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 2 

Abstract 32 
Identifying T cell epitopes is essential for studying and potentially tuning immune responses to 33 
pathogens. The polymorphic nature of major histocompatibility complex of class II (MHCII)-genes, 34 
and the complexity of the antigen processing mechanisms hinders the effective prediction of 35 
immunodominant patterns in humans, specially at the population level. Here, we combined the 36 
output of a reconstituted antigen processing system and of in silico prediction tools for SARS-37 
CoV-2 antigens considering a broad-population coverage DRB1* panel to gain insights on 38 
immunodominance patterns. The two methods complement each other, and the resulting model 39 
improves upon single positive predictive values (PPV) from each of them to explain known 40 
epitopes. This model was used to design a minimalistic peptide pool (59 peptides) matching the 41 
performance reported for large overlapping peptide pools (> 500 peptides). Furthermore, almost 42 
70 % of the candidates (23 peptides) selected for a frequent HLA background 43 
(DRB1*03:01/*07:01) feature immunodominant responses ex vivo, validating our platform for 44 
accessing T cell epitopes at the population level. The analysis of the impact of processing 45 
constraints reveals distinct impact of proteolysis and solvent accessible surface area on epitope 46 
selection depending on the antigen. Thus, considering these properties for antigens in question 47 
should improve available epitope prediction tools.  48 

 49 
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Introduction 51 
 52 
T cell responses to any given antigen are focused on immunogenic peptides restricted by 53 
individual’s Major Histocompatibility Complex (MHC) molecules. MHC-bound peptides triggering 54 
T cell activation are considered T cell epitopes and thus represent the switch for accessing T cell 55 
function. Peptides featuring T cell activation are extremely important in basic and clinical 56 
immunology research, and when they are recurrently selected by one or several MHC allotypes 57 
they are considered immunodominant1. Immunodominant T cell epitopes may be more or less 58 
easily accessed on inbred and syngeneic animals with defined MHCII haplotypes. However, 59 
addressing and rationalizing immunodominance patterns in humans poses major challenges. 60 
There are important differences at the individual and population level between human beings 61 
exposed to pathogens, and experimental animal models immunized under laboratory conditions. 62 
Humans express at least three highly polymorphic sets of MHCII molecules (DRB1, DQ and DP), 63 
and it is therefore extremely difficult to assign a clear restriction for peptides that yield positive 64 
hits for T cell activation at a large scale. Furthermore, certain peptides feature promiscuous 65 
binding, hence they are restricted by more than one MHCII-allotype. Additionally, inter-individual 66 
differences on antigen processing mechanisms and distinct T cell Receptor (TcR) genes and 67 
repertoires between individuals affect the preferential recognition of peptide-MHCII combinations, 68 
hence the observed responses.  69 
 70 
Peptide binding to available MHCIIs, more precisely the kinetic stability of the complex, is 71 
regarded as the key feature correlated with immunogenicity2. Sequence agreement of antigenic 72 
determinants with those of peptides eluted from MHC molecules is typically considered as a proxy 73 
for kinetic stability, and thus it is used to predict immunodominance. Importantly, not all antigenic 74 
peptides with a predicted or measured binding affinity become immunogenic. Under physiological 75 
conditions antigens are proteolytically degraded, mainly in late endosomal compartments where 76 
they are loaded onto MHCII molecules in the presence of proteases and HLA-DM3. However, 77 
besides the canonical processing of antigens in endosomes, work on murine models of infection 78 
revealed the relevance of alternative processing pathways to immunodominance4. Resistance to 79 
proteolytic degradation of antigenic regions, along with their location in folded or unfolded regions 80 
amenable to bind to MHCIIs have been proven to impact immunogenicity. In this context, novel 81 
platforms based on artificial intelligence (AI) have sought to implement additional constraints to 82 
improve epitope discovery with encouraging, yet suboptimal results.  83 
 84 
The interest on accessing immunodominant determinants for understanding and manipulating 85 
immune responses to pathogens has motivated different strategies and conceptual frameworks 86 
