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Abstract
Fungi typically occur in environments where numerous and diverse other microbes occur as well,
often resulting in fierce competition for nutrients and habitat. To support fungal fitness in these
environments,  they  evolved  various  mechanisms  that  mediate  direct  antagonism towards  niche
competitors. Among these, the secretion of proteins with antimicrobial activities has been reported
in fungi with diverse lifestyles. Recently, several plant-associated fungi were shown to rely on the
secretion of antimicrobial effector proteins to antagonize certain members of plant hosts’ microbiota
and to successfully colonize plant tissues. Some of these effectors do not share homology with
known antimicrobials and represent novel antibiotics. Accordingly, the occurrence and conservation
of  proteinaceous  antimicrobials  throughout  the  fungal  tree  of  life  remains  enigmatic.  Here  we
present a computational approach to annotate candidate antimicrobial effectors in fungal secretomes
based  on  protein  physicochemical  properties.  After  curating  a  set  of  proteins  that  were
experimentally verified to display antimicrobial activity and a set of proteins that lack such activity,
we trained a machine learning classifier on properties of protein sequences and predicted structures.
This predictor performs particularly well on fungal proteins (R2=0.89) according to our validations
and  is  delivered  as  a  software  package  named  AMAPEC,  dedicated  to  antimicrobial  activity
prediction  for  effector  candidates.  We  subsequently  used  this  novel  software  to  predict
antimicrobial  effector  catalogs  in  three  phylogenetically  distant  fungi  with  distinct  lifestyles,
revealing  relatively  large  catalogs  of  candidate  antimicrobials  for  each  of  the  three  fungi,  and
suggesting a broad occurrence of such proteins throughout the fungal kingdom. Thus, AMAPEC is
a unique method to uncover antimicrobials in fungal secretomes that are often sparsely functionally
annotated, and may assist biological interpretations during omic analyses. It is freely available at
https://github.com/fantin-mesny/amapec. 

Introduction
In virtually  any environment,  organisms engage in  fierce competition for limited resources and
survival1. Mechanisms for direct antagonism support such competition and are essential for any
organism’s  fitness2.  Among  these,  the  production  of  antimicrobial  compounds,  encompassing
antibacterial as well as antifungal proteins, has been reported in each of the kingdoms of life3–8.
Short  peptides  generally  termed  “antimicrobial  peptides”  (AMPs),  have  been  given  particular
attention and were demonstrated to exert  microbiocidal or microbiostatic activity by interacting
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with  microbial  cell  walls,  causing  their  alteration  or  disruption3,9–13.  However,  also  larger-sized
secreted enzymes, such as lysozymes, chitinases, proteases and ribonucleases, may similarly display
such antimicrobial activities and have been demonstrated to be essential to restrain the proliferation
of microbial competitors4,14–17. 

As they spend most of their life cycles in microbe-rich environments, fungi secrete antimicrobial
compounds,  including  antibiotic  secondary  metabolites  but  also  AMPs  and  other  antimicrobial
proteins,  to  suppress  niche  competitors  and  promote  their  proliferation18–20.  For  instance,  the
secretion of antimicrobials is essential for the fitness of soil-dwelling fungi, as they need to compete
for nutrients with a broad diversity of microbes and especially with bacteria21,22. Similarly, secreted
antimicrobials sustain the competitiveness of wood-decaying fungi and are major determinants of
microbial community compositions on deadwood substrates23. The secretomes of plant-associated
fungi include diverse carbohydrate-active enzymes (CAZymes) that digest host cell walls, but also
small  proteins  termed  “effectors”  that  promote  fungal  colonization  of  plant  tissues24–26.  While
modulation of host immunity and, in a broader sense, host physiology was long thought to be the
main function of effector proteins26,27,  recent discoveries of antimicrobial  activities displayed by
effectors  of  diverse  fungi  suggest  that  microbial  antagonism may be  one  of  their  key roles  as
well5,28–33.  For  instance,  the  plant-pathogenic  fungus  Verticillium  dahliae secretes  antimicrobial
proteins  during  both  the  soil-dwelling  stages  of  its  life  cycle  and  during  host  colonization,  to
antagonize niche competitors and foster the invasion of both soil and plant tissues5,29,30. Since plant
microbiota may have been selected to protect the host from fungal intrusions, and therefore function
as an additional defense layer, fungal effectors with antimicrobial activities can play essential roles
in host colonization, by breaching this microbial barrier and foster plant tissue invasion34. Moreover,
we  hypothesized  that  effector-mediated  microbial  antagonism  is  an  ancient  trait  that  already
evolved in fungal ancestors that encountered microbial competition long before the evolution of
symbioses with land plants or other types of eukaryotic multicellular organisms19. However, thus far
the occurrence and conservation of antimicrobial effectors throughout the fungal tree of life remains
enigmatic.

