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Chemical Reaction Networks (CRNs) play a pivotal role in diverse fields such as
systems biology, biochemistry, chemical engineering, and epidemiology. High-level
modelling of CRNs enables various simulation approaches, including deterministic
and stochastic methods. However, existing Python tools for CRN modelling typi-
cally wrap external C/C++ libraries for modelling and simulation, limiting their
extensibility and integration with the broader Python ecosystem. In response, we
developed Poincaré and SimBio, two novel Python packages for the definition and
simulation of dynamical systems and CRNs. Poincaré serves as a foundation for
dynamical system modelling, while SimBio extends this functionality to CRNs, in-
cluding support for the Systems Biology Markup Language (SBML). Poincaré and
SimBio are developed as pure Python packages enabling users to easily extend
their simulation capabilities by writing new or leveraging other Python packages.
Moreover, this does not compromise the performance, as code can be Just-In-
Time compiled with Numba. Our benchmark tests using curated models from the
BioModels repository, demonstrate that these tools may provide a potentially su-
perior performance advantage, compared to other existing tools. Additionally, to
ensure a user-friendly experience, our packages use standard typed modern Python
syntax that provides a seamless integration with Integrated Development Environ-
ments (IDEs). Python-centric approach significantly enhances code analysis, error
detection, and refactoring capabilities, positioning Poincaré and SimBio as valuable
tools for the modelling community.
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Introduction

Chemical Reaction Networks (CRNs) are a fundamental concept of modelling in numerous
fields including systems biology, biochemistry, chemical engineering and epidemiology. They
are comprised of a set of chemical species or biological entities and representation of complex
interaction and transformation between them through a series reactions. These systems can
be modelled and simulated through multiple approaches: deterministic Ordinary Differential
Equations (ODEs) to model macroscopic behavior, Stochastic Differential Equations (SDEs)
to model microscopic fluctuations, and jump processes (Gillespie-like simulations) to account
for the discreteness of populations. Instead of directly writing the equations for each of these
formulations which is error-prone and difficult to reuse, these models can be written in a
higher-level description that can be compiled for these different types of simulations.

Several tools already exist for defining and simulating CRNs. BioSimulators.org (Shaikh et
al. 2022), a registry of simulation tools, list at least 15 Python software including COPASI
(Hoops et al. 2006), Tellurium (Choi et al. 2018) and PySB (Lopez et al. 2013). COPASI
is a standalone software with a GUI for defining and simulating models. It’s widely used for
its user-friendly interface and comprehensive features. There are also python bindings and
interfaces for COPASI to allow advanced scripting. Tellurium is a Python-based modeling
environment, however, it uses a C++ library called libRoadRunner in the backend to simulate
models. PySB is a Python library that created a DSL using standard Python to define models
which are then compiled to ODE using a Perl library called BioNetGen (L. A. Harris et al.
2016).

One limitation of these tools is that they are not extensible from Python, as they are not fully
Python packages but wrap libraries in other languages to do the simulation. While they enable
model definition and simulation control via Python scripts, they don’t fully leverage Python’s
extensive package ecosystem. For example, in COPASI, users are restricted to predefined
distributions for Random Parameter Scans and cannot utilize the diverse distributions available
in scipy.stats. Similarly, Tellurium doesn’t allow the use of Python solvers, as adding new
integrators requires C++ implementation.

Another challenge is the way models are written. Many tools use a Domain Specific Language
(DSL) for coding, and support the System Biology Markup Language (SBML) as an exchange
format (Hucka et al., n.d.), as direct SBML coding is impractical. A DSL allows reuse of code
in different programming environments, but it will not be recognized by default in Integrated
Development Environments (IDEs). Therefore DSLs cannot provide the development experi-
ence such as syntax highlighting, code completion, refactoring, and static analysis, unless such
support is specifically developed. Tellurium uses a Domain Specific Language (DSL) called
Antimony (Smith et al. 2009), which can be translated to SBML. An extension for Visual
Studio Code was developed, but its maintenance could be demanding task for the systems
biology community. PySB, using Python’s dynamic nature, created a DSL within Python. By
default, it uses global state to create species and parameters, without assigning them to Python
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from poincare import Derivative, System, Variable, initial

class Decay(System):
x: Variable = initial(default=1)
eq = x.derive() << -x

𝑑𝑥
𝑑𝑡 = −𝑥 𝑥(0) = 1

(a) First-order system of an exponential decay. The variable x stores the initial condition for 𝑥, and
the variable eq stores the rate equation for 𝑥.