over the last decades. Bottom-up strategies prioritize fundamentally peptide binding to, or 87 
presentation by single MHCII molecules. Recent examples of this “MHC-centric” view include 88 
investigations in the context of influenza5, HIV6 and more recently, SARS-CoV-27,8. Although 89 
these studies are usually limited to a handful of MHCII allotypes, they contribute relevant 90 
mechanistic insights for epitope selection. Top-down approaches on the other hand make use of 91 
peptide libraries spanning regions with high potential to become immunogenic, or in the best 92 
cases entire proteomes. This “MHCII agnostic” framework theoretically provides an unbiased 93 
overview of immunogenicity when spanning the entire proteome and has also been considered 94 
for SARS-CoV-2 infection9,10. However, this approach is limited to small pathogens and may suffer 95 
from library design considerations that neglect relevant binders. Nevertheless, “MHC-agnostic” 96 
studies can provide insights on immunodominance patterns when combined with elaborated 97 
epitope mapping strategies.  98 
 99 
The great impact of SARS-CoV-2 on our society led to unprecedented research efforts to score 100 
the role of the immune system to fight the virus. Viral control was associated with CD4+ T cell 101 
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function11, and disease severity was soon correlated with poor, delayed or inefficient CD4+ T cell 102 
responses12,13. Given their relevance, the presence and function of SARS-CoV-2-reactive CD4+ T 103 
cells in healthy, infected, and vaccinated individuals has been thoroughly investigated9,14–23. Thus, 104 
the average response to SARS-CoV-2 in an individual has been estimated to result from 19 105 
epitopes, as measured with peptide pools of broad viral-antigen and MHCII coverage9. These 106 
works, together with others dedicated efforts on single MHCII allotypes8,24 yield an extremely 107 
attractive background for scoring the potential antigen processing constraints for 108 
immunodominance.   109 
 110 
In this work we rationalized the use of a panel of MHCII allotypes with broad population coverage 111 
to study SARS-CoV-2 immunodominance at both, allele and population level. We contextualize 112 
the candidate epitopes selected by each individual allotype as well as by the entire MHCII panel 113 
on the basis of experimental evidence from a reconstituted antigen processing system25,26, in 114 
silico predictions, and information on CD4+ T cell responses to SARS-CoV-2 available from the 115 
IEDB27. Integrating the resulting information with known antigen- and MHCII-related features 116 
allows us to identify distinct epitope selection patterns for two model antigens. Importantly, the 117 
combination of both in vitro and in silico hits, facilitates defining a limited peptide-pool that triggers 118 
T cell responses on a broad panel of MCHII allotypes. Finally, making use of MHCII-tailored 119 
peptide pools we could evaluate the extent of immunodominant responses on individuals bearing 120 
the same MHCII haplotypes. 121 
 122 
Results 123 
Contextualization of DRB1 allotypes with a broad population coverage for scoring 124 
immunodominance patterns of CD4+ T cell responses to SARS-CoV-2  125 
 126 
Peptides derived from SARS-CoV-2 proteins recurrently selected for their display by one 127 
(exclusive restriction) or more than one allotype (promiscuous binder), and giving rise to recurrent 128 
T cell responses are considered immunodominant (Figure 1a). We conceived combining 129 
information of a reconstituted antigen processing system and in silico predictions to query the 130 
impact of antigen processing constraints on the selection of immunodominant epitopes for 131 
representative allotypes. We reasoned that beyond any allotype-specific immunodominance 132 
pattern revealed by our work, an integrative approach considering a representative set of MHCII 133 
allotypes will allow us drawing conclusions at the population level, especially when leveraging on 134 
the extensive available information.  135 
 136 
We focused our efforts on DRB1* heterodimers as main drivers of MHCII-specific immune 137 
responses to viruses28. We defined a panel of frequent allotypes with high phenotypic coverage 138 
(presence of selected allotypes at the individual level, Figure 1b). Selecting 11 common DRB1* 139 
allotypes, based on available frequencies for European Caucasian populations29, we anticipated 140 
a phenotypic coverage higher than 90 %. HLA-typing of a pool of 109 donors recruited between 141 