To aid in the discovery of novel antimicrobial effectors, and to gain insights into their evolutionary
dynamics,  we  aim  to  predict  the  potential  antimicrobial  activities  of  proteins  and  to  annotate
catalogs  of  candidate  antimicrobial  effector  genes  in  fungal  genomes.  Accurate  predictors  of
antimicrobial activity relying on amino acid properties and on sequence patterns have previously
been developed35–40. However, these are inappropriate to annotate fungal effector proteins as they
were trained on AMP databases41–43 and are therefore essentially dedicated to short peptides of sizes
up to 100 amino acids in length. With sequence lengths up to 850 amino acids44, fungal effectors are
considerably  larger  and  thus  require  a  dedicated  predictor  based  on  a  training  dataset  that
incorporates larger antimicrobial proteins that likely have different properties and mode-of-actions
than AMPs. Here, we describe the development of such tool and introduce the software AMAPEC
(for  antimicrobial  activity  prediction  for  effector  candidates),  a  tool  to  annotate  candidate
antimicrobial effector proteins relying on their sequence and predicted structure properties.
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Results

Composition of a literature-curated set of experimentally validated 
antimicrobial proteins

In order to develop an appropriate tool to predict antimicrobial activities among fungal effector
proteins, it is important to determine the size range of typical effector proteins. By analyzing the
predicted secretomes of three phylogenetically distant fungal strains with distinct lifestyles, namely
the plant pathogenic ascomycete Verticillium dahliae (strain JR2)45, the saprotrophic basidiomycete
Coprinopsis cinerea  (strain AmutBmut pab1-1)46 and the arbuscular mycorrhizal glomeromycete
Rhizophagus irregularis (strain DAOM197198)47, we determined that fungi are predicted to secrete
proteins from 24 up to 3445 amino acids in length (median=282 amino acids; Supplementary Fig
1). To assemble a set of experimentally validated antimicrobial proteins to assist our identification
of  novel  fungal  antimicrobial  effectors,  we  performed  a  literature  search  and  curated  a  set  of
similarly-sized proteins that have been experimentally verified to display antibacterial or antifungal
activity  in  vitro.  While  paying  attention  not  to  enrich  our  dataset  in  short  peptides  that  are
overrepresented in literature but only occur in low amounts in fungal secretomes (Supplementary
Fig 1), we identified 152 antimicrobial proteins, originating from a great diversity of organisms
including  mostly  proteins  of  animal  origin  (n=81)  but  also  a  significant  proportion  of  fungal
proteins (n=29) (Fig 1a; Supplementary Table 1). These proteins display little genetic redundancy
(Supplementary Fig 2ab), but structural similarity occurs more frequently (Supplementary Fig 2cd),
based  on  Blastp48-  and  Foldseek49 analyses  of  their  sequences  and  structures  predicted  with
AlphaFold250. 

Next, we tested if our literature-curated set of proteins would allow us to identify novel candidate
antimicrobials  in  fungal  secretomes.  Since  certain  fungal  antimicrobial  effectors  have  been
discovered  due  to  their  sequence  or  structure  similarity  with  known  antimicrobials5,29,30,  we
performed Blastp48 and Foldseek49 similarity searches using the secretomes of V. dahliae, C. cinerea
and  R.  irregularis as  queries  and our  literature-curated  set  of  antimicrobials  as  subject.  While
sequence similarity searches revealed between 40 and 60 novel candidate antimicrobials per fungal
secretome (E-value<0.05; Supplementary Table 2a), structural similarity analysis identified 120 to
270  candidates  (E-value<0.05;  Supplementary  Table  2b).  Our  literature-curated  set  of  152
antimicrobial  proteins  is  thus  likely  to  support  the  discovery  of  novel  fungal  effectors  with
antimicrobial activity.

Accurate  prediction of antimicrobial  activity  based  on  protein
physicochemical properties

Since physicochemical properties of candidate proteins have previously supported the identification
of AMPs40,51,  we hypothesized  that  physicochemical properties  of  fungal  effector  proteins  may
allow  accurate  prediction  of  their  potential  antimicrobial  activities.  To  train  such  predictor,
additionally to our set of experimentally verified antimicrobials, we curated a negative training set
of  proteins  which  according  to  their  functional  annotation,  are  unlikely  to  have  antimicrobial
activity (Supplementary Table 3). Since we anticipate that effector proteins lacking antimicrobial
activity  outnumber  antimicrobial  effector  proteins  in  fungal  secretomes,  we  took  care  that  the
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number  of  non-antimicrobial  proteins  exceeds the number of  antimicrobials  in  the training  set.
Eventually, we doubled the size of the positive dataset (n=152), with a negative set of 304 members
that  include  equivalent  proteins  in  terms  of  sequence  length  and  phylogenetic  origin,  and  a
significant  proportion  of  secreted  proteins  (Fig  1ab).  For  each  protein  in  the  training  set,  we
calculated  properties  from  their  amino  acid  sequences  and  from  predicted  high-confidence
structures (AlphaFold250;  Supplementary Fig 3). In total,  70 numerical values reflecting diverse
physicochemical properties were determined for each protein (Fig 1c; Supplementary Table 4a).
Additionally,  we  queried  for  the  presence/absence  of  six  k-mers  identified  to  be  over-  or
underrepresented  in  the  sequences  of  antimicrobial  proteins  in  the  training  set  (Fig  1c;
Supplementary Table 4bc). We used these data to train a Support Vector Machines (SVM) classifier
and  subsequently  estimated  its  quality  through  leave-one-out  cross-validation.  The  quality
assessment revealed that  our classifier  has high accuracy,  recall  and specificity,  particularly for
fungal  proteins,  although  its  precision  value  reveals  a  moderate  bias  towards  false  positive
detections  (Fig  1d).  Whereas  42  of  the  456 (9%) proteins  in  the  training  set  were  incorrectly
classified as antimicrobials, only six out of 89 (6%) fungal proteins in this training set received such
incorrect prediction. Thus, our predictor demonstrates that physicochemical properties of proteins
can  be  correlated  with  their  antimicrobial  activity.  Analysis  of  support  vector  coefficients,
representing the importance of individual physiochemical properties for the prediction, revealed a
particular  role  of  properties  linked  to  hydrophobicity,  charge,  secondary  structures,  disulphide
bonds and structural cavities, and of the identity of exposed amino acids (Supplementary Fig 4). 

