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Summary paragraph:  
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized 

by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β 
and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a 
crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk 
factors interact remain largely unknown. Somatic mutations accumulate with age and lead to 
clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. 
Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods 
and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples 
from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic 
single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-
barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed 
enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD 
brain compared to control, with recurrent, and often multiple, mutations in genes implicated in 
clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD 
brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver 
genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus 
RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls 
exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. 
Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the 
transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that 
somatic driver mutations in microglia are common with normal aging but further enriched in AD 
brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first 
insights into microglial clonal dynamics in AD and identify potential new approaches to AD 
diagnosis and therapy.  
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Main-text: 
The importance of microglia in AD pathogenesis has been demonstrated by large-scale 

genetic association studies which have identified risk variants in a growing list of microglia-
related genes12-15. As the primary immune cells in the central nervous system (CNS), microglia 
play critical roles in brain development, injury response, and pathogen defense16, modulating 
cellular responses involved in aging and neurodegeneration as well3-5. Once abnormally reactive 
in AD, microglia can promote synaptic and neuronal loss and exacerbate tau proteinopathy17,18. 
Recent single-cell transcriptomic studies have depicted specific populations of microglia 
enriched in AD brains of mouse models and human patients, termed disease-associated microglia 
(DAM)19. DAM feature reduced expression of homeostatic genes but elevated expression of 
genes involved in immune response and phagocytosis3,20, though whether DAM are beneficial or 
detrimental to AD remains unsettled21. 

Somatic mutations accumulate in all cell types that have been studied, both during normal 
development and during aging22-24. Clonal expansion, driven by somatic mutations in genes 
regulating cell proliferation, is considered the major cause of cancer6, but has also been recently 
reported in various non-cancer cell types7 often in the absence of visible pathology. Clonal 
expansion of mutant blood cells, called clonal hematopoiesis (CH), increases in prevalence with 
age and is associated with increased risk of hematologic malignancies and cardiovascular 
disease8,9, likely through inflammatory effects of mutant cells on neighboring nonmutant cells25. 
A somatic V600E mutation in BRAF, a common cancer-driver mutation, in the microglial 
lineage has also been causally implicated in degeneration of neurons secondary to mutant 
microglial activation in both mouse models and humans26. Although gene panel sequencing of 20 
AD brains27 and whole exome sequencing of DNA from micro-dissected neuronal nuclei of 52 
AD brains28 found no consistent excess of clonal somatic mutations in AD, these studies were 
extremely limited in their ability to detect clonal somatic mutations by small sample sizes, the 
examination of neuronal DNA only, and low sequence coverage. 

Here we tested whether brain clonal somatic mutation is associated with AD by three 
prospective and orthogonal approaches in >600 AD samples and >500 control brains of three AD 
cohorts (Fig. 1a-c), and we found consistent increases in overall clonal somatic mutations in AD 
compared to control, as well as function-specific enrichment in genes previously implicated in 
CH and other pre-cancerous conditions. These somatic mutations were enriched in microglia 
compared to other brain cell types, and microglia harboring these mutations exhibited a pro-
inflammatory transcriptional signature that has previously been associated with 
neurodegeneration. 
 
Identifying somatic mutations from bulk RNA sequencing 

We first developed RNA-MosaicHunter, a method to identify somatic mutations in 
coding regions of expressed genes, and applied it to 866 bulk RNA sequencing (RNA-seq) data 
sets of various brain regions including prefrontal cortex (PFC), temporal cortex, and cerebellum 
(Fig. 1a). The RNA-seq datasets were obtained from two independent harmonized cohorts of 
aging and dementia, the Rush Religious Orders Study/Memory and Aging Project (ROSMAP)29 
and a collection of brains under the Mayo Clinic Alzheimer’s Disease Genetics Studies 
(MayoRNAseq)30, in which the clinical consensus diagnosis of cognitive status was given by 
expert neurologists based on detailed cognitive and neuropathologic phenotyping.  

RNA-MosaicHunter, an extensive modification of MosaicHunter31, developed for sSNV 
calling in various types of DNA sequencing (DNA-seq) data, first calculates the likelihood of 
somatic mutation for each genomic position using a Bayesian graphical model, which 
distinguishes true mutations from random sequencing errors by considering base quality metrics 
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for covered reads (Fig. 1a). RNA-MosaicHunter also incorporates a series of empirical filters to 
remove artifacts due to systematic base-calling and alignment errors in RNA-seq. Germline 
variants were removed by comparing against matched whole-genome or whole-exome 
sequencing data of the same individual. Considering the widespread adenosine-to-inosine (A-to-
I) RNA editing sites across the genome32, where inosine will be recognized as guanine (G) and 
therefore indistinguishable from A-to-G sSNVs in RNA-seq data, we only considered non-A-to-
G sites as sSNV candidates. 

We benchmarked RNA-MosaicHunter using 19 esophageal carcinoma samples obtained 
from The Cancer Genome Atlas (TCGA) Research Network33. RNA-MosaicHunter identified 
613 non-A-to-G sSNVs from the RNA-seq data, and 513 of them were supported by MuTect34 
calls in matched whole-exome sequencing data, confirming the accuracy of RNA-MosaicHunter 
(Fig. 2a). In addition, 65 of 100 sSNVs that were detected by RNA-MosaicHunter but not 
MuTect showed mutant-supporting reads with >2% mutant allele fraction (MAF) in the DNA-
seq data, suggesting that they were true somatic mutations omitted by MuTect (Fig. 2a). Among 
851 MuTect-called exonic mutations with sufficient RNA-seq read coverage, RNA-
MosaicHunter successfully recaptured 499 of them (Fig. 2b). In summary, RNA-MosaicHunter 
achieved 59% sensitivity and 94% precision to identify non-A-to-G sSNVs from the tumor 
RNA-seq data (Fig. 2b); the sSNVs missed by RNA-MosaicHunter generally had poor coverage 
or low MAF in RNA-seq data, likely due to their low expression level or allele-specific 
expression35 in the tumor samples. 

 
Higher burden of somatic mutation in AD cortex 

RNA-MosaicHunter revealed two-fold increases in clonal somatic mutations compared to 
matched controls in two different AD cohorts. In PFC RNA-seq data of 228 persons with AD 
and 338 non-AD controls (Extended Data Fig. 1a and Supplementary Table 1-2) from the 
ROSMAP cohort29, AD PFC samples showed a higher sSNV burden compared to controls with a 
diagnosis of no or only mild cognitive impairment (Fig. 2c; p < 0.01, two-tailed proportion test; 
OR = 2.1). In a second, independent RNA-seq dataset from the MayoRNAseq project30, 
consisting of 300 brain samples from the temporal cortex and cerebellum of 92 patients who died 
with neuropathologically confirmed AD and 82 matched controls (Extended Data Fig. 1a and 
Supplementary Table 1-2), AD temporal cortex samples showed a consistent increase of sSNV 
burden compared to neurotypical controls (Fig. 2d; p = 0.01, two-tailed proportion test; OR = 
2.2), with a remarkably similar odds ratio to that seen in the ROSMAP PFC samples. 
Interestingly, the disease-specific enrichment of sSNV was limited to the temporal cortex 
samples and not observed in cerebellum (Fig. 2d; p = 1, two-tailed proportion test), a brain 
region not severely affected in AD36. The observed greater sSNV burden in AD remained 
significant after controlling for potential confounding factors including sex, age, RNA-seq 
coverage, neuronal proportion, and batch effects (Fig. 2e and Extended Data Fig. 1b; p = 0.01, 
linear regression). This enrichment persisted even when only the subset of sSNVs predicted to 
have deleterious impact on protein function were considered (Extended Data Fig. 1c-d; p = 
0.047, linear regression).  

To ensure that the larger number of somatic mutations in AD brains did not reflect 
contamination by blood, we measured the presence of blood cell types by analyzing gene 
markers for blood cells in both bulk and snRNAseq data of ROSMAP and MayoRNAseq (see 
details in Methods). We confirmed that blood contamination as measured by blood-related 
transcripts in these brain samples is minimal (Extended Data Fig. 1e); correcting our data for any 
minimal blood did not change the elevated burden of somatic mutation in AD brains (Extended 
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Data Fig. 1f). Our results from these two RNA-seq datasets consistently suggested that clonal 
somatic mutations in the cerebral cortex are increased in AD patients. 

Using Gene Ontology (GO) annotation, we observed that sSNVs found in AD brains 
were significantly enriched in genes related to ubiquitin-dependent proteolysis, which has been 
reported to be associated with AD pathogenesis37, as well as in genes that regulate cell cycle and 
proliferation (adjusted p < 0.05, hypergeometric test), and this enrichment pattern was not found 
in sSNVs identified in control brains (Fig. 2f). Considering the role of proliferation-related genes 
in amplifying somatic mutations, our results suggested that somatic mutations in proliferation-
related genes may be more common in AD cerebral cortex.  