November 2019 and February 2020 revealed minor differences between the expected 142 
frequencies, and those achieved by our sample. However, the phenotypic coverage achieved by 143 
the selected panel was in the expected range, with only 4 out of 109 donors (3 %) not expressing 144 
at least one of the allotypes included in our set (Figure 1c, Table S1).  145 
 146 
We then evaluated the potential use of available information on immune responses to SARS-147 
CoV-2 to contextualize our prospective findings. Thus, we queried the broadest and most 148 
comprehensive repository of human immune responses, the Immune Epitope Data Base 149 
(IEDB)27. We retrieved all data on CD4+ T cell responses to SARS-CoV-2 and subset the relevant 150 
information for our goal (details in Figure S1a-e). As of September 2022, there were similar total 151 
numbers of entries annotated as CD4+ T cell epitopes (Ep, n=1800) and MHCII Ligands (Lig, 152 
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n=1687), and almost double the number for T cell Assays (TcAs, n=3437) but only a handful of 153 
multimer-identified epitopes (Tet_TcAs, n=149) (Figure 1d). There is a clear heterogeneity in 154 
terms of size of the studies, of the applied experimental approaches as well as in the source of 155 
the antigens tested (Table S2 and Table S3). Information on restriction could be attained from 156 
ligand data (Lig entries, with measured binding affinities), peptides from mono-allelic models or 157 
defined by display methodologies), or TcA data with associated MHC restrictions (e.g. Multimers, 158 
Tet_TcAs). The subset information is directly applicable for targeted questions, e.g. validating 159 
predicted or experimentally defined restrictions. However, we reasoned that the 1093 unique 160 
TcAs entries may contain as well relevant information for our work. We therefore evaluated the 161 
potential coverage of our panel of 11 DRB1* allotypes for the studies where typing information 162 
was available. This analysis reveals a considerably good representation throughout all datasets 163 
(50-100 % phenotypic coverage). Exemplarily, the p(Set) reporting the probability for each TcA 164 
record within the subset HLA-Type for being restricted by one of the allotypes of our panel, is 165 
higher than 0.5 in 80 % of the cases (Figure 1e). 166 
 167 

 168 
Figure 1. Overview of immunodominance from a human population perspective. a. From all potential peptides in 169 
the viral proteome of SARS-CoV-2 (shown as spheres) every MHCII allotype considered (MHCII-x-z) would 170 
preferentially select a limited pool, which will define the corresponding immunodominance pattern. There will be 171 
peptides that become immunogenic for only one allotype (black sphere) whereas others may be restricted by more 172 
than one allotype (beige sphere). Peptides being immunodominant for several allotypes feature promiscuous binding 173 
to the corresponding MHCs. b. Every individual in a population carries specific MHCII haplotypes consisting of DP, DQ 174 
and DR molecules (HLA-type, color coded). From all MHCII molecules, DRB1 dimers play a key role in responses to 175 
viral pathogens. Based on their frequency it is possible to design a restricted panel of allotypes with a high phenotypic 176 
coverage representative for a given population. c. A panel of 11 HLA class II molecules (color coded) with an expected 177 
cumulative frequency of up to 82 % of European populations (left bar) is conceived to determine the CD4+ T cell specific 178 
responses over a panel of voluntarily recruited donors, and evaluate immunodominant and/or prevalent responses in 179 
published data. The coverage of the sampled population reaches up to 76 % (right bar) and a phenotypic coverage of 180 
up to 97 % (in 109 donors). d. Overview of the number of entries in the Immune Epitope Data Base (IEDB) for all 181 
available MHCII-related SARS-CoV-2 epitopes, ligands and T cell Assays (as of September 2022). e. The TcAs subset 182 
account for 3437 entries, comprising 1093 unique hits that could be further subdivided into different categories. We 183 
considered subset entries that provide responses in a high proportion of individuals (HF_TcAs) and those that have a 184 
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broad HLA-typing information associated (HLA-type). In case of HF_TcAs there is often an inferred restriction assigned 185 
to the epitope. Many of those entries are reported to be restricted by some of the DRB1* allotypes of our panel. 186 
However, the heterogeneity on the methods to report restrictions (e.g. predictions or exclusion of alleles from non-187 