The high accuracy of our predictor makes it a reliable tool to assist the identification of novel fungal
antimicrobials. Thus, we further developed a software named AMAPEC, that relies on our SVM
classifier.  To help users to distinguish candidate antimicrobials  with the highest confidence,  we
additionally trained a probability estimator by Platt scaling of our binary SVM classifier, allowing
AMAPEC to return probability scores for protein antimicrobial  activity (Fig 1c).  Thus,  using a
(predicted)  protein  structure  as  input,  AMAPEC  returns  (1)  a  mean  confidence  score  for  the
predicted  protein  structure  (the  so-called  “pLDDT”,  introduced  with  AlphaFold250),  with  the
rationale that a low-confidence structure may obtain a predicted antimicrobial activity that is not
biologically meaningful; (2) a classification as ‘Antimicrobial’ or ‘Non-antimicrobial’; and finally
(3)  a  probability  score  for  its  antimicrobial  activity,  that  ranges  between  0  (no  antimicrobial
activity) and 1 (highly likely to be antimicrobial). AMAPEC is made available through GitHub with
a GPL v3.0 license:  https://github.com/fantin-mesny/amapec.  Additionally,  we provide a Google
Colab notebook allowing to try AMAPEC and to perform online antimicrobial activity prediction:
https://colab.research.google.com/github/fantin-mesny/amapec/blob/main/googleColab/
AMAPEC.ipynb.
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Figure  1:  Description  of  the  antimicrobial  activity  predictor  AMAPEC  v1.0. 
a. Phylogenetic origin of the proteins in the dataset (green: number of proteins in positive dataset;
red: number in negative dataset) that was used to train the predictor. b. Number of proteins included
in the training dataset and proportion of secreted proteins.  c. Schematic overview of the training
pipeline (P/A= presence/absence). d. Estimation of the classifier quality, based on “leave-one-out”
cross-validation  in  the  training  dataset.  The  top  bar  plot  and  pie  chart  show quality  estimates
calculated on the total dataset (n=456), while the bottom charts analyze only the classifications of
fungal  proteins  (n=87)  during  the  “leave-one-out”  cross  validation.  e. Schematic  overview  of
AMAPEC v1.0 showing its inputs and outputs with an example of three proteins.