class Oscillator(System):
x: Variable = initial(default=1)
v: Derivative = x.derive(initial=0)
eq = v.derive() << -x

𝑑2𝑥
𝑑𝑡2 = −𝑥 {𝑥(0) = 1

𝑑𝑥
𝑑𝑡 (0) = 0

(b) Second-order system of an harmonic oscillator, where the variable v stores the derivative 𝑑𝑥
𝑑𝑡 and

the rate equation is specified for the derivative v.

class BigModel(System):
x: Variable = initial(default=1)
linked = Decay(x=x)
independent = Decay(x=2)

{
𝑑𝑥
𝑑𝑡 = −𝑥
𝑑𝑦
𝑑𝑡 = −𝑦 {𝑥(0) = 1

𝑦(0) = 2

(c) First-order system of two exponential decays by composition of the Decay system. The subsystem
linked has a reference to the outer variable x, while the subsystem independent defines a new
variable with initial condition 2, which on the corresponding mathematical expression was named
𝑦.

Figure 1: Code and corresponding mathematical expressions for different systems.

variables or adding them explicitly to the model, but this approach is not fully compatible
with IDEs, affecting the development experience.

To overcome these limitations, we developed poincaré and SimBio, open-source Python pack-
ages for defining and simulating systems. Poincaré allows defining differential equation sys-
tems, while SimBio builds on it for defining reaction networks. They are focused on providing
an ergonomic experience to end-users by integrating well with IDEs and static analysis tools
through the use of standard modern Python syntax. Since they are coded in Python, every
part from model definition to simulation can be extended from Python syntax. Being the
first-ever pure Python packages for systems modelling, they offer extensive extensibility, from
simple tasks like reusing integrators defined in other packages, to complex ones like altering
the compilation process to leverage some structure in the equations. For example, using a
for-loop in the compiled equations could improve the runtime performance if there is some
repetitive structure in the system, as happens in spatial modelling. The models built using
these packages can be introspected to create other representations, such as graphs connecting
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Figure 2: Screenshots of Visual Studio Code showing tooltips and highlighted type errors.
Constant are assigned with assign(..., constant=True) and can be used to link
Variables initial conditions, while trying to use a Parameter instead is flagged as
type errors (red underlining). The IDE automatically recognizes e as an Equation,
and provides autocompletion of the variables. A tooltip is shown when composing
models, which show the expected variables and their default values. The IDE high-
lights wrong names (z is not a name in Model) and mismatched types (x is Variable
and a must be a number or a Constant)

species and/or reactions, or tables with parameters or equations. Furthermore, they have a
modular architecture with a clear separation of concerns, making it easier to maintain or to
contribute new code, which is beneficial for developers and maintainers. We showcased the
reliability of these tools by benchmarking them against the simulation results from other tools.
We also highlighted the substantial performance improvements our tools offer, as this is crucial
for construction and simulation of models of whole cells and organisms, which necessitate the
simulation of significantly large-scale models.

Results

Modular code architecture makes code reusable, extensible, and easier to maintain. Therefore,
we split the code to define and simulate reaction systems into three Python packages: symbolite,
to create symbolic expressions; poincaré, to define dynamical systems; and simbio, to define
reaction systems and interface with systems biology standards such as SBML. These are pure
Python packages with standard dependencies from the PyData scientific stack such as NumPy
(C. R. Harris et al. 2020) and pandas (McKinney 2010). They are published in PyPI (the
Python Package Index), where links to the source code and documentation hosted in GitHub
can be found, and can be easily installed with pip install <package_name>.