 
Somatic mutation in proliferation-related genes 

As an orthogonal and more sensitive approach to examining the mutational burden in 
proliferation-related genes in AD, we designed a hybrid capture gene panel covering 149 cancer 
driver genes with UMI barcoding (Supplementary Table 3), and sequenced DNA from the PFC 
of 190 AD patients and 121 matched controls from the ROSMAP cohort at an average 
sequencing depth of >1000X after UMI collapsing (Supplementary Table 4 and Extended Data 
Fig. 2a-b). By exponentially reducing base-calling errors when generating the consensus 
sequence from multiple reads derived from the same original DNA molecule, this UMI-based 
panel sequencing detects somatic mutations with MAFs as low as 0.1% (Extended Data Fig. 2c-
d), with much higher sensitivity and precision than previous methods not employing consensus 
error correction38. Using our customized computational pipeline, we successfully identified 199 
sSNVs and 13 sIndels that were exclusively present in a single DNA sample (the “stringent” list; 
Supplementary Table 5). To increase the detection power, we further allowed recurrent 
mutations when they were specifically enriched in AD or control samples, which expanded our 
list to 1001 sSNVs and 20 sIndels, respectively (the “sensitive” list; Supplementary Table 5 and 
Extended Data Fig. 3a-b). The mutation spectrum of sSNVs is consistent with the cell 
division/mitotic clock signature SBS1 (Extended Data Fig. 3a; cosine similarity 0.92), suggesting 
that mutations predominantly occurred during cell division. We randomly selected 22 sSNVs 
with a range of MAFs for validation using amplicon sequencing, along with 17 potentially 
pathogenic sSNVs identified in AD brains that were predicted to be deleterious, and all of the 10 
frameshift sIndels in the “sensitive” list. Thirty-five of 39 (90%) tested sSNVs and 8 of 10 (80%) 
sIndels successfully validated in newly extracted DNA samples from the corresponding PFC 
samples, confirming the high accuracy of our somatic mutation calling strategy even for those 
with MAFs as low as 0.1% (Extended Data Fig. 2e-g). 

With similar sequencing depth and coverage between AD and control PFC samples 
(Extended Data Fig. 2a-b), the stringent pipeline revealed that AD brains harbored significantly 
more sSNVs among the 149 targeted genes than aged-matched controls (Fig. 3a; p = 0.008, two-
tailed proportion test; OR = 1.6). When using the sensitive pipeline, which allows recurrent 
mutations, the sSNV increase in AD brains became even more significant (Fig. 3b; p = 0.001, 
two-tailed proportion test; OR = 1.3), and this pattern remained significant after controlling for 
confounding factors including sex, age, sequencing coverage, and post-mortem interval (Fig. 3c; 
p = 0.03, linear regression).  

In addition to the increased sSNV in AD, we also found age as an independent factor 
positively correlated with the sSNV burden (Fig. 3c; p = 0.002, linear regression) and the 
proportion of sSNV carriers (Extended Data Fig. 3c), suggesting a likely age-associated 
accumulation of somatic mutations in proliferation-related genes in both normal and diseased 
brains. Previous studies highlighted the age-related accumulation of low-MAF (<1-5%) somatic 
mutations in cancer driver genes in blood39. Our finding about age-related accumulation in brain 
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is consistent with a recent study using deep whole-genome sequencing of a smaller sample40, 
though our study was not designed to specifically test this. We observed that APOE4 carriers 
tend to have more sSNV than non-carriers in both AD and control groups, though this pattern did 
not reach statistical significance (Extended Data Fig. 3d; p = 0.09, linear regression). 

Interestingly, when we divided cancer driver genes into (proto-)oncogenes and tumor 
suppressor genes (TSGs), we observed a greater sSNV burden in AD for TSGs but not for 
oncogenes (Fig. 3d). Considering that TSGs lead to proliferation when they are inactivated by 
loss-of-function mutations throughout the gene body, but oncogenes are usually only activated 
by specific, recurrent, gain-of-function alleles affecting critical domains, our results suggested 
that most sSNVs are associated with AD by a loss-of-function of TSGs. Besides sSNV, we also 
observed more frameshift sIndels in AD brains (5 in AD versus 2 in control; Supplementary 
Table 5), though this enrichment did not reach significance in this small sample size. 

Examination of the mutation burden at the individual-gene level revealed that somatic 
mutations in the top 10 most commonly mutated genes were found in 39% of the AD patients 
compared to only 20% of the aged controls (Fig. 3e); brain samples carrying mutations in 
multiple genes were exclusively found in the AD cohort but not in controls (p = 0.0002, 
hypergeometric test). Five “hotspot” genes—TET2, ASXL1, KMT2D, ATRX, and CBL—harbored 
nominally more somatic mutations in AD brains than controls (Fig. 3e; p < 0.05, one-tailed 
proportion test), though these individual gene burdens were not significant after multiple 
hypothesis testing correction for 149 genes. All “hotspot” genes represent critical TSGs and have 
been widely implicated in various cancers41 and CH42. Most AD somatic mutations in ASXL1 
were nonsense mutations broadly distributed across the encoded protein, including two recurrent 
alleles observed in multiple AD patients, similar to what is seen in ASXL1 mutations in CH 
events of blood; AD patients showed missense mutations in TET2 that clustered in its critical 
oxygenase domains (Fig. 3f), a similar mutational pattern to that seen in CH (Extended Data Fig. 
3e) but not seen in aged controls. Somatic mutations in AD brains showed significantly higher 
MAFs than did mutations in control brains, especially in the five hotspot genes, where the 
average MAF was 40% increased, suggesting that many somatic mutations found in AD drive 
the clonal expansion of cells that carry them to a greater extent than in control brains (Fig. 3g). 
To further validate this, we examined the signal of positive selection for these mutations and 
found that somatic mutations in AD brains experienced stronger positive selection in AD brains, 
evidenced by elevated dN/dS ratios (Fig. 3h-i) as well as a greater abundance of positively 
selected cell (Fig. 3j). In addition to individual genes, we observed that AD patients had 
significantly more somatic mutations in PI3K-PKB/Akt pathway genes than controls (Extended 
Data Fig. 3f; p < 0.05, one-tailed proportion test), a pathway that has been previously suggested 
to be enriched with somatic mutations in AD brains28. Overall, our panel sequencing results 
revealed more frequent somatic mutations in cancer driver genes of AD brains, highlighting their 
potential roles in driving the clonal expansion of certain proliferating cell types during AD 
pathogenesis. 

 
Microglia enrichment of proliferation-related somatic mutation 

The overlap of many specific driver genes mutated in AD with those implicated in clonal 
blood disorders suggested that microglia, which share a very early lineage with peripheral 
myeloid cells, might be the carrier cells of these mutations in AD brains. To test this, we 
developed a fluorescence-activated nuclei sorting (FANS) method to specifically isolate 
microglial nuclei from frozen postmortem brain tissues using an antibody targeting CSF1R 
(Extended Data Fig. 4a), a well-known cell surface marker for microglia whose nuclear 
localization and function have been recently reported43. Our subsequent snRNAseq (Fig. 4a) and 
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ddPCR (not shown) results confirmed that >75% of sorted nuclei belonged to the microglial 
cluster in both AD and control brains, verified by expression of microglia marker genes 
including CX3CR1, TMEM119, and P2RY12 (Extended Data Fig. 4b). Interestingly, another 4-
9% of the nuclei were classified as CNS-associated macrophages (CAMs; Fig. 4a and Extended 
Data Fig. 4b), a recently identified class of brain-resident myeloid cells with high expression of 
MS4A7 and MRC144, while the remaining cells represented scattered neural cells or pericytes. 
Both microglia and CAMs are brain-resident macrophages predominantly derived from 
erythromyeloid progenitors during embryogenesis45, but recent studies also report a contribution 
of hematopoiesis-derived immune cells to the brain macrophage pool in adulthood46,47.  

We selected 7 sSNVs and 4 sIndels identified from AD brains, all of which were 
predicted to be deleterious for critical oncogenes or TSGs, and found a marked enrichment of 
these mutations in the sorted microglial fraction. We measured the MAF of each somatic 
mutation in four different populations of sorted cells using amplicon sequencing: microglia 
(CSF1R+), neurons (NeuN+), glia and other nonneuronal cells (NeuN-), and all cells (DAPI+). 
All ten sSNVs in TSGs were enriched (4- to 438-fold) in microglia when compared to neurons 
sorted from the same brain sample (Fig. 4b and Extended Data Fig. 4c). For a splicing sSNV in 
DNMT3A (c.1429+1G>A) and two deleterious missense sSNVs in TET2 (p.Pro1194Ser and 
p.Val1371Asp), we observed >10% MAFs in microglia, dramatically higher than the MAFs 
observed in neurons and other mixed cell populations (Fig. 4c; p < 0.05, two-tailed Wilcoxon 
test), suggesting that mutant cells constitute >20% of all microglia in the sample. The last tested 
sSNV, in the oncogene FGFR1 (p.Arg506Gln), is a non-recurrent mutation predicted to cause 
decreased activation of this oncogene, and was not enriched in microglia. Interestingly, this same 
AD PFC sample harbored a variant in a TSG gene (DNMT3A (c.1429+1G>A)) that was almost 
exclusively present in microglia, suggesting that these two variants originated in different 
lineages (Extended Data Fig. 4c), but also showing that all tested variants predicted to confer a 
proliferative advantage were enriched in microglia. Tested mutations were detected in up to 40% 
of PFC microglia in carrier brains, implying that they provide strong survival and/or proliferative 
advantages over microglia that do not carry the mutation. 

Analysis of matched blood DNA showed that 10 of the 10 mutations enriched in 
microglia were also present in blood, with a trend towards a positive correlation between MAFs 
in microglia and blood (p = 0.052, Pearson correlation; Fig. 4d and Extended Data Fig. 4d). We 
confirmed minimal blood contamination in unsorted bulk brains (as measured by RNA-seq 
analysis) and in the sorted microglial nuclei (Fig. 4a and Extended Data Fig. 4b) as a cause of 
this shared presence, but our results do not distinguish between a shared lineage, or migration of 
myeloid or microglial cells into or out of the brain. 