reacting donors) led us to omit this information for our analysis. HLA-Type entries on the other hand usually report 188 
entries that had been tested in many individuals and only a handful respond to them. In this case the HLA-types of the 189 
individuals responding is also provided, and permits the estimate of the probability of phenotypic coverage of the 190 
designed panel. Overall, if p(Set)> 0.5 the individuals tested would bear at least one of the allotypes selected in our 191 
panel. If more than one individual was tested, and only one individual would carry any of the HLA-types considered the 192 
p(Set) value ranges between 0.1 and 0.4). f. Summary of the counts of CD4+ T cell epitopes (upper panel), and number 193 
of individuals responding to prevalent immunogenic regions (lower panel) retrieved from the IEDB, and plotted over a 194 
scheme of the SARS-CoV-2 proteome (color coded by orfs as stated in the legend). Prevalent or High Frequency 195 
(HF_TcAs) responses are considered those observed in experiments including a minimum of 10 individuals, in which 196 
at least 5 individuals responded to the corresponding peptide. 197 
 198 
Sampling and/or reporting biases across the viral proteome may impact the contextualization of 199 
our planned work. Therefore, we checked for antigen-sampling skewing as a final step towards 200 
validating the usage of the IEDB data for our goal. There is a clear over-representation of the 201 
three structural proteins: Spike, Nucleocapsid and Membrane when considering entries tagged 202 
as Ep (Figure 1f upper part). Such picture is mirrored as well in Lig entries and probably reflects 203 
a pronounced interest on accessing the immunogenic determinants of structural proteins (Figure 204 
S1c). Despite this bias, we identified a set of peptides tested over a large number of individuals 205 
(not selected on the basis of specific allotypes) and triggering prevalent responses. We subset 206 
these entries as High Frequency TcAs (HF_TcAs), if the Response Frequency (RF)30 was higher 207 
than 0.5 and the minimum number of individuals in which it was tested was 10. Interestingly, these 208 
entries are spread in most cases over the entire viral proteome (Table S2 and Figure S1e). Given 209 
the good phenotypic coverage of our panel we reasoned that these highly immunogenic regions 210 
represent relevant targets that may be preferentially restricted by allotypes between those 211 
considered by us (Figure 1d lower part). If this is the case, these regions may be as well selected 212 
by our approach. 213 
 214 
A reconstituted antigen processing system points out different pathways for peptide 215 
selection from the Spike and Nucleocapsid proteins 216 
 217 
We used an experimental system to probe immunodominance patterns of human responses to 218 
SARS-CoV-2 using our DRB1 panel. We focused on the Spike and Nucleocapsid proteins since 219 
these two antigens have a great contribution to the total immune response to SARS-CoV-2, and 220 
there is a large pool of information available on the curated IEDB entries (Table S2 and S3). We 221 
applied a reconstituted antigen processing system previously described25 and tuned by us for 222 
identifying T cell epitopes from complex antigenic mixtures26. While this experimental model 223 
system will not entirely reflect the cellular environment in its complexity, it features the main steps 224 
of the MHCII-antigen processing and presentation pathway. In particular, this model incorporates 225 
several key components such as proteases and the peptide loading catalyst HLA-DM3, as well as 226 
the place-holder peptide CLIP and a reducing environment (Figure 2a). We performed the 227 
experiments following previously described protocols facilitating the interaction of the antigen with 228 
CLIP-loaded MHCII molecules in the presence of DM prior to adding proteases31. After 229 
immunoprecipitation of MHCII-peptide complexes peptides are eluted and cleaned up. 230 
Subsequently liquid chromatography mass spectrometry (LC-ESI-MS) facilitates the identification 231 
of bound peptides.  232 
 233 
We detect a significant exchange of CLIP for peptides derived from the SARS-CoV-2 antigens 234 
applied. On average the total ion current (TIC) for SARS-CoV-2-derived peptides from these 235 
antigens reached more than 50 % with only two deviations from this behavior (DRB1*13:01 and 236 
DRB1*13:02) with TICs for non-CLIP peptides lower than 10 % for both antigens (Figure 2b). This 237 
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low exchange rate of CLIP for these allotypes was observed with two batches of the 238 