AMAPEC predicts numerous antimicrobials in fungal secretomes

Information on the size and composition of gene catalogs encoding secreted antimicrobial proteins
in fungal genomes is scarce. To gain insights in the occurrence of secreted antimicrobial proteins in
the  fungal  kingdom, we analyzed the  secretomes of  the  three phylogenetically  distant  fungi  V.
dahliae,  C.  cinerea and  R.  irregularis.  Similarity-based  functional  annotation  with
emapper52 revealed  that  their  secretomes  include  significant  proportions  of  proteins  that  lack
functional annotations (Fig 2), while several of the assigned annotations are poorly informative
(Supplementary Table 5). Specific annotation of CAZymes with dbcan53 revealed variable catalogs
of  these  enzymes  in  fungal  secretomes,  ranging  from less  than  10% of  the  secretome  of  the
mycorrhizal fungus R. irregularis up to 31% of the secretome of V. dahliae, which is consistent with
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previous reports24,25. Since CAZyme families are well documented54 and poorly represented in our
training  dataset  (Supplementary  Table  1),  and also  because  it  is  difficult  to  determine  whether
individual  CAZymes  truly  antagonize  microbial  growth,  we  excluded  them  from  subsequent
analyses. The structures of other proteins in the three secretomes were predicted with ESMFold55, a
tool that is considerably faster and computationally less demanding than AlphaFold2 and that is
therefore  better  suited  for  structure  prediction  of  large  numbers  of  proteins  such  as  complete
effector catalogs, despite a minor drop in the quality of predicted structures (Supplementary Fig 5).
On  average,  confident  structures  were  predicted  with  ESMFold  (Supplementary  Fig  6),  with
secreted  proteins  of  R.  irregularis displaying  the  lowest  confidence,  possibly  due  to  the  low
availability of structurally characterized homologs of proteins originating from the early-diverging
Glomeromycetes clade.  Using these structures as  an input,  AMAPEC was employed to predict
antimicrobial effector catalogs in the three fungi. Interestingly, predictions revealed that one third to
one half of total fungal secretomes is composed of proteins with antimicrobial properties (Fig 2),
demonstrating  the  ability  of  AMAPEC  to  discover  more  candidates  than  similarity-based
approaches do (Supplementary Table 2). While these large numbers corroborate the hypothetical
importance of antimicrobial proteins for sustaining fungal fitness in diverse environments19, they
also reveal a broad occurrence of such secreted antimicrobials throughout the fungal tree of life.
Functional enrichment analyses with GOATOOLS56 did not identify significantly overrepresented
functional terms in predicted antimicrobials (FDR<0.05), possibly due to the sparse annotation of
secretomes. In line with this observation, one to two thirds of predicted antimicrobials could not be
annotated  based  on  sequence  similarity  (Fig  2).  Thus,  we  conclude  that  AMAPEC  offers
unprecedented functional insights into fungal secretomes and may assist biological interpretations
during genomic, transcriptomic and proteomic analyses.
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Figure 2:  AMAPEC predicts numerous antimicrobials in the secretomes of  diverse
fungi. 
The  top row of pie charts shows proportions of functional annotations in the secretomes of three
fungi. CAZymes were annotated with dbcan53 and other functions were annotated with emapper52.
The bottom row of pie charts shows results of antimicrobial activity prediction with AMAPEC,
performed on all secreted proteins  that are not CAZymes. On this same row, smaller pie charts
depict proportions  of predicted antimicrobials  and non-antimicrobials  that could be functionally
annotated  with  emapper  (in  blue).  Histograms  showing  the  distributions  of  probabilities  of
antimicrobial activity estimated by AMAPEC are displayed at the bottom.
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Discussion
Like other non-model organisms, fungal genomes comprise a large proportion of genes that lack
functional annotation, which complicates biological interpretations of genomic and transcriptomic
analyses. Fungal secretomes are particularly poorly annotated by similarity-based methods (Fig 2),
since they include significant numbers of fast-evolving effectors that represent recent innovations
and show little conservation across the fungal kingdom44,57. Recently, major efforts were made to
develop new functional annotation methods,  relying mostly on machine-learning prediction,  but
these were not aimed to discover antimicrobial activities58–62. Following the recent characterization
of various fungal effectors with antimicrobial  activities5,28–33,  we aimed to develop a method to
predict antimicrobial activity in fungal secretomes and assist discoveries of such proteins across the
fungal tree of life.

While  the  set  of  antimicrobial  proteins  curated  to  train  our  predictor  is  genetically  diverse
(Supplementary  Fig  2),  its  size  is  limited  by  the  number  of  effector-sized  proteins  with
antimicrobial activity described in literature. Therefore, it  does not cover the entire diversity of
antimicrobial  mechanisms  existing  in  nature  and  AMAPEC  is  restricted  to  the  prediction  of
previously  described  activities.  Novel  discoveries  of  proteinaceous  antimicrobials  will  be
implemented in the training set to expand the scope of the predictor in future versions of AMAPEC.
Other  biases  in  AMAPEC  predictions  may  originate  from  our  negative  training  set,  that  was
manually  curated  to  include  non-antimicrobial  proteins  according  to  functional  annotation.
However,  possible  misjudgment  during  this  curation,  for  instance  due  to  bad annotations,  may
negatively affect  predictions.  Arguably,  this  limitation also concerns  previously published AMP
predictors for which negative training sets were assembled with a similar approach36,40. Nonetheless,
the difficulty to experimentally demonstrate absence of antimicrobial activity makes it challenging,
if not impossible, to overcome this limitation.

Antimicrobial activities of short AMPs were previously linked to physicochemical properties that
can be inferred from amino acid sequence compositions40,51. We used such properties to predict the
antimicrobial activity of effector-sized proteins, and relied on predicted structures to describe folded
protein  physicochemistry  (Fig  1c).  Our predictor  corroborated  studies  of  AMPs by revealing  a
particular  importance  of  properties  linked  to  hydrophobicity,  charge,  secondary  structure  and
disulphide bonds for protein antimicrobial activity40,51,63. However, it also suggested a previously
undescribed  role  of  the  identity  of  certain  exposed  amino  acids  and  of  structural  cavities
(Supplementary Fig 4), thereby raising new questions about the mode-of-action of proteinaceous
antimicrobials. 