 
Mosaic chromosome alterations in AD snRNAseq data 

To explore the effects of somatic mutations in microglia in Alzheimer’s disease, we 
utilized a recent high-quality snRNAseq dataset of middle temporal gyrus neocortex samples 
obtained from AD donors and age-matched controls, the Seattle Alzheimer’s Disease Brain Cell 
Atlas (SEA-AD). Due to the high degree of transcriptional noise and sparsity within snRNAseq 
data, there is no tool available to our knowledge that can reliably call sSNVs without matched 
DNA-seq48. However, several methods have been successful at identifying mosaic chromosomal 
alterations (mCAs), from snRNAseq data49-51. Since recurrent mCA has also been associated 
with CH and other myeloid overgrowth syndromes10,11, generally disrupting specific genes also 
mutated by sSNV, we hypothesized that AD brains would also carry mCA in microglia-CAMs.  

We extracted cells that were annotated as microglia-perivascular macrophages (a subtype 
of CAMs, hereby called microglia-CAMs) or were identified as microglia-CAMs through 
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automatic cell-typing with scType (Extended Data Fig. 5a-b and Supplementary Table 6), and 
then called microglia-CAM-specific mCAs within SEA-AD using CONICSmat49 for all 
individuals with a consensus clinical diagnosis of AD (n = 31) or healthy, age-matched controls 
(n = 31) (Supplementary Table 7). We also called mCAs in excitatory neurons (ExNs), 
astrocytes, oligodendrocytes, or oligodendrocyte precursor cells (OPCs) and retained only mCAs 
that were not called in any of these other cell types from the same donor and which passed 
several stringent filtering criteria (Materials and Methods and Extended Data Fig. 5c). 

AD brains harbored nominally more mCAs (4 in AD versus 1 in control; Fig. 5a) and 
nominally 8-fold more mCA-carrying microglia-CAMs (Fig. 5b; p = 0.06, permutation test), 
though as expected, the SEA-AD sample size was too small for these differences to reach 
statistical significance. When we analyzed microglia and CAM separately, we observed a 
stronger trend in microglia than CAMs (Fig. 5c; p = 0.07 and 0.11, permutation test). We also 
observed an increasing trend of mCA in AD individuals versus controls in astrocytes, but not in 
oligodendrocytes, OPCs, and ExNs (Fig. 5c and Supplementary Table 7), perhaps relating to the 
widespread astrogliosis reported in AD52.  

 
Transcriptional effect of somatic mutations in AD microglia 

While the SEA-AD sample size is too small to demonstrate independent enrichment of 
mCA in microglia, they are certainly consistent with this, and allowed analysis of the 
transcriptional effects of mCA in microglia, by creating an integrated snRNAseq atlas of 
microglia-CAMs identified across AD cases and controls (Extended Data Fig. 6) and identifying 
differentially expressed genes (DEGs) between mutant and wild-type microglia-CAMs from 
mCA-carrying AD brains (Fig. 5d and  Supplementary Table 8). Using gene ontology (GO) 
enrichment analysis, we found that DEGs with increased expression in mutant microglia were 
enriched (adjusted p < 0.05, hypergeometric test) for several terms related to immune activation 
and signaling, suggesting that mutant microglia may upregulate pro-inflammatory pathways (Fig. 
5e and Supplementary Table 8).  

A recent study identified transcriptional signatures of microglial states in human stem-
cell differentiated microglia that emerge in response to various CNS challenges, such as 
apoptotic neurons, amyloid-beta fibrils, and myelin debris53. We used these signatures to further 
characterize the microglial state associated with mCAs. Using a hypergeometric test for 
enrichment, we found marginally significant overlap between DEGs that are upregulated in 
mutant microglia and genes associated with the DAM state (Fig. 5f and Supplementary Table 8; 
p = 0.04). DAMs are specifically enriched in AD brains and have been posited to play a role in 
modulating the neuroinflammatory response to neurodegeneration3,54, suggesting that microglia 
with mCA may share a similar phenotype in AD.  

 
Discussion 

Our results from three independent AD cohorts, using three orthogonal approaches, 
revealed a consistently greater burden of somatic mutations in AD cerebral cortex samples when 
compared to matched controls, suggesting that brain somatic mutation is associated with AD. 
These somatic mutations were enriched in proliferation-related genes that have been widely 
implicated in cancer and pre-cancerous conditions, with higher MAFs and stronger positive 
selection in AD brains, implying their roles in clonal expansion of mutant cells. This was also 
supported by the enrichment of AD cases with multiple CH-associated sSNVs. We further 
confirmed that many mutations were specifically present in microglia, and potentially CAMs. 
Finally, using snRNAseq analysis we found that microglia carrying mCAs associated with clonal 
overgrowth syndromes showed pro-inflammatory and disease-associated transcriptional 
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signatures compared to wild-type counterparts. While we cannot formally rule out that clonal 
expansion of mutant microglia represents only a secondary response to proliferative signals in 
AD brain, the DAM-related signature associated with mCA resembles effects of CH mutations in 
blood myeloid cells that increase the risk of myocardial infarction and stroke while activating 
immune cascades including IL1ß, IL6, and others56. These similarities suggest analogous roles of 
microglial mutations in AD that would likely promote neuronal degeneration57.  

Two recent studies correlating CH mutations in blood with AD risk found no effect58 or a 
surprising protective effect of blood CH on AD59. Although many methodological differences 
exist between those blood studies and our brain study (Supplementary Discussion), the varying 
results highlight the complexity and limitations of our current understanding of the relationship 
between myeloid cells and microglia. Bouzid et al.59 and we both found that microglial driver 
mutations were typically shared in the blood of the same individual, as did a small earlier study 
that also found cancer driver mutations in AD brain27. Since somatic driver mutations that lead to 
blood cancer, when dated by lineage analysis, often arise before birth60, MiCE mutations may 
occur in early progenitors of microglial and blood lineages. Under this assumption, microglia 
carrying the same driver mutations may clonally expand in brain independently from blood. 
Alternatively, recent studies show that myeloid cells from blood can enter the brain when there is 
dysfunction of the blood-brain barrier (BBB), an early feature of AD61, and can differentiate into 
microglia-like cells62. Others have reported that monocytes can enter the brain and form 
microglia-like cells even independent of BBB disruption46,47. Thus, BBB changes may be a 
critical feature that might promote access of mutant myeloid cells to the CNS. Conversely, 
activated microglia can form perivascular clusters in neurodegeneration as a result of BBB 
breakdown63,64 which might allow mutant brain microglial cells access to enter the bloodstream.  

Our results suggest that microglia are the major cell type carrying somatic driver 
mutations. Although our FANS results cannot completely exclude CAMs also carrying these 
somatic mutations, our CSF1R+ cell population contained 3% and 9% CAMs in AD and control 
brains, respectively (Fig. 4a), and 5 of the 11 somatic mutations represented >10% cell fractions 
in the sorted microglial nuclei of AD brains, including the TET2 p.Pro1194Ser variants with 
>40% cell fraction. This high MAF seems inconsistent with the mutation being limited to blood-
derived macrophages even assuming all CAMs came from the blood myeloid lineage.  