Symbolite is a lightweight symbolics package to create algebraic mathematical expressions.
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import numpy as np
from poincare import Simulator

sim = Simulator(Oscillator)
df = sim.solve(save_at=np.linspace(0, 5, 101))

df.head()

x v
time
0.00 1.000000 0.000000
0.05 0.998750 -0.049979
0.10 0.995005 -0.099835
0.15 0.988772 -0.149440
0.20 0.980069 -0.198672

df.plot();

0 1 2 3 4 5
time

1.0

0.5

0.0

0.5

1.0 x
v

Figure 3: Simulation of the Oscillator system from Figure 1b. The output is a
pandas.DataFrame with a column for each variable and the time as index. It is
inspected and plotted with the pandas methods.

Symbolite expressions can be inspected and compiled to various backends. Currently, we have
implementations for NumPy (C. R. Harris et al. 2020); Numba (Lam, Pitrou, and Seibert
2015), a Just-in-Time (JIT) compiler to LLVM; SymPy (Meurer et al. 2017), a library for
symbolic mathematics; and JAX (Bradbury et al. 2018), a library that support automatic
differentiation and compilation to GPUs and TPUs. Symbolite is designed to facilitate the
easy integration of new backends.

Versatile modelling and simulation of dynamical systems with Poincaré

Poincare is a package to define and simulate dynamical systems. It provides a System class,
where one can define Constants, Parameters, Variables, and create equations linking a vari-
able’s derivative with an expression (Figure 1a). It also allows to define higher-order systems
by assigning an initial condition to a Derivative (Figure 1b).

Utilizing classes for system definition offers several advantages:

1. The variable name to which a component is assigned can be automatically saved in the
component for introspection (i.e., Oscilator.x.name == "x"),

2. It provides a namespace such that allows to easily define of multiple independent models
in the same script,
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from simbio import Compartment, MassAction, Species, RateLaw, initial

class Model(Compartment):
"""2A -> B"""

A: Species = initial(default=1)
B: Species = initial(default=0)
r = RateLaw(

reactants=[2 * A],
products=[B],
rate=1,

)

{
𝑑𝐴
𝑑𝑡 = −2
𝑑𝐵
𝑑𝑡 = +1 {𝐴(0) = 1

𝐵(0) = 0

class Model(Compartment):
"""2A -> B"""

A: Species = initial(default=1)
B: Species = initial(default=0)
r = MassAction(

reactants=[2 * A],
products=[B],
rate=1,

)

{
𝑑𝐴
𝑑𝑡 = −2𝐴2

𝑑𝐵
𝑑𝑡 = +1𝐴2 {𝐴(0) = 1

𝐵(0) = 0

Figure 4: A reaction system for species 𝐴 and 𝐵 with initial conditions 1 and 0, respectively. A
single reaction transforming 2𝐴 into 𝐵 is saved in variable r. The rate 1 is specified
directly for RateLaw, and is proportional to the reactants for MassAction.

3. It allows IDEs to provide autocomplete and refactoring capabilities (Oscillator.<TAB>
shows x, v and eq),

4. It allows creation of instances which can be composed into a bigger model (Figure 1c).

For this last point, IDEs that support dataclass_transform (De Bonte and Traut 2021)
can provide a tooltip with the expected signature (Figure 1c). This requires the use of type
annotations which play a more significant role in static type checking, as they can help to
identify errors before running the code. For instance, to parameterize the initial conditions
of variables we have to use a Constant. If we try to use a Parameter, which could be a
time-dependent expression, it is flagged as a type error (Figure 2).

To simulate a system, we created a Simulator instance (Figure 3), which compiles a given
system and interfaces with solvers. By default, it creates a first-order ordinary differential
equation (ODE) system using numpy as a backend. This can be easily switched to other
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from simbio.io import biomodels, sbml

model = sbml.load("repressilator.sbml") # from existing SBML file
model = biomodels.load_model("BIOMD12") # from BioModels
model

Elowitz2000 - Repressilator
type total names
variables 6 PX, PY, PZ, X, Y, Z
parameters 17 cell, beta, alpha0, alpha, eff, n, KM, tau_mRNA, tau_prot, ...
equations 12 Reaction1, Reaction2, Reaction3, Reaction4, Reaction5, ...

Figure 5: Creation of a model from a local SBML file or one uploaded to BioModels.

solvers. The Simulator wraps the output in a pandas.DataFrame, which can be easily plotted
with the standard plot method.

Switching backends to "numba" can improve model runtime on a factor up to x30 or more for
big or long running models, however incurs in a compile time penalty for the first run which
must be taken into account.