These  structural  insights  were  obtained  from  AlphaFold250-predicted  protein  structures  in  our
training dataset. These structures have overall high confidence scores (Supplementary Fig 3). It is
important  to  interpret  AMAPEC  output  predictions  while  considering  input  structure  quality.
Depending on the tool used and the number of homologs with characterized structures in reference
databases,  structure  predictions  can result  in  low confidence  geometries  (Supplementary Fig 5;
Supplementary Fig 6) which may impact  prediction of  antimicrobial  activities.  To assist  in the
interpretation  of  prediction  results,  AMAPEC  returns  the  input  structure  confidence  scores
(pLDDT), which should be considered together with antimicrobial activity probabilities (Fig 1e). In
other words, the predicted antimicrobial activity probability should be considered with caution if the
input structure confidence score is low. In addition to structure quality-related limitations, the need
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to compute structure predictions prior to the execution of AMAPEC can itself restrain the use of our
software, since this process is computationally demanding in terms of time and resources. As input
for  AMAPEC,  we  strongly  recommend  to  use  structures  predicted  from  mature  amino  acid
sequences,  after  prediction  and removal  of  signal  peptides  with tools  like SignalP64.  While  the
AlphaFold database provides numerous fungal effector protein structures65, these have mostly been
predicted on canonical amino acid sequences that include secretion signal peptides, resulting in
biased geometries that do not represent state in which effectors are secreted from the organism that
produces them and, therefore, not the “active state”. The recent development of the relatively rapid
structure prediction tool ESMFold55 made it possible to compute antimicrobial activity predictions
for complete fungal secretomes (Fig 2). Likely, future structure prediction algorithms will speed up
this  process  even  further.  Moreover,  initiatives  like  ColabFold66 provide  means  for  free  online
structure prediction and aim to make such computation accessible to all. 

We analyzed the secretomes of three phylogenetically distant fungi with different lifestyles and
identified  large  proportions  of  predicted  antimicrobials,  ranging  from one  third  to  half  of  the
secreted proteins  (Fig 2). CAZymes were excluded from this predictive analysis as they can be
confidently recognized by dedicated annotation methods53, and because antimicrobial activities have
not been investigated in most CAZyme families (e.g. in plant cell wall-degrading enzymes), besides
lysozymes and chitinases. Since AMAPEC especially aims to shed light on non-annotated portions
of fungal secretomes, we suggest its users to annotate CAZymes separately and to exclude them
from  predictions. Our  predictions  (Fig  2)  suggest  a  broad  occurrence  of  proteinaceous
antimicrobials  across  the  fungal  tree  of  life.  Moreover,  the  large  numbers  of  predicted
antimicrobials corroborates the assumption that antimicrobial proteins are of major importance for
fungal  competitiveness,  fitness,  and  survival  in  nature19,  although  the  low  quality  of  certain
structures (Supplementary Fig 6) and the intrinsic precision of AMAPEC (Fig 1d) may lead to a
limited number of false positive predictions. Future experimental validation of predictions should
confirm the estimated high accuracy of AMAPEC (Fig 1d) and is especially needed since quality
estimation was performed by cross-validation using the training dataset exclusively. We hope the
current version of AMAPEC will  assist researchers in the characterization of new effectors and
contribute  to  gaining  more  insights  into  fungal  antagonistic  mechanisms.  Such  novel
characterizations will contribute to improve AMAPEC in return, since the software will be updated
regularly,  and its  training dataset will  be supplemented with recently discovered antimicrobials.
Updates of the training dataset will  also incorporate more high-confidence structures, following
improvements of AlphaFold50 and the addition of novel effector structures in its reference databases.

Methods

Reference fungal secretomes

Sets of proteins associated to the published genomes of three phylogenetically distant fungi with
distinct  lifestyles  were  downloaded:  Verticillium  dahliae JR245 (annotation  VDAG_JR2  v.4.0
downloaded  from  the  database  Ensembl  Fungi67),  Coprinopsis  cinerea  AmutBmut  pab1-
146 (annotation  Copci_AmutBmut1  v1.0 downloaded  from  the  database  JGI  Mycocosm68) and
Rhizophagus irregularis  DAOM19719847. SignalP64 v6.0 was then used to predict secretion signal
peptides in protein sequences and thereby define the secretomes of these fungi. Sequences with
removed signal peptides were used in all subsequent analyses. Functional annotation of proteins in
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these secretomes was carried out using emapper52 v2.0 and the database Eggnog69 v5. CAZymes
were  specifically  annotated  in  these  secretomes  using  dbcan53 v4.0.  Structure  predictions  were
computed  with  ESMFold55 v1.0.3,  using  default  parameters,  of  all  secreted  proteins  besides
CAZymes.  The  structures  of  two  proteins  from  V.  dahliae (VDAG_JR2_Chr4g10970  and
VDAG_JR2_Chr1g22375) could not be predicted due to high computational requirements linked to
their size (>2500 amino acids) and were excluded from our analyses. To compare the quality of
protein  structures  predicted  by  AlphaFold250 and  ESMFold  (Supplementary  Fig  5),  we  also
computed  structure  prediction  for  626/635  non-CAZyme secreted  proteins  of  V.  dahliae,  using
AlphaFold  v2.0  with  parameters  --max_template_date=2021-05-14  --preset=casp14,  with  nine
predictions failing due to high computational requirements.

Curation of a set of antimicrobial proteins

First, a positive training set of antimicrobial proteins (Supplementary Table 1) was curated from the
literature. Only proteins which antimicrobial activity has been experimentally demonstrated in vitro
(i.e. restricting the growth of bacteria and/or fungi in culture medium) were selected. While not
restraining the dataset to proteins encoded by any phylogenetic group, we paid particular attention
to  include  all  the  fungal  antimicrobial  proteins  reported  in  scientific  literature.  Importantly,
secretion signal peptides were removed from sequences (SignalP v6.064), since the antimicrobial
function  of  proteins  generally  occurs  after  secretion.  Considering  sequence  lengths  of  fungal
secreted  proteins,  peptide  with  mature  sequence  lengths  below 40  amino  acids  were  excluded
(Supplementary Fig 1), not to enrich the protein set in AMPs, for which dedicated predictors exist35–

38,40. By largely spanning the size range of typical effector proteins, this protein set should support
the prediction of effector antimicrobial activity without bias towards the recognition of short AMPs,
that are the most described antimicrobial proteins in the literature. 