Our analysis highlighted five hotspot genes as well as the PI3K-PKB/Akt pathway 
(including a PIK3CA p.His1047Leu activating mutation and three loss-of-function mutations in 
TSC1/2) that were recurrently disrupted by somatic mutations in AD brains. Drugs targeting such 
genes have been widely used to treat cancer65,66, thus they might serve as potential therapeutic 
agents to suppress somatic-mutation-activated microglia and ultimately neurodegeneration in 
AD. Since the role of disease-associated microglia in neuronal loss and dysfunction may be a 
common feature shared across many neurodegenerative diseases as well as in age-associated 
cognitive decline, studying somatic mutation in AD may provide an important new approach to 
understanding the pathogenic mechanisms of dementia and other neurodegenerative conditions.  
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Fig. 1. Overview of the experimental and analysis strategies. a, Transcriptome-wide screen of 
sSNVs among 886 bulk RNA-seq data sets of AD and control brain samples. Somatic mutations 
were called by RNA-MosaicHunter. MCI, mild cognitive impairment; NCI, no cognitive 
impairment. b, Profiling sSNVs and sIndels in 311 AD and control PFC samples using deep 
molecular barcode sequencing with a panel of 149 cancer driver genes. Mutation candidates were 
validated by amplicon sequencing and their mutant allele fractions were measured in different 
FANS-sorted nuclei populations. c, Identification and transcriptomic profiling of microglia in 
AD and control brain single-nucleus RNA-seq samples carrying mCA.   
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Fig. 2. RNA-MosaicHunter reveals elevated burden of somatic mutations in the cerebral 
cortex of AD patients. a-b, Benchmarking the performance of RNA-MosaicHunter using the 
TCGA cancer data. 513 of 613 sSNVs identified by RNA-MosaicHunter were confirmed by 
MuTect in the matched DNA-seq data (filled circle in a). RNA-MosaicHunter recaptured 65 
sSNVs that are present in DNA-seq but missed by MuTect (open circle in a; grey bar in b). TP, 
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true positive; FN, false negative; FP, false positive. c-d, Greater mutation burden in cerebral 
cortex samples of AD patients when compared to matched controls. A significant two-fold 
increase of sSNV density in AD prefrontal cortex and temporal cortex was consistently found in 
both ROSMAP (c) and MayoRNAseq (d) cohorts. The burden increase was not observed in the 
AD cerebellum. CI, cognitive impairment. e, Linear regression modeling confirms that the sSNV 
increase in AD brains remains significant after controlling for potential covariates. PMI, post-
mortem interval. f, Gene Ontology terms enriched for AD sSNVs. Genes regulating cell cycle 
and proliferation are specifically enriched for AD but not control sSNVs. c-e, Error bar, 95% CI.  
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Fig. 3. Elevated burdens of somatic mutations in cancer driver genes in AD brains. a-b, AD 
prefrontal cortex samples harbor significantly more sSNVs in 149 targeted cancer driver genes 
than matched controls, using both the sSNV list of stringent (a) and sensitive (b) identification 
pipelines. The sensitive list additionally contains recurrent sSNVs if they were specifically 
enriched in the AD or control groups. c, Linear regression modeling confirmed that the AD 
effect on greater sSNV burden remains significant (p = 0.03) after controlling for potential 
confounding factors. In addition to AD status, age is also positively correlated with the sSNV 
burden (p = 0.002). d, The significant increase of sSNV burden in AD brains was only observed 
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for tumor suppressor genes (TSGs) but not for (proto-)oncogenes. e, Top 10 recurrently mutated 
genes in AD and control brains. Different types of protein-altering sSNV and sIndel are shown in 
various colors, where “multiple hits” (black) denotes multiple protein-altering mutations in the 
same gene. Asterisks denote the five “hotspot” genes that contain significantly more somatic 
mutations in AD patients than matched controls (p < 0.05, one-tailed proportion test). Triangles 
highlight individuals that carry mutations in multiple genes. f, Distribution of somatic mutations 
in two AD hotspot genes, TET2 and ASXL1. The color and height of each lollipop denote the 
mutation type and the number of carrying individuals. g, Somatic mutations in AD brains 
showed significantly higher allele fractions than controls (two-tailed t-test), with a larger 
increase when only considering TSGs or AD hotspot genes, suggesting the clonal expansion of 
cells that carry the somatic mutations. The increase in allele fraction was calculated using the 
ratio of medians between AD and control groups. Boxplots show median and the first and third 
quartiles, with whiskers denoting 1.5 * IQR from hinges. h, Positive selection of individual 
genes in AD and control somatic mutations. Y-axis denotes p-value for testing if the gene’s 
dN/dS ratio is higher than 1, with Benjamini-Hodgberg’s multiple hypothesis testing correction. 
DNMT3A, ASXL1, and TET2 show significant positive selection in AD brains, stronger than in 
control brains. i, dN/dS ratios across all the 149 targeted genes, in which the rates of all protein-
altering mutations, missense mutations, nonsense mutations, and splicing mutations are 
compared with the background neutral rate estimated by synonymous mutations. Asterisks 
denote p-value < 0.05. j, AD brains harbor more positively selected cells than control brains, 
especially when we only consider somatic mutations in AD hotspot genes. The number of 
positively selected cells was inferred based on the gene-specific dN/dS ratio, the count of 
somatic mutation per sample, and the average MAF (see details in Methods). a-d and i, Error 
bar, 95% CI.  
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Fig. 4. Deleterious somatic mutations are enriched in microglial clones of AD brains. a, 10X 
snRNAseq confirms the high purity and unbiased representation of microglia in CSF1R+ nuclei 
sorted from AD and control PFC samples. Clustering results suggest about 80% of the sorted 
nuclei are microglia (red), whereas another 3-9% are CNS-associated macrophages (CAMs, 
orange). Minimal blood cell contamination is confirmed with up to 1% monocytes and the 
absence of B cells, T cells, and red blood cells. OPC, oligodendrocyte progenitor cell. b, The 
ratios of mutant allele fractions between sorted microglial and neuronal nuclei of the same AD 
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brains, estimated by amplicon sequencing. Ten of the 11 profiled AD somatic mutations 
demonstrated at least 4X microglial enrichment. c, Four somatic mutations in CH-associated 
genes as examples show significantly higher allele fractions in microglia than the fractions in the 
other three populations (p < 0.05, two-tailed Wilcoxon test), suggesting their microglial origins. 
Each nuclei population was sorted four times from each AD brain sample to serve as replicates. 
Error bar, SE. d, All but the FGFR1 mutations are shared between microglia and whole-blood 
samples of the same individual, indicating a common origin of these somatic mutations.   
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Fig. 5. mCAs in AD microglia are associated with a pro-inflammatory, disease-related 
signature. a, Microglia from AD brains contain nominally more mCAs associated with 
hematopoietic overgrowth syndromes compared to age-matched controls, even in this small 
sample (N = 31 each). Triangles highlight an individual with multiple mCAs. b, AD brains show 
a trend (p = 0.06, permutation test) towards a higher fraction of mCA-carrying microglia than 
age-matched controls. c, Odds ratios of mCA-carrying cells between AD and control individuals 
across different cell types. Microglia-CAM (p = 0.06) and microglia (p = 0.07) have the smallest 
nominal p-values in permutation test compared to CAMs (p = 0.11), astrocytes (p = 0.09), 
oligodendrocytes (p = 0.50), OPC (p = 0.40), and ExN (p = 0.99). OPC, oligodendrocyte 
progenitor cell. ExN, excitatory neuron. d, Volcano plot shows differentially expressed genes 
between AD donor microglia-CAMs with and without mCA. Positive fold-change indicates 
upregulation in microglia-CAMs with mCA. DAM-associated upregulated genes are colored red. 
e, Significantly (adjusted p < 0.05, hypergeometric test) enriched gene ontology terms for genes 
upregulated in microglia-CAMs with mCA. f, Enrichment of microglial state modules53 among 
genes upregulated in microglia-CAMs with mCA. Significant enrichments implicate 
inflammation and the DAM transcriptional state.   
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Extended Data Fig. 1. Identification and functional annotation of sSNVs in RNA-seq data. 
a, Mutation type and tri-nucleotide context of sSNVs. T-to-C (A-to-G) candidates were ignored 
because they were more likely to be RNA-editing sites widespread in the human genome. b, 
Similar sequencing depth between the AD and control brain samples in each AD cohort. The 
overall higher depth in MayoRNAseq may explain the higher base-line mutation burden in 
control brain samples than ROSMAP. Boxplots show median and the first and third quartiles, 
with whiskers denoting 1.5 * IQR from hinges. c, Genic annotation and functional impact 
prediction of sSNVs identified from AD and control brain samples. d, AD brains had 
significantly more deleterious sSNVs than controls (p = 0.047, linear regression) after controlling 
for potential confounding factors. e, Absent expression of blood marker genes in snRNAseq of 
unsorted ROSMAP brains confirmed minimal blood contamination. f, The AD increase was 
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consistently significant when the proportion of blood cell types indicated by the expression of 
marker genes was additionally considered in the linear regression model. RBC, red blood cell. 
d,f, Error bar, 95% CI.  
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Extended Data Fig. 2. Benchmarking and validation results of sSNVs and sIndels identified 
from panel sequencing. a-b, Comparable sequencing depth (a) and coverage (b) between AD 
and control PFC samples, calculated based on the consensus reads after UMI-based read 
collapsing. c-d, Detection sensitivity (c) and accuracy of allele fraction estimation (d) for our 
panel sequencing and somatic mutation identification pipeline, benchmarked by in vitro mixture 
of the DNA samples of two unrelated individuals with varied genome ratios. Error bar, SD. e-f, 
Amplicon sequencing validation confirmed high accuracy for identified sSNVs and sIndels in 
AD and control samples (e). Somatic-I mutations are those with mutant allele fractions at least 
3X larger than the fractions of the other two error alleles of the same genomic position, whereas 
somatic-II are those that were further validated by comparing their mutant allele fractions in a 
negative control sample (f). Error bar, SE. g, Mutant allele fraction of validated somatic 
mutations between panel sequencing (discovery) and amplicon sequencing (validation). 
Amplicon sequencing was performed using newly extracted DNA from the corresponding brain 
sample, therefore the allele fractions could be varied between the discovery and validation 
stages.  
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Extended Data Fig. 3. Identification and functional annotation of sSNVs in panel 
sequencing data. a, Mutation type and tri-nucleotide context of sSNVs. b, Genic annotation and 
functional impact prediction of sSNVs identified from AD and control PFC samples. c, The 
proportion of somatic mutation carriers increases with age. AD patients had a significantly larger 
proportion of carriers with somatic mutations in AD hotspot genes than matched controls (p = 
5.6e-5, linear regression). d, APOE4 carriers tend to have higher burden of sSNVs than non-
carriers in both AD and control groups (p = 0.09, linear regression). e, Similar distributions 
between somatic mutations identified in AD brains and previously reported CH-associated 
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mutations in blood. f, Genes in the PI3K-PKB/Akt pathway contained significantly more somatic 
mutations in AD brains (12% of AD samples vs 7% of control samples; p < 0.05, one-tailed 
proportion test).  
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Extended Data Fig. 4. Microglial purity and mutant allele fraction of FANS-sorted nuclei 
population. a, Selectively isolated microglia from frozen brain tissues using FANS with an 
antibody targeting epitopes of CSF1R, a gene highly expressed in microglia. b, Marker gene 
expression profile for 10X single-nucleus RNA-seq of CSF1R+ sorted nuclei. Each column 
represents a single nucleus, clustered by PCA based on their expression similarity. About 75-
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77% of the sorted nuclei are microglia with high expression of CX3CR1, TMEM119, and 
P2RY12, whereas another 4-9% are CNS-associated macrophages (CAMs). Markers for blood 
cell types (HBA1: red blood cell; CD3E: T cell; CCR7: B cell; FCN1: monocyte) confirm the 
minimal presence of blood cells in sorted nuclei. CNS, central nervous system. AD microglia 
showed generally reduced expression of CX3CR1 and P2RY12, consistent with previous findings 
in AD3. c, Mutant allele fractions across different sorted nuclei populations for all the 11 profiled 
AD somatic mutations. Four mutations are shown in Fig. 4c as examples. In all but the FGFR1 
mutation, we observed significantly higher allele fractions in microglia than in neurons (NeuN+). 
Each population of nuclei was sorted four times from each AD brain sample to serve as 
replicates. Error bar, SE. d, The correlation of mutant allele fractions between blood and three 
nuclei populations (NeuN+, NeuN-, and DAPI+) sorted from matched brain samples.  
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Extended Data Fig. 5. mCA burden analysis in microglia-CAMs and identification of 
additional microglia-CAMs with scType. a, Schematic representation of supervised learning 
framework and quality-control metrics used to detect additional high-quality microglia-CAMs 
from SEA-AD. b, scType’d and pre-annotated microglia-CAMs show similar marker gene 
expression profiles, with specific expression of microglia and CAM marker genes. c, Examples 
of mCA called in two AD individuals, H21.33.017 (chr13p13-31 deletion) and H21.33.010 
(chr22 amplification). Normalized median ratio of expression in mCA-carrying cells versus non-
carrying cells displayed per chromosomal region, with chromosome size proportional to number 
of expressed genes in microglia-CAMs from that chromosome.  
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Extended Data Fig. 6. Integrated snRNAseq atlas of microglia-CAMs in AD and healthy 
controls. UMAP visualization of covariates of interest does not reveal significant clustering by 
individual ID, nFeature, or nCount, consistent with successful integration across samples. 
Microglia and CAMs (with high MRC1 expression) separate into distinct clusters.  
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Extended Data Fig. 7. The odds ratio of AD enrichment for sSNVs with different MAF 
cutoffs. When we consider all the 149 genes targeted by the panel sequencing, we observe a 
consistent trend of AD enrichment even for sSNVs with 5% or more MAF. In comparison, when 
we only consider deleterious somatic mutations in CH-associated genes, the odds ratio becomes 
smaller than 1 when MAF is larger than 4% though with a very large confidence interval. The 
dashed line represents the odds ratio of 1, and odds ratios larger and smaller than 1 denote the 
enrichment and depletion of sSNV in AD, respectively.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.574078doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