Extensible definition of reaction networks using SimBio

For the reaction networks, our focus is on first-order differential equations that describe the
rate of change of species. SimBio simplifies the definition of these network models by intro-
ducing Species, which consists of a poincare.Variable and a stoichiometric number, and
RateLaw, a construct that converts reactants into products taking into account the stoichiom-
etry (Figure 4). Additionally, SimBio features MassAction, a subclass of RateLaw, which
intuitively incorporates reactants into the rate law (Figure 4).

Several commonly used reactions are predefined as MassAction subclasses, such as
MichaelisMenten (𝑆 + 𝐸 ↔ 𝐸𝑆 → 𝑃 + 𝐸) and its approximate form without the interme-
diate species 𝐸𝑆, and it is also simple to implement your own as subclasses of RateLaw or
MassAction. Additionally, SimBio supports importing from and exporting to SBML, and
downloading them directly from BioModels (Malik-Sheriff et al. 2020) (Figure 5).

Reproducibility and performance

To evaluate SimBio’s reproducibility, we analyzed curated SBML models from BioModels
(Malik-Sheriff et al. 2020). Among the first 100 curated models from BioModels we selected 60
which did not contains events, as SimBio doesn’t support events yet. We simulated the selected
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Figure 6: Performance of different softwares to solve models from the curated section of
BioModels. (left) Run time for the model BIOMD3 as a function of the number
of output points. (right) Run time for different models for 300 output points, using
the geometric mean of the different softwares to order them.

models with COPASI and used the simulated results as ground truth, and demonstrated
that SimBio reproduces the results with minor numerical differences depending on the solver
tolerance.

For performance testing, we ran simulations using COPASI, Tellurium/RoadRunner, and Sim-
Bio. Within SimBio, both NumPy and Numba backends were considered. The LSODA solver
was used for COPASI and SimBio, while for Tellurium the comparable CVODE solver was used.
In all cases, we used relative and absolute tolerances of 10−6. We measured three simulation
stages: loading, the initial (cold) run, and subsequent (warm) runs for each model.

For COPASI and Tellurium/RoadRunner, we noted that its runtime depended on the number
of evaluation points, something that does not seem to happen with SimBio (Figure 6, left).
While SimBio’s NumPy backend is slower than both COPASI and RoadRunner, we obtained
an order of magnitude speed-up using the numba backend putting it on par with them. A user
might have to consider the trade-off between compilation and run times, as the compilation of
the right-hand-side (RHS) code might take longer than the runtime itself, and not be worth
it for running the model only once. Another speed-up in the runtime can be had by switching
the LSODA scipy solver for a more efficient numbalsoda implementation, which avoids the
Python interpreter between each of the integration steps. This last combination beats all other
methods, which is also true for the other models we tested (Figure 6, right).

Discussion

In this article, we introduced a suite of Python packages we developed for defining and simu-
lating dynamical systems and reaction networks. These packages are deeply integrated with
Integrated Development Environments (IDEs), enabling code analysis tools to identify errors
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prior to execution and assist in refactoring and code completion. We adopted standard mod-
ern Python syntax to ensure seamless IDE integration, supported by the extensive Python
community.

Our approach differs from previous tools in that both the model definition and its compila-
tion into an Ordinary Differential Equation (ODE) function are entirely Python-based. This
approach simplifies the development of various simulation methods, including performance
enhancements that exploit specific model structures. Importantly, being Python-based does
not compromise performance compared to C/C++ tools, as the ODE functions can be Just-
In-Time (JIT) compiled using Numba.

The inclusion of SBML support facilitates the effortless reuse of models created by the systems
biology community, along with the vast collection of public models hosted in the BioModels
repository. The modular architecture of these packages facilitates their reuse, enhancement,
and extension by the wider Python community. For instance, an individual from outside
the systems biology field could contribute a stochastic integrator to poincaré, which would
then be available in SimBio. This clear separation of concerns also makes the packages more
comprehensible, lowering the barrier for contributing improvements or new features. Such an
architecture ensures their maintainability and ongoing development well into the future.

Resources

Source code repositories for these packages can be found at https://github.com/maurosilber
/poincare and https://github.com/hgrecco/simbio.
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