Similarity searches of secreted proteins from the three fungal secretomes (excluding CAZymes,
since  their  function  is  well  documented)  were  performed.  For  sequence  similarity  searches,
blastp48 v.2.5.0  was  used  with  parameters  “--max_target_seqs  1  --evalue  0.05”.  For  structure
similarity searches, ESMFold-predicted structures were used as inputs for Foldseek49 v6.29e2557,
run in function foldseek search then foldseek convertalis with default parameters. Results were then
filtered to remove hits with E-values >0.05. Self-hits of known V. dahliae antimicrobials that were
implemented in our literature-curated set of antimicrobials were manually removed.

Assembly of a negative training dataset

A negative training dataset was assembled by gathering presumable non-antimicrobial proteins. As
previously  suggested36,40,  this  negative  set  was  curated  by  retrieving  proteins  which  functional
annotation does not suggest any antimicrobial activity from the UniProt database70. To do so, Gene
Ontology  (GO)  terms  associated  to  antimicrobial  activity  were  filtered  out  (i.e.  GO:0090729,
GO:0001878, GO:0045087, GO:0050830, GO:0050829, GO:0042742, GO:0071222, GO:0071224,
GO:0001530, GO:0031640, GO:0050832). Additionally, only well-annotated proteins without any
known function in microbial antagonism or immunity were selected. To prevent strong effects of
potential misjudgment during the curation process, the negative training dataset includes twice as
many  non-antimicrobial  proteins  as  there  are  antimicrobials  in  the  positive  set.  For  each
antimicrobial in the positive set, two presumably non-antimicrobial proteins encoded by the same
organism (or  a  close relative)  and with  similar  sizes  (+/-  4  amino acids)  were included in the
negative set. We paid attention to include at least as many secreted proteins (signal peptide detected
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and removed with SignalP64) in the negative set as in the positive set, not to bias the prediction
towards apoplastically released proteins. Finally, since 11 proteins in the positive training set were
annotated or described as ribonucleases, 11 ribonucleases, unlikely to exert antimicrobial functions
according to their annotation (for instance, involved in transfer RNA maturation) were included in
the negative set.

Calculation of protein properties

The  AMAPEC  predictor  was  trained  on  a  set  of  70  numerical  variables  reflecting  protein
physicochemical properties (Supplementary table 4a). Some of these values (n=15) were calculated
from amino acid sequences, using R v4.2.0 and the library Peptides v2.4.471. However, to better
describe  the  physicochemistry  of  proteins,  their  predicted  structures  were  used  to  calculate  55
numerical  values  per  protein  that  reflect  structural  properties.  Protein  structures  were predicted
using  AlphaFold50 v2.0  with  parameters  “--max_template_date=2021-05-14  –preset=casp14”.
Structure properties were calculated from AlphaFold best models (ranked_0.pdb output files) using
Python v3.11.5 and the PDB parser implemented in Biopython v1.78. Some previously published
code and formula from diverse sources72–74 (details in Supplementary Table 4a) were implemented
in AMAPEC’s Python scripts. For properties linked to protein secondary structures, DSSP75,76 v3.0.0
was used to assign individual amino acids to different types of secondary structures. Additionally,
pocket structures in proteins were predicted using Fpocket77 v4.0.2, and information related to their
number, size and properties were implemented as variables. 

Additional to sequence- and structure-derived physicochemical properties, the presence/absence in
protein sequences of certain k-mers was implemented as variable. To reduce sequence complexity, a
reduced  7-letter  aminoacid  alphabet  was  used,  as  previously  implemented  in  various  machine
learning methods applied to protein sequences36,78. A novel alphabet based on amino acid properties
was  designed,  to  define  k-mers  that  may  represent  key  motifs  in  protein  physicochemistry
(Supplementary Table 4b). The k-mer compositions of transformed sequences in the training set
was  profiled  using  MerCat279,  with  k-mer  sizes  3,  4,  5  and 6  amino acids.  Then,  chi-squared
multiple  testing  was  computed,  as  implemented  in  function  feature_selection.SelectFdr(chi2,
alpha=0.05)  of  Python  library  scikit-learn80 v1.2.1,  to  identify  k-mers  that  are  over-  or  under-
represented  in  antimicrobial  protein  sequences.  This  aimed  to  select  for  k-mers  that  are  likely
biologically meaningful, and to prevent later overfitting of our prediction model that can occur if
training is performed on numerous variables which combination describes protein sequences in too
much detail.  With chi-squared testing,  six k-mers (five 4-mers and one 3-mer) of interest  were
identified. Their presence/absence was implemented in the set of protein properties used to train the
AMAPEC predictor (Supplementary table 4c). 