Captions for online supplementary tables 

Supplementary Table 1. RNA-seq sample information and summary. PMI, post-mortem 
interval. 

Supplementary Table 2. sSNV candidates identified from RNA-seq samples. sSNVs of 
ROSMAP and MayoRNAseq samples are listed in separate tabs. 

Supplementary Table 3. List of 149 cancer driver genes in panel sequencing. TSG, tumor 
suppressor gene. 

Supplementary Table 4. Panel sequencing sample information and summary. PMI, post-
mortem interval. 

Supplementary Table 5. sSNV and sIndel candidates identified from panel sequencing 
samples. sSNVs and sIndels called by the stringent and sensitive pipelines are listed in separate 
tabs. 

Supplementary Table 6. snRNAseq sample and cell-type annotation information and 
summary.  

Supplementary Table 7. mCA candidates identified from snRNAseq samples.  

Supplementary Table 8. Differential expression and functional annotation results between 
mutant and wild-type microglia-CAMs from mCA-carrying AD individuals.  Pct.1, 
expression in microglia-CAM carrying mCA. Pct.2, expression in microglia-CAM that do not 
carry mCA.   
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Methods: 

Sample information 

Our study involves samples and sequencing data from three large-scale Alzheimer’s disease 
(AD) studies, ROSMAP,  MayoRNAseq, and SEA-AD. The ROSMAP study consists of two 
prospective studies of aging, The Religious Order Study (ROS) and the Memory and Aging 
Project (MAP), in which the participants were enrolled by the Rush Alzheimer's Disease Center 
with detailed cognitive and neuroimaging phenotyping as well as structured neuropathologic 
examination during the autopsy at the time of death1. The MayoRNAseq study performed 
detailed clinical phenotyping and multi-omic profiling for 278 participants collected by the Mayo 
Clinic Brain Bank and Banner Sun Health Research Institute2. The SEA-AD study performed 
single-cell multi-omics, quantitative neuropathology, and deep clinical phenotyping on post-
mortem brain tissue from 84 aged donors and 5 additional younger neurotypical controls 
collected at the University of Washington BioRepository and Integrated Neuropathology 
laboratory and Precision Neuropathology core. Postmortem samples in all studies were collected 
and de-identified following the protocol of the corresponding Institutional Review Board with 
informed consent. The diagnosis of AD was based on the consensus conclusion from all 
postmortem data generated by neurologists with expertise in dementia and neurodegeneration. 

The RNA-seq bam file and the vcf file of germline mutation calls from matched whole-genome 
sequencing data generated by the ROSMAP and MayoRNAseq studies were downloaded from 
the AMP-AD Knowledge Portal, along with the detailed demographic and clinical information 
for each sample. The raw single-nucleus RNA sequencing (snRNAseq) .h5 matrices for SEA-AD 
and corresponding clinical and technical metadata were also downloaded from AMP-AD 
Knowledge Portal. Supplementary Table 1 and 6 summarized all the bulk and single-nucleus 
brain RNA-seq samples analyzed for somatic mutation calling. The ROSMAP dataset consists of 
the prefrontal cortex (PFC) samples of 228 AD patients and 338 age-matched controls with no or 
mild cognitive impairment collected by the ROSMAP project. The MayoRNAseq dataset 
consists of the temporal cortex and cerebellum samples from 92 AD patients and 82 age-matched 
controls collected by Mayo Clinic, most of whom have RNA-seq from both the temporal cortex 
and cerebellum samples. The SEA-AD dataset consists of the middle temporal gyrus of temporal 
cortex from 31 AD patients and 32 age-matched controls. In each dataset, the AD and control 
samples showed similar distributions in sex, age, post-mortem interval, and sequencing depth 
(Supplementary Table 1 and 6). 

In addition to access to the sequencing data, we obtained genomic DNA (gDNA) from 190 AD 
patients and 123 controls without cognitive impairment from ROSMAP for panel sequencing 
(Supplementary Table 4), though this donor list has minimal overlap with the donor list of the 
brain RNA-seq dataset due to the limited sample availability. Additional dorsolateral PFC brain 
samples and gDNA from peripheral blood samples were also obtained from ROSMAP to 
confirm the presence of somatic mutation and further study the cell type identity of mutation-
carrying cells. 

 

Design of RNA-MosaicHunter 
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Compared to DNA-seq data, RNA-seq data has unique features that need to be addressed for 
somatic mutation calling. First, the exon-intron structure in mRNA requires the spliced 
alignment of RNA-seq reads onto the human reference genome, which increases the chance of 
alignment errors when the overhang sequence is relatively short3. Second, the widespread 
adenosine-to-inosine (A-to-I) RNA editing sites across the human genome4 are indistinguishable 
from A-to-G somatic mutations in RNA-seq data, because inosine will be recognized as guanine 
(G) in Illumina sequencers. Third, the allele-specific expression5, a phenomenon that the paternal 
and maternal alleles have different expression levels, is observed in many autosomal and X 
chromosome genes, which can lead to deviated allele fraction estimation in RNA-seq data. 

To address these technical issues, we developed RNA-MosaicHunter, which was derived from 
MosaicHunter6,7, a bioinformatic tool designed to identify somatic single-nucleotide variants 
(sSNVs) in DNA-seq data. RNA-MosaicHunter consists of two major components, a Bayesian 
genotyper to distinguish real mutations from base-calling errors, followed by a series of 
empirical error filters to remove artifacts introduced from various sources (Fig. 1a). In the 
Bayesian genotyper, G denotes the genotype state, π denotes the prior probability of each 
genotype inferred from the population mutant allele fraction palt and default somatic mutation 
rate pm, and d, q, and o denote the depth, base qualities, and bases for calculating genotype 
likelihoods from the observed sequencing data. Since the mutant allele fraction in RNA-seq data 
can be affected by allele-specific expression, we considered the posterior probability of both 
germline heterozygous mutation and somatic mutation in our list of mutation candidates for 
subsequent error filters, and further distinguished somatic mutations from germline heterozygous 
mutations by using the genotyping results from matched whole-genome or whole-exome 
sequencing data obtained from the same individual. In addition, RNA-MosaicHunter also 
incorporated other filters to exclude 1) candidates with less than 5% mutation allele fraction or 
less than 5 mutant-supporting reads; 2) candidates that are in repetitive and homopolymer 
regions; 3) candidates that have a significant bias in strand, mapping quality, or within-read 
position between the reference and mutant alleles; 4) candidates that show complete linkage to 
adjacent candidates on the same read or read pairs, which is more likely to be caused by 
alignment errors; 5) candidates that are supported by more than 50% of the “high-quality” reads 
after confirming the alignment by a second aligner and masking bases adjacent to the start, end 
or spliced junctions of each read; 6) candidates that are recurrently present in the RNA-seq data 
of more than two unrelated individuals. The source code and default configuration file of RNA-
MosaicHunter are publicly available at https://gitlab.aleelab.net/august/rna-mosaichunter.git, and 
it supports users to customize parameters that are used in the Bayesian genotyper and empirical 
error filters. 
 

Somatic calling from RNA-seq data 

Each downloaded RNA-seq bam file was first converted back to the fastq format by Picard 
(v1.138) and then aligned to the GRCh37 human reference genome by STAR (v2.5.0a)8 in the 
two-pass mode, where the reference gene annotation (Gencode version 19) was used in the first 
pass and then a sample-specific annotation generated from the first pass was used in the second 
pass. The aligned reads were processed by Picard (v1.138) to remove duplicates, followed by 
SplitNCigarReads, indel realignment, and base quality recalibration of GATK (v3.6)9. Reads that 
were improperly paired or with ambiguous alignment were removed, and only genomic positions 
covered by 10 or more reads were subject to RNA-MosaicHunter. To exclude A-to-I(G) RNA 
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editing sites, we only considered non-A-to-G candidates from the output of RNA-MosaicHunter. 
We further excluded non-exonic candidates and candidates that are present in the polymorphism 
databases of the general human population including dbSNP10, the 1000 Genomes Project11, the 
Exome Sequencing Project12, and the Exome Aggregation Consortium13.  