corresponding proteins assayed in triplicates validating the outcome of the experiments (see 239 
summary in Table S4 and Figure S2). Our analysis pipeline combines the information on the 240 
series of nested peptides identified by MS for each allotype into consensus peptides as previously 241 
described32. Consensus peptides, also referred as experimentally predicted epitopes (epEp), 242 
were then mapped to their corresponding antigen, Spike (Figure 2c) or Nucleocapsid protein 243 
(Figure 2d) along with their relative intensity for each allotype. Additionally, we combined all 244 
intensity values for each residue in all allotypes assayed (MS_ALL). This analysis revealed five 245 
regions of more than 15 amino acids from the Spike protein (SI to Sv) that are preferentially 246 
selected by more than 4 different allotypes (relative intensity above the median of the candidates 247 
for each allotype). Additionally, we observe a clear bias towards the selection of peptides from 248 
two regions of the Nucleocapsid protein (NI and NII) (details in Figure S3). Interestingly, the NII 249 
region, selected by all DRB1* allotypes, map to a specific segment of the dimerization domain. 250 
Thus, while we detect an allotype-specific pattern of peptide selection for the Spike there is a 251 
clear bias to a defined region (NII) in case of the Nucleocapsid protein (Figure 2c and d).  252 
 253 
We noted that for all the experiments, a handful of peptides accumulate most of the TIC 254 
measured. Thus, we hypothesized that peptides preferentially selected represent regions with a 255 
higher likelihood to be displayed to T cells in a cellular environment and thus become epitopes 256 
(Figure 2e). To test this hypothesis, we evaluated to what extent the intensity values of the MS 257 
data explain residues that have been described as: i) Ligands for each allotype, Lig (subset of 258 
those with measured affinities, and including only as positive hits those with Binding affinities 259 
lower than 1000 nM), ii) entries yielding frequent/prevalent responses, HF_TcAs, and iii) those 260 
identified/confirmed via multimer staining, Tet_TcAs. We considered independent binary logistic 261 
regression models for each of these entries at the residue level (positive and negative hits coded 262 
as 1 and 0, respectively). The MS intensity values also coded at the residue level, and supplied 263 
as continuous variable, were considered the independent variable to fit the corresponding models. 264 
This analysis concludes that the measured MS data has a decent performance to identify residues 265 
from peptides reported as HF_TcAs, with PPV that go up to 0.75 (Figure 2g). PPV for Lig or 266 
Tet_TcAs on the other hand are relatively small, indicating a certain disagreement between the 267 
experimental data and that previously reported. The smaller number of entries considered in these 268 
cases could account, at least partly, for these lower PPVs. Together, we conclude that the 269 
reconstituted antigen processing system selects HF_TcAs which have not been previously 270 
described as binders or in Tetramer stains. However, since these peptides are eluted from MHCII 271 
molecules they should be considered ligands, and may represent not yet probed peptides in 272 
multimer stains.  273 
 274 
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 275 
Figure 2. Overview of the reconstituted in vitro antigen processing system. a. Rationale and experimental 276 
overview of the antigen processing system. The protein database used for the searches consists of 311 entries 277 
including common MS-contaminants and abundant proteins from the host used for recombinant protein expression 278 
(Exp. Host, S. frugiperda), those used for protein manipulation and antigen processing proteins as well as all reference 279 
SARS-CoV-2 proteins. b. Summary of the performance of the antigen processing system for the selection of candidate 280 
antigenic peptides. The sum of the MS1 intensities for the SARS-CoV-2 identified peptides is represented for each of 281 
the 3 sets of experimental conditions tested. Note that the average of n = 2 experiments with 3 technical replicates 282 
measured for each has been considered. c. Summary of the antigenic regions selected by each allotype (stated in the 283 
left) over the Spike protein and depicted according to their relative MS1 intensity. In the lower part the main domains 284 
defined for this protein are indicated. The relative frequency of the overlap of candidates selected by all allotypes 285 