Classifier training and quality estimation

Numerical  variables  reflecting  properties  of  our  456 proteins  were  standardized  using  function
preprocessing.StandardScaler()  of  Python  library  scikit-learn80 v1.2.1.  Then,  a  Support  Vector
Machines (SVM) classifier with a linear kernel was trained using function svm.SVC() from scikit-
learn. The correct the imbalance of the training set (152 proteins in the positive set and 304 in the
negative set), the weight of antimicrobials was set to 2 and the weight of non-antimicrobials to 1. A
second model was trained to predict the probability of antimicrobial activity, by computing Platt
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scaling  over  the  SVM  binary  classifier.  To  do  so,  the  function
calibration.CalibratedClassifierCV(method='sigmoid', cv='prefit') from sci-kit learn was used. Both
models were exported using function dump() from Python library joblib v1.2.0.

Due to  the  small  size  of  the  training  dataset  (n=456),  classifier  quality  testing  was  performed
through  leave-one-out  cross-validation.  As  implemented  in  function
cross_val_score(cv=KFold(n_splits=456)) of scikit-learn, 456 SVM classifiers were trained with a
train/test split of 455/1 to classify individual proteins using as a basis, protein properties in the rest
of  the  dataset.  Protein  classifications  into  “antimicrobial”  or  “non-antimicrobial”  were  then
analyzed by counting numbers of true positives, false positives, true negatives and false negatives.
These counts allowed the estimation of the overall classifier accuracy (R2) but also its precision,
recall, specificity and F-score. Such quality estimates were also calculated by exclusively taking
the classification correctness of fungal proteins into account, to identify if the predictor is suited for
the annotation of fungal proteins.

A bash  pipeline  allowing  both  the  calculation  of  protein  properties  and  antimicrobial  activity
prediction  using  the  trained  predictors  was  written,  resulting  in  the  software  AMAPEC  v1.0,
(developed and tested on operating system GNU/Linux Ubuntu v20.04.3 LTS).

Prediction of antimicrobial activity in fungal secretomes

AMAPEC v1.0 was used to predict the antimicrobial activity of proteins secreted by V. dahliae, C.
cinerea and  R.  irregularis,  while  excluding  dbcan53-annotated  CAZymes.  ESMFold55-predicted
structures,  which  pLDDT confidence  scores  can  be  seen  on  Supplementary  Figure  6  and  in
Supplementary  Table  5,  were  used  as  an  input.  GO enrichment  analyses  were  performed  with
software GOATOOLS56 v1.3.1 and GO term annotation from emapper52.
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Supplementary  Fig.  1: Sequence  lengths  in three  fungal  secretomes  and  in  the
literature-curated  set  of  antimicrobial  proteins.  The  top  three  histograms  show  mature
sequence lengths in number of amino acids of secreted proteins (predicted with SignalP64) in three
fungi selected based on their distance in the tree of life and their distinct lifestyles. Lifestyles and
phyla are labeled together with species names on the right. The histogram at the bottom shows the
length of sequences implemented in the literature-curated set of proteinaceous antimicrobials. 
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Supplementary Fig.  2: Sequence and structural similarities among proteins of the
literature-curated set of antimicrobials.  a. Distribution of blastp48 bitscores revealing inter-
protein  sequence  similarity  in  the  dataset  (534 non-self  significant  hits  with  evalue  ≤0.05).  b.
Clustering of proteins in the dataset according to significant sequence similarity (blastp48; evalue
≤0.05; UPGMA hierarchical clustering by bitscore) revealing few small groups of similar proteins.
c. Distribution of Foldseek49 bitscores revealing inter-protein structural similarity in the dataset (661
non-self significant hits with E-value ≤0.05). d. Clustering of proteins in the dataset according to
significant  structural  similarity  (Foldseek49;  E-value  ≤0.05;  UPGMA hierarchical  clustering  by
bitscore)  revealing  more  and  larger  groups  of  similar  proteins  than  the  analysis  of  sequence
similarities (panel b).
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Supplementary Fig. 3: Confidence of predicted structures in our training datasets.
Boxplots showing the distribution of mean pLDDT confidence scores of AlphaFold250-predicted
protein  structures  in  our  positive  and  negative  training  sets.  The  color  code  depicting  model
confidence originates from the documentation of AlphaFold2.
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Supplementary Fig. 4: Physicochemical properties of proteins and their importance
for antimicrobial activity prediction. Physicochemical properties implemented in our training
pipeline (Fig 1c) are listed and ranked according to their importance for our SVM classifier (vector
weights). The barplot in black (left) shows support vector coefficients, representing vector weights
and orientation. The barplot in grey (right) shows the results of an enrichment analysis testing for
significant differences between values in the positive and in the negative training set. This analysis
was conducted by Mann-Whitney U test and Benjamini-Hochberg correction (FDR values depicted
with asterisks: *: ≤0.05; **≤0.01; ***≤0.001) and we additionally calculated standard effect sizes
(Hedges’ g81).
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Supplementary  Fig.  5: Confidence  of  AlphaFold2-  and  ESMFold-predicted
structures for secreted proteins of Verticillium dahliae. Boxplots showing the distribution
of mean pLDDT confidence scores of AlphaFold250- and ESMFold55-predicted structures for 626
non-CAZyme secreted proteins of Verticillium dahliae. While the secretome of V. dahliae includes
635 non-CAZyme proteins, AlphaFold2 failed at predicting the structures of nine of these proteins,
which were therefore excluding from this analysis.  The color code depicting model  confidence
originates from the documentation of AlphaFold2.
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Supplementary  Fig.  6:  Confidence  of  predicted  structures  for  three  fungal
secretomes analyzed with AMAPEC.  Boxplots  showing the distribution  of  mean pLDDT
confidence scores of ESMFold55-predicted structures for the three fungal secretomes analyzed with
AMAPEC.  The  color  code  depicting  model  confidence  originates  from  the  documentation  of
AlphaFold250.
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Supplementary Table 1:  Description of the literature-curated set of antimicrobial
proteins. For each protein in the set, the table provides (1) a reference identifier; (2) the name of
the  protein  in  literature;  (3)  the  reported  antimicrobial  activity  in  literature;  (4)  the  group  of
organisms in which it is encoded; (5) the species producing the protein; (6) the publication that
described the antimicrobial activity of this protein; (7) whether a secretion signal was identified and
removed  from  the  protein  sequence;  (8)  the  pLDDT  confidence  score  for  the  AlphaFold250-
predicted structure.