 

Benchmarking of RNA-MosaicHunter 

RNA-seq and whole-exome sequencing data of 19 esophageal carcinoma samples as well as 
whole-exome sequencing data of their matched normal samples were downloaded from The 
Cancer Genome Atlas (TCGA) Research Network14. The list of 19 esophageal carcinoma 
samples is: TCGA-L5-A4OF-01A, TCGA-V5-A7RC-01B, TCGA-LN-A4A1-01A, TCGA-IG-
A97I-01A, TCGA-L5-A8NE-01A, TCGA-JY-A93C-01A, TCGA-LN-A49M-01A, TCGA-IG-
A3YB-01A, TCGA-LN-A49Y-01A, TCGA-L5-A8NN-01A, TCGA-LN-A49L-01A, TCGA-LN-
A9FQ-01A, TCGA-L5-A4OR-01A, TCGA-LN-A8I1-01A, TCGA-L5-A891-01A, TCGA-L7-
A6VZ-01A, TCGA-LN-A4A4-01A, TCGA-LN-A5U5-01A, TCGA-L5-A4OJ-01A. 

Somatic mutation calls created by the Broad Institute through the comparison of tumor and 
matched normal whole-exome sequencing pairs using MuTect15 were also downloaded. A total 
of 851 non-A-to-G, autosomal, exonic, tumor-specific somatic mutations were called from the 19 
tumor samples and covered by 10 or more reads in tumor RNA-seq data. This callset served as 
the gold standard for benchmarking our RNA-seq somatic mutation calling pipeline. We applied 
our calling pipeline to 19 esophageal tumor RNA-seq profiles, without applying a filter for 
removing recurrent candidates because these tumor samples may share common driver 
mutations, and identified 613 non-A-to-G somatic mutations. 

By comparing the RNA-MosaicHunter callset with the gold standard, we found that RNA-
MosaicHunter successfully identified 499 out of 851 MuTect-called mutations, equivalent to a 
sensitivity of 59% (Fig. 2b). On the other hand, among 613 RNA-MosaicHunter-called 
mutations, 513 were confirmed by the MuTect calls while 65 mutations were missed by MuTect 
but showed reads with 2% or more mutant allele fractions in the DNA-seq data, suggesting an 
overall precision of 94% for RNA-MosaicHunter (Fig. 2a-b).  

 

Neuronal proportion estimation 

To estimate the proportion of neurons and other brain cell types in bulk brain RNA-seq data of 
ROSMAP and MayoRNAseq, we applied CIBERSORT (v1.05)16 to deconvolute the cell-type 
composition for each RNA-seq sample, by using the cell-type-specific expression reference for 
different neuronal and glial types (excitatory and inhibitory neuronal subtypes in the cortex, 
cerebellar granule cells, Purkinje cells, endothelial cells, pericytes, astrocytes, oligodendrocytes 
and their precursor cells, and microglia), generated from a large-scale brain single-cell RNA-seq 
dataset17. We summed the estimated proportion of all subtypes of excitatory and inhibitory 
neurons to calculate the overall neuronal proportion for each sample. 

 

Panel design and sequencing 
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For hybrid capture, probes targeting the exons and exon-intron junctions of 149 cancer driver 
genes (Supplementary Table 3) were designed using the SureSelect DNA Advanced Design 
Wizard. The list of targeted genes was designed to include frequently mutated oncogenes and 
tumor suppressor genes in various types of cancer and clonal hematopoiesis. A total of 23,171 
probes with a genomic size of 691 kbp were eventually designed and generated. These probes 
were then used for gene capture followed by library preparation using the SureSelect XT HS2 
DNA Reagent Kit with 30 ng gDNA input. All prepared libraries were sequenced using three 
Illumina NovaSeq 6000 S4 flow cells with 150 bp paired-end reads. 

 

Somatic mutation calling from panel sequencing 

The UMI information of each read was first extracted from the fastq files by AGeNT’s Trimmer 
(v2.0.2), and then reads were aligned to the GRCh37 human reference genome by BWA-MEM 
(v0.7.15)18. The aligned reads were processed by AGeNT LocatIt (v2.0.2) to generate the 
consensus read sequence from multiple reads that were derived from the same original DNA 
fragment and thus carried the same UMI, followed by GATK’s indel realignment (v3.6)9. We 
only kept the consensus reads that were supported by two or more reads in both strands. As a 
result, we achieved comparable depth and coverage between the AD and control samples, with 
more than 1000X average depth and more than 80% coverage of the targeted regions at >500X 
for consensus reads (Supplementary Table 4 and Extended Data Fig. 2a). 

sSNVs and somatic indels (sIndels) were called from the consensus reads by MosaicHunter 
(v1.0)7 and Pisces (v5.3)19, respectively. For sSNV, MosaicHunter calculated the likelihood of 
the presence of a mutant allele, and only the candidates with a 0.5 or higher likelihood, 100 or 
more total reads, and 4 or more mutant-supporting reads were considered. We further excluded 
candidates as germline mutations if i) they have a 30% or higher mutation allele fraction; 2) the 
counts of mutant-supporting and total reads do not significantly deviate from the binomial 
distribution for heterozygous mutations (p ≥ 0.05); 3) they are present in the polymorphism 
databases (dbSNP10, the 1000 Genomes Project11, the Exome Sequencing Project12, and the 
Exome Aggregation Consortium13) or have a 0.01% or higher population allele frequency in the 
Genome Aggregation Database20. sIndels were called by Pisces with its default parameters, and a 
similar method was used to call mutation candidates and remove germline mutations. 

To balance the sensitivity and specificity of our sSNV and sIndel detection, we developed two 
different pipelines when considering the recurrent presence across multiple individuals. The 
“stringent” pipeline only kept the mutations that were detected in one sample and completely 
absent in any other samples, whereas the “sensitive” pipeline additionally allowed the mutations 
that were exclusively present or specifically enriched (two-sample Z-test of proportion with p < 
0.05) in the AD or control group.  

 

Benchmarking of mutation calling using panel sequencing 

A mixing experiment was performed to benchmark the performance of the designed panel and 
variant calling pipeline. Germline mutation calls from two unrelated individuals, NA12878 and 
NA24695, were downloaded from the website of the Genome in a Bottle Consortium21. Genomic 
sites in the covered regions of panel sequencing that were genotyped as heterozygous in 
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NA24695 but reference-homozygous in NA12878 were considered as the gold-standard list of 
somatic mutations, and gDNA from these two individuals were mixed to reach 10%, 5%, 2%, 
1%, 0.5%, and 0.2% mutant allele fractions for these mutations. We applied the same experiment 
and analysis protocols of panel sequencing to the mixed samples with varied allele fractions, and 
then checked the proportion of gold-standard mutations that were identified by our identification 
pipeline as well as the consistency between expected and observed allele fractions. 

 

Fluorescence-activated nuclei sorting (FANS) 

Nuclei were prepared following the previously published work22. Briefly, fresh frozen human 
brain tissue samples were first lysed in a dounce homogenizer using a chilled nuclear lysis buffer 
(10mM Tris-HCl, 0.32M Sucrose, 3mM Mg(Acetate)2, 5mM CaCl2, 0.1mM EDTA, pH 8, 1mM 
DTT, 0.1% Triton X-100) on ice. Tissue lysates were layered on top of a sucrose cushion buffer 
(1.8 M sucrose 3 mM Mg(OAc)2, 10 mM Tris-HCl, 1 mM DTT, pH 8) and ultra-centrifuged for 
1 h at 30,000g. Nuclear pellets we resuspended in ice-cold PBS supplemented with 3mM MgCl2, 
filtered, and then stained with the neuronal marker (NeuN, Millipore MAB377) or microglial 
marker (CSF1R, Cell Signaling 65396) together with DAPI. For each brain sample, neuronal 
(NeuN+), glial (NeuN-), microglial (CSF1R+), and total (DAPI+) nuclei populations were sorted 
into 96-well plates by flow cytometry. 

 

Cell type analysis from 10X snRNAseq 

For the PFC sample of one AD patient (with a TET2 p.Pro1194Ser sSNV) and one healthy 
control, ten thousand microglial nuclei were sorted separately into a well of the 96-well plate and 
used for droplet generation and sequencing library preparation using the 10X Genomics Next 
GEM Single Cell 3′ GEM Kit v3.1 and Chromium Controller, following the manufacturer's 
manual. The snRNAseq libraries were sequenced by Illumina HiSeq X, and down-sampled to 
have a comparable sequencing throughput. We also downloaded a large-scale snRNAseq 
dataset23, consisting of 80,660 nuclei isolated from 24 AD and 24 control PFC samples collected 
by ROSMAP, to serve as the reference. The sequencing data of our AD and control sample was 
firstly processed by Cell Ranger (v6.0.0)24 and then integrated and analyzed along with the 
reference dataset by Seurat (v4.9.9)25, for variance normalization, anchor-based RPCA 
integration, PCA clustering, and UMAP visualization. Cell clusters were manually annotated into 
different cell types based on the expression profile of marker genes (Extended Data Fig. 4b) for 
the major brain26 and blood27 cell types (HBA1: red blood cell; CD3E: T-cell; CCR7: B-cell; 
FCN1: monocyte). Our snRNAseq result confirmed 75-77% microglia purity in the CSF1R+ 
sorted nuclei of the AD and control brains, with additional 4-9% CNS-associated macrophages 
(Fig. 4a). We also observed minimal blood contamination in the sorted microglial population, 
with only 1% monocytes and the absence of other major blood cell types including red blood 
cells, T-cells, and B-cells (Fig. 4a and Extended Data Fig. 4b). Using this reference dataset, we 
also confirmed the minimal contamination of blood cells (< 0.3%) in ROSMAP brain samples.   
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Amplicon sequencing 

Amplicon sequencing was performed for validation and mutant allele fraction estimation in both 
bulk gDNA samples and sorted nuclei. Bulk gDNA was extracted from frozen brain samples 
using the EZ1 DNA Tissue Kit (Qiagen 953034). Five hundred nuclei of each cell type from 
each brain sample were sorted into 96-well plates with four replicates. Whole-genome 
amplification was then performed for sorted nuclei using the ResolveDNA Whole Genome 
Amplification Kit (BioSkryb Genomics) to meet the minimal DNA amount for panel sequencing. 
For each identified sSNV, three sets of primers were designed for PCR amplification of the 
targeted genomic region. PCR amplification was performed using the Phusion Hot Start II DNA 
Polymerase kit (Thermo Fisher F549L) with the following cycles: 98 °C for 30 sec; 5 cycles of 
98 °C for 10 sec, 68 °C for 30 sec (decrease 1 °C/cycle), and 72 °C for 30 sec; 25 cycles of 98 °C 
for 10 sec, 63 °C for 30 sec, 72 °C for 30 sec; 72 °C for 10 min. The annealing temperatures of 
primers varied for each design which was determined by a testing PCR. PCR products were then 
purified using AMPure XP beads (Beckman Coulter A63882) and pooled for Amplicon-EZ 
sequencing (GENEWIZ). 

