homozygous APOE¢g4 APOE¢4 heterozygous
Cohorts SNP homozygous | homozygous | AD patients | heterozygotes | heterozygotes | AD patients

EFIGA/WHICAP | rs116558455 1.85% 0.67% 0.00% 0.67% 0.18% 0.00%
NIA-FBS rs140926439 3.33% 5.17% 0.00% 2.22% 1.55% 0.96%

*Elderly APOE €4 homozygous are over 70 years old and heterozygous are over 80 years old.
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Figure 2

ANALYSES, PRIORITIZATION, AND EXPERIMENTATION PIPELINE

Whole genome sequencing (WGS) in 3,578 individuals
from EFIGA/WHICAP/NIA-AD-FBS cohorts
(~80 million variants)

VARIANT SELECTION

Filtering rare coding variants found in at least 1% of

elderly (>70 years) cognitively unaffected APOEc4

homozygous carriers and absent in APOEg4 non-

PATHWAY ANALYSES carriers and APOEg4 carriers with AD.

Pathway analysis of genes harboring 510 VARIANTS IN 476
protective variants. Extracellular GENES IDENTIFIED

matrix is over-represented (56 genes). PRIORITIZATION

EXTRACELLULAR Selection of genes in ECM-related gene ontolo?_y terms for
MATRIX validation in human brain tissue and in vivo ;ebrq ish models.
HUMAN BRAINS FN1and COL6 were the most common variants in GO terms.
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Supplementary Figure 1
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Collagen alpha-2(Vl) chain ::
AF-P12110-F1 | Model 1 | Instance 1_555 | A | ARG 862
UNP P12110 862 R ’
pLDDT Score (1 Residue): B6.72 (Confident)

- ps—
Gene Transcript Allele = Consequence  Position in Position in Position in AA Codons  SIFT REVEL Metal
(strand) , (. Type , transcript CcDS protein R

— allele

Gene | i """"""""
ENSGO00000142173 ENST00000300527. T missense 2673 (outof 3445) 2584 (outof3060) 862 (outof1019) RW CGGTGG (0 ) (0577 ) ( 0.635 )
HGNC: COLBA2 | 9 (+) s variant = | | | | |
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Fibronectin
AF-P02751-F1 | Model 1 | Instance 1_555 | A | GLY 357
UNP P0O2751 357 G

pLDDT Score (1 Residue): 70.43 (Confident)

(Tr. Type transcript CDS protein R
A i g I SRR S i a e | o i T T el Tl o o
allele
)
ENSG00000115414 ENSTO00000336916.8 T missense 1336 (outof 8435) 1070 (outof 7068) 357 (out of 2355) GE GGA/GAA ( 0 )( 0.823 )( 0.778 )
HGNC: FN1 (-) (A) variant [ | | | [ |

biotype: protein_coding
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