Supplementary  Table  2:  Results  of  sequence  and  structure  similarity  searches
between three fungal secretomes and our literature-curated set of antimicrobials.  a.
Output of a blastp48 analysis using fungal secretomes (excluding CAZymes) as a query and the
literature-curated set of antimicrobials as a subject. b. Output of a Foldseek49 analysis using fungal
secretomes (ESMFold55-predicted structures, excluding CAZymes) as a query and the literature-
curated set of antimicrobials as a subject. 

Supplementary Table 3: Description of the negative training set of presumably non-
antimicrobial proteins. For each protein in the set, the table provides (1) a reference identifier;
(2) the functional description of the protein in the UniProt database70; (3) the group of organisms in
which it  is  encoded; (4) the species producing the protein;  (5) the UniProt entry identifier;  (6)
whether a secretion signal was identified and removed from the protein sequence; (7) the pLDDT
confidence score for the AlphaFold250-predicted structure.

Supplementary Table 4: Properties and k-mers describing protein physicochemistry
used  to  predict  antimicrobial  activity.  a.  List  of  70  properties  calculated  from  protein
sequences  and  structures,  with  as  a  reference,  the  method  implementing  the  calculation  or
publication introducing the formula. b. Reduced amino acid alphabet designed based on amino acid
properties  used  for  k-mer calling.  c.  Six k-mers  found to be  over-  or  under-represented  in  the
sequences of the positive training set when compared to those of the negative training set, according
to chi-squared testing.

Supplementary  Table  5:  Functional  annotation  of  secretomes  and  antimicrobial
activity  prediction  results.  Secretome  functional  annotation  outputs  of  emapper52 and
carbohydrate-active  enzyme annotation  from dbcan53,  together  with  the  results  of  antimicrobial
activity  prediction  with  AMAPEC  for  Verticillium  dahliae (a),  Coprinopsis  cinerea (b)  and
Rhizophagus irregularis (c).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.04.574150doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.04.574150
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	Composition of a literature-curated set of experimentally validated antimicrobial proteins
	Figure 1: Description of the antimicrobial activity predictor AMAPEC v1.0. a. Phylogenetic origin of the proteins in the dataset (green: number of proteins in positive dataset; red: number in negative dataset) that was used to train the predictor. b. Number of proteins included in the training dataset and proportion of secreted proteins. c. Schematic overview of the training pipeline (P/A= presence/absence). d. Estimation of the classifier quality, based on “leave-one-out” cross-validation in the training dataset. The top bar plot and pie chart show quality estimates calculated on the total dataset (n=456), while the bottom charts analyze only the classifications of fungal proteins (n=87) during the “leave-one-out” cross validation. e. Schematic overview of AMAPEC v1.0 showing its inputs and outputs with an example of three proteins.
	AMAPEC predicts numerous antimicrobials in fungal secretomes

	Figure 2: AMAPEC predicts numerous antimicrobials in the secretomes of diverse fungi. The top row of pie charts shows proportions of functional annotations in the secretomes of three fungi. CAZymes were annotated with dbcan53 and other functions were annotated with emapper52. The bottom row of pie charts shows results of antimicrobial activity prediction with AMAPEC, performed on all secreted proteins that are not CAZymes. On this same row, smaller pie charts depict proportions of predicted antimicrobials and non-antimicrobials that could be functionally annotated with emapper (in blue). Histograms showing the distributions of probabilities of antimicrobial activity estimated by AMAPEC are displayed at the bottom.
	Discussion
	Methods
	Reference fungal secretomes
	Curation of a set of antimicrobial proteins
	Assembly of a negative training dataset
	Calculation of protein properties
	Classifier training and quality estimation
	Prediction of antimicrobial activity in fungal secretomes

	Author contributions
	Acknowledgements
	References