The sequencing reads were first aligned to the GRCh37 human reference genome by BWA-
MEM (v0.7.15)18 and then processed by GATK (v3.6) for indel realignment9. For each somatic 
mutation candidate, the number of reads supporting each allele was calculated by MosaicHunter 
(v1.0) and manually verified by Integrative Genomics Viewer (v2.3.93)28. A candidate was 
considered validated as somatic mutation (Extended Data Fig. 2e-g) if 1) the read fraction of the 
mutant allele was more than three times as high as the fractions of the other two error alleles in 
all three amplicons (somatic-I); or 2) the read fraction of the mutant allele in the corresponding 
brain sample was significantly higher than the fraction in an unrelated negative control brain 
sample for all three amplicons (somatic-II). 

 

Functional annotation of sSNV and sIndel 

ANNOVAR (v2015Mar22)29 was applied to annotate somatic mutations into different genic 
categories: 5’ UTR, exonic (coding sequence), 3’ UTR, splicing (within intronic 2 bp of a 
splicing junction), and intronic. Exonic somatic mutations were further classified into multiple 
categories based on their predicted impacts on amino acids. A somatic mutation was labeled as 
deleterious if 1) it was annotated as splicing or predicted to cause stop-codon gain/loss; 2) it was 
a frameshift insertion or deletion; or 3) it was a missense mutation whose amino acid change was 
predicted to be deleterious by either PolyPhen230 or SIFT31. For 149 cancer driver genes, we 
grouped them into (proto-)oncogenes and tumor suppressor genes (TSGs) according to the 
annotation of the COSMIC Cancer Gene Census32. Genes annotated as both oncogenes and 
TSGs were not considered in calculating the mutation burdens plotted in Fig. 3d. MAFTools 
(v2.10.1)33 was used to illustrate the gene-level distribution of somatic mutations. Genes and 
driver mutations involved in clonal hematopoiesis of indeterminate potential (CHIP) were 
extracted from a study that analyzed blood whole-genome sequencing data from 11,262 people34. 

Functional enrichment analysis of Gene Ontology (GO) terms was performed using GOseq 
(v1.34.1)35. Exonic somatic mutations identified from the RNA-seq of AD patients or normal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.574078doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/


controls were used as the input, and Wallenius’ noncentral hypergeometric distribution was used 
to test the enrichment, with a probability weighting function to control for potential gene length 
bias. Only GO terms with 3 or more hits and an initial overrepresentation p-value < 0.01 were 
considered. GO terms with more than 1000 genes were excluded. All the GO terms with 
significant enrichment of AD somatic mutations were plotted in Fig. 2f, where the p-value was 
adjusted by Hommel’s method for the correction of multiple hypothesis testing. In comparison, 
only one GO term “helicase activity” showed significant enrichment for somatic mutations 
identified from normal controls.  

 

Burden analysis of sSNV and sIndel  

Somatic mutation density in each clinical group was calculated by counting the total number of 
somatic mutations and dividing it by the total size of powered genomic regions with ≥10X 
coverage for RNA-seq or ≥500X for panel sequencing data sets, and the odds ratio and the two-
sample Z-test of proportion were used to test whether the AD group had a higher mutation 
burden than the control group. In the gene-level analysis for panel sequencing data, we compared 
the somatic mutation burden between AD and control groups using a similar two-sample Z-test 
of proportion, in which the total genomic size for each gene was calculated as the product of the 
exonic length and the number of individuals in AD or control group. 

For the linear regression analysis, the count of somatic mutations in each sample was modeled as 
a continuous outcome, whereas clinical status and other covariates of interest (e.g. age, sex, 
sequencing depth, post-mortem interval, and neuronal proportion) were modeled as independent 
variables. Our linear regression results from both RNA-seq and panel sequencing confirmed the 
increased burden of somatic mutation in AD brains after controlling for all of these potential 
confounding factors (Fig. 2e and 3c). We only considered donors with ages less than 90, because 
all the donors with age 90 or higher were labeled as “90+” in the demographic tables of the 
ROSMAP and MayoRNAseq studies. We also tested whether APOE4 carriers exhibited different 
somatic mutation burdens compared to non-carriers by considering this as an additional 
covariate. However, the known strong correlation between the APOE4 allele and AD risk may 
violate the independence of covariate assumption in linear regression, thus limiting the statistical 
power. To further rule out the effect of potential blood contamination, we measured the 
normalized gene expression level (transcript per million, TPM) of blood marker genes including 
HBA1, CD3E, CCR7, and FCN1 for each RNA-seq sample of ROSMAP and MayoRNAseq by 
StringTie (v1.3.3b)36, and then modeled them as additional covariates in our linear regression 
model. We observed minimal contamination of blood-derived immune cells in ROSMAP and 
MayoRNAseq brain samples, and confirmed that our observed AD increase remains significant 
after controlling for any of these genes (p ≤ 0.01). 

 

Positive selection analysis 
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Signals of positive selection were assessed for sSNVs identified from AD and control samples 
separately by dNdScv37. The dN/dS ratios and p-value for missense, nonsense, and splicing 
mutations were calculated at the levels of individual genes and groups of genes, by comparing 
against the background synonymous mutation rate with the consideration of the sequence 
composition of genes. For each gene in AD or control group, we 1) calculated the number of 
missense and truncating (nonsense and splicing) mutations under positive selection by 
multiplying the number of all mutations in that gene by the proportion of positively selected 
mutations inferred from the gene-specific dN/dS ratio; 2) determined the proportion of positively 
selected cells by multiplying the number of positively selected mutations by the average mutant 
allele fraction in that gene × 2 (given that almost all the sSNVs should be heterozygous in carrier 
cells). Assuming a consistent number of profiled cells in panel sequencing for each brain, we 
further estimated the number of positively selected cells in each AD and control brain by 
aggregating the number of positively selected cells across the group of genes and normalizing 
this number based on the count of brain samples in AD and control groups. 

 

Automatic cell-type identification with scType 

Myeloid cells in the brain include both parenchymal microglia and CNS-associated macrophages 
(CAMs), including meningeal, choroid plexus, and perivascular macrophages (PVMs)38. 
Microglia-perivascular macrophages, hereby referred to as microglia-CAMs, represented 3.37% 
of all pre-annotated cells within SEA-AD, which is slightly lower than past estimates of 
microglia-CAMs making up 5-15% of all brain cells39,40. scType (v20220909)41 was used to 
automatically identify any additional high-quality microglia-CAMs beyond those originally 
annotated in SEA-AD (“pre-annotated” cells) to increase statistical power for calling mosaic 
chromosomal alterations (mCAs). Excitatory neurons (ExNs) were also automatically typed as a 
cell-type out-group to further facilitate accurate identification of microglia-CAMs, as scType’d 
microglia-CAMs should have high microglia-CAM scType scores but low ExN scType scores. 

Prior to running scType, each SEA-AD sample was processed, normalized, and clustered with 
the Louvain algorithm using Seurat (v4.1.1)25. Each sample underwent quality control with the 
following metrics: retain only 1) genes expressed in ≥ 3 cells, 2) cells with ≥ 10 expressed genes, 
3) cells with ≤ 5% mitochondrial gene expression, 4) cells with > 250 expressed genes and < 
7500 expressed genes. Positive markers for microglia-CAMs (P2RY12, ITGAM, CD40, PTPRC, 
CD68, AIF1, CX3CR1, TMEM119, ADGRE1, C1QA, NOS2, TNF, ISYNA1, CCL4, ADORA3, 
ADRB2, BHLHE41, BIN1, KLF2, NAV3, RHOB, SALL1, SIGLEC8, SLC1A3, SPRY1, TAL1) and 
ExNs (SLC17A7, SLC17A6, GRIN1, GRIN2B, GLS, GLUL, GRIN2A) were downloaded from the 
scType marker database and used to calculate microglia-CAM and ExN scType scores for each 
individual cell.  

In brief, scType calculates cell-type specific scores for each cell using a weighted and 
normalized aggregation of marker gene expression, where marker genes are weighted more 
highly if they are more specific for a given cell type (expressed in one cell type of interest, rather 
than several). For each sample, both ExN and microglia-CAM scType scores were calculated for 
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cells that were pre-annotated as either ExNs or microglia-CAMs. Taking these pre-annotations as 
ground truth, ROCR (v1.0.11)42 and cutpointr (v1.1.2)43 were used to calculate the optimal 
cutpoint for ExN and microglia-CAM scType scores that maximized the sum of sensitivity and 
specificity of classification over 1000 bootstraps. Using these learned ExN and microglia-CAM 
cutpoints, cells that were not pre-annotated were assigned as ExNs, microglia-CAMs, or neither. 
A small number of cells had both microglia-CAM and ExN scType scores greater than the 
corresponding optimal cutpoints; these cells were discarded due to ambiguity in assignment.  

In addition to filtering of individual cells, 6 samples were filtered out due to not meeting at least 
one of the following sample-specific metrics: 1) microglia-CAM AUC > 0.9, 2) ExN AUC > 0.9, 
3) fraction of pre-annotated ExN typed by scType as microglia < 0.1, and 4) total number of pre-
annotated and scType’d microglia-CAMs > 50. This analysis filtered one individual H20.33.008, 
as this donor had only one associated sample that was filtered due to not meeting the above 
sample-specific metrics.  

As a final step to ensure that scType’d cell microglia-CAMs were highly similar to their 
corresponding pre-annotated cell types, pre-annotated and scType’d microglia-CAMs derived 
from the same donor were merged into a single Seurat object and processed, normalized, and 
clustered using the Louvain algorithm. Clusters in which over 50% of cells were pre-annotated 
microglia-CAMs were identified and only scType’d microglia-CAMs in these clusters were 
retained as high-confidence scType’d microglia-CAMs cells. Only pre-annotated microglia-
CAMs and these high-confidence scType’d microglia-CAM cells were used for mCA-calling 
and all subsequent downstream analyses. 

 

mCA calling from snRNAseq 

Genomic regions of non-uniparental disomy CH-associated mCA listed in Extended Data Figure 
4d and 4e of Saiki et al.44 were extracted, and genomic coordinates of these regions were 
downloaded from the hg38 reference genome accessed through the UCSC Genome Browser45.  

mCA calling was done for microglia-CAM, astrocytes, oligodendrocytes, oligodendrocyte 
precursor cells (OPCs), and ExNs. For each cell type, raw count matrices (gene × cell) were 
extracted for the 31 AD cases and 31 age-matched healthy controls that passed filtering as 
described above. Each of these matrices was processed and normalized using Seurat (v4.1.1) and 
then independently used as input for mCA-calling with CONICSmat (v0.0.0.1)46.  

The aforementioned mCA regions identified in Saiki et al., were tested with CONICSmat 
(Supplementary Table 7), and raw mCA calls were further filtered to increase specificity of calls. 
In brief, a putative mCA was retained if it met the following criteria: 1) Bonferonni adjusted p-
value < 0.05; 2) <25% ambiguous cells (cells with a posterior probability > 0.25 and < 0.75); 3) 
median expression of putative mCA-carrying cells is > or < 1.96 standard deviations of putative 
normal cells of the same type for amplifications or deletions, respectively; 4) no negative control 
regions (i.e. whole chromosome regions that have not been associated with mCA in past 
literature) showed a larger difference in expression between putative normal and mCA-carrying 
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cells than the called mCA; 5) the expression of putative normal cells was within 1.96 standard 
deviations of baseline expression of cells of the same type across all other individuals; and 6) the 
same mCA was not called in a different cell-type from the same individual. For microglia-
CAMs, putative mCAs were additionally filtered if the number of scType’d non-ambiguous cells 
(posterior probability < 0.25 or > 0.75) were ≤ 1.5x the number of pre-annotated non-ambiguous 
cells for both altered and wild-type cells. This filtering criterion was added to ensure that mCA 
calls identified from scType’d and pre-annotated microglia-CAMs were not driven by added 
scType’d cells.  

 

Burden analysis of mCA 

Per cell type, the number of cells with mCAs from AD donors, the number of cells without 
mCAs from AD donors, the number of cells with mCAs from control donors, and the number of 
cells without mCAs from control donors were counted and an odds ratio (OR) of mCA-carrying 
cells in AD donors vs control donors was calculated. For two cell types, CAMs and 
oligodendrocytes, all mCA-carrying cells were in AD donors and the OR was thus infinite. To 
facilitate comparison of the actual OR against an empirical null as described below, a 
pseudocount of 1 was added to the number of mCA-carrying cells in AD and control groups 
separately for these two cell types. To calculate the significance level of this calculated odds 
ratio, an empirical null was generated using permutation. In brief, for each cell type, diagnosis 
labels were permuted over the set of all cells from each donor, including both mCA-carrying and 
wild-type cells. If a donor had multiple called mCAs, diagnosis labels were permuted over each 
mCA individually. Specifically, for each called mCA in a given individual, cells were divided 
into wild-type or mCA-carrying for that specific mCA. Each of these partitions of wild-type 
versus mCA-carrying cells was then randomly assigned a diagnosis status. OR was calculated for 
each set of permutated data. Permutations were repeated 1000 times and the p-value of the actual 
OR was calculated as 1 – the percentile rank of actual OR against the empirical null distribution 
of permutation ORs. Ten trials of 1000 permutations were completed to ensure the robustness of 
p-values.  

 

Creation of an integrated snRNAseq microglia-CAM atlas  

All scType’d and pre-annotated microglia-CAMs from AD and healthy control samples, with the 
exception of the one associated with H20.33.008 as described above, were individually 
processed with Seurat (v4.1.1). In brief, each sample underwent quality control with the 
following metrics: retain only 1) genes expressed in ≥ 3 cells, 2) cells with ≥ 10 expressed genes, 
3) cells with ≤ 5% mitochondrial gene expression, 4) cells with > 250 expressed genes and < 
7500 expressed genes. Variance-stabilizing normalization and regression of the technical 
covariates percent.mt, nFeature_RNA, and nCount_RNA were performed with Seurat function 
SCTransform, and clustering was done using the Louvain algorithm. 
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Individual samples were then merged into a single Seurat object, and dimensionality reduction 
was performed using PCA. This merged object was then integrated over constituent individual 
samples using Seurat’s wrapper function for Harmony (v0.1.1)47. UMAP visualization of the 
integrated object showed no visible clustering by sample ID or individual ID, consistent with 
successful integration (Extended Data Fig. 6).  

 

Differential expression analysis and functional annotation of integrated microglia-CAM 
snRNAseq atlas  

Differential expression analysis was performed between microglia-CAMs with and without 
called mCAs from mCA-carrying AD individuals using the FindMarkers function of Seurat 
(v4.1.1) with a min.pct cutoff of 0.10 and no fold-change cutoff. Genes with an adjusted p-value 
< 0.05 were called as differentially-expressed genes (DEGs).  

clusterProfiler (v4.4.4)48 was used to perform all enrichment analyses. GO enrichment analysis 
was performed using standard parameters and a universe of all genes expressed in >10% of 
microglia-CAMs in the integrated atlas. Terms were deemed significant if they had an adjusted 
p-value < 0.05.  

DEGs were also tested for enrichment of previously defined microglial state gene modules49. A 
minority of genes (107/905; 11.9%) within these microglial state gene modules were shared 
between multiple modules. To ensure specificity of module enrichment, genes were weighted by 
the inverse of the number of modules in which they were present. Non-integer values were 
rounded and module enrichment was tested using a hypergeometric test.  

 

Data and material availability 

All the RNA-seq and DNA-seq data of ROSMAP, MayoRNAseq, and SEA-AD are available via 
the AMP-AD Knowledge Portal. The RNA-seq and DNA-seq data of TCGA are available via 
the NCI Genomic Data Commons Data Portal. ROSMAP resources can be requested at 
https://www.radc.rush.edu. The panel sequencing and snRNAseq data generated in this study 
will be deposited to the AMP-AD Knowledge Portal, with controlled use conditions set by 
human privacy regulations. Other materials are available from the authors upon reasonable 
request. 

 

Code availability 

The source code and default configuration file of RNA-MosaicHunter are available at 
https://gitlab.aleelab.net/august/rna-mosaichunter.git. Custom bash and R scripts used in this 
study will be publicly available at https://gitlab.aleelab.net/august/ad-clonal.git. 
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Supplementary Discussion: 

In this study, we observed that AD brain samples harbor an increased burden of somatic 
mutations in cancer driver genes, especially in CH-associated genes, suggesting that CH 
mutations in the brain are positively associated with AD pathogenesis. However, a study by 
Bouzid et al.1 finds that CH mutations in blood appear to be protective against AD. Another 
work from Kessler et al.2 reports no association between CH mutations in blood and AD risk in a 
much larger number of samples. Several technical and methodological differences may explain 
the inconsistency between these three studies. 

First, our study was designed to directly study brain samples of AD patients and healthy controls, 
whereas both Bouzid et al. and Kessler et al. were based on the re-analysis of peripheral blood 
sequencing data. Although both studies reported that many of these CH mutations were shared 
between brain (microglia) and blood samples of the same individuals, it remained unclear 
whether CH mutations might have a different role in AD between the brain and blood (harmful 
in brain vs. protective/neutral in blood). 

Second, we screened for brain somatic mutations by ultra-deep panel sequencing with a UMI 
design, such that we were able to detect mutations with MAFs as low as 0.1% (Extended Data 
Fig. 2). In comparison, Bouzid et al. and Kessler et al. utilized existing blood whole-exome 
sequencing data with conventional depth, which was designed for germline variant detection and 
could only detect CH mutations with MAFs > 5-10%2,3, although CH mutations with lower 
MAFs are more typical in the blood4. Indeed, we observed that the AD enrichment of somatic 
mutations in CH-associated genes disappears when only high-MAF mutations are considered 
(Extended Data Fig. 7b).  

Finally, our panel sequencing covered a comprehensive list of 149 cancer driver genes 
(Supplementary Table 3), including many genes that had been reported in cancer development 
but not yet linked to CH. Our results suggest that somatic mutations in these non-CH-associated 
genes also show an increased burden in AD brains, robust with different MAF cutoffs (Extended 
Data Fig. 7a), but such effects would be missed in Bouzid et al. and Kessler et al. because their 
studies only focus on CH-associated genes. 
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