considered is shown in upper row, referred as ALL. d. The same as in c. but for the Nucleocapsid protein. e. Summary 286 
of the number of consensus peptides (maximum of the overlap of the series of nested peptides) identified by MS. The 287 
color code refers to the number of peptides defined as those with higher MS1 intensity than the mean (High), or lower 288 
(Low). f. Summary of the Positive Predictive Value (PPV) for the identification of known ligands (Binding affinity 289 
measured lower than 1000 nM, shown in the upper panel, yellow), epitopes that give rise to prevalent responses (middle 290 
panel, blue, HF_TcAs), and those validated by tetramer stains (lower panel, black), based on MS-data for the two 291 
antigens used. Independent models were attained and tested for each allotype considered by our DR-panel. The size 292 
of the dot refers to the PPV as shown in the legend.  293 
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A systematic in silico analysis reveals potentially immunogenic regions not overlapping 294 
with those selected experimentally  295 
 296 
We applied in silico prediction tools to gain further insights on immunodominance patterns of 297 
human responses to the Nucleocapsid and Spike proteins of SARS-CoV-2. We considered 298 
validating the results of these predictions on the IEDB curated entries as we did for candidates 299 
selected by the reconstituted in vitro antigen processing system. We performed the analysis over 300 
the entire viral proteome and subset, where necessary the analysis for the Spike and 301 
Nucleocapsid proteins. All potential 15-mers in the viral proteome (average size of MHCII-302 
epitopes) were queried with each of the DRB1* allotypes from our panel using NetMHCIIPan4.033 303 
(binding), MARIA34 and NeonMHCII35 (presentation predictions). We also considered the outcome 304 
of the IEDB CD4+ T cell immunogenicity prediction tool36 as a flagging criterion. This tool ranks 305 
peptides according to their similarity to previously described epitopes for a panel of seven 306 
common MHCII allotypes (DRB1*03:01, 07:01 and 15:01 as well as DRB3*0101, *02:02, 307 
DRB4*01:01 and DRB5*01:01), and its combined score brings together binding motifs and 308 
immunogenicity information. Interestingly, each of the three tools considered selects specific 309 
antigenic regions as depicted in Figure 3a for the Nucleocapsid protein as model antigen, and 310 
DRB1*03:01 as allotype. Furthermore, most of the peptides from all these regions are flagged by 311 
the combined score of the IEDB immunogenicity prediction tool. Therefore, we considered the 312 
sum of all predictors as in silico predicted Epitopes (ipEP). 313 
 314 
The combined output of these tools selects recurrently around 5 (average 22 peptides) and 25 315 
(100 peptides) antigenic regions (consecutive and non-interrupted appearance of 15-mers), for 316 
both the Nucleocapsid and Spike protein, respectively (Figure 3b) for our DRB1*-panel. A similar 317 
picture is observed for the viral proteome with 152 regions and 623 peptides selected by all 318 
allotypes considered (Figure S4a). Noteworthy, most ipEp are selected only by one or two of the 319 
predictors considered for the Spike and Nucleocapsid protein (Figure 3c), as well as for the entire 320 
viral proteome (Figure S4b), and no ipEp is tagged by all predictors at the same time for the 11 321 
DRB1* allotypes (Figure S4c, ALL). Surprisingly, the two AI-based tools predicting “presentation” 322 
rather than “binding”, namely Maria and Neon, show the lowest congruence level with each other 323 
(in the range of 2-5 %). The level of agreement between these two predictors drops dramatically 324 
for DRB1*13:02 to less than 1 % and seems, in general, lower for allotypes with charged residues 325 
in their binding motifs (Figure S4d). 326 
 327 
We reasoned that the appearance of ipEp clusters over antigenic regions, but especially their 328 
recurrent selection by the different predictors could represent higher confidence candidates. Thus, 329 
we defined a Score prediction (Sp) for every residue consisting on the number of times that it has 330 
been identified by the three tools used. Under these premises we tested the predictive potential 331 
of Sp to classify IEDB curated entries as we did for the MS1 intensity in case of the epEp 332 
candidates. Sp is a discrete and continuous variable and we considered as well binary logistic 333 
regression models, with: i) Ligands for each allotype, Lig, ii) entries yielding frequent/prevalent 334 
responses, HF_TcAs, and iii) those confirmed via multimer staining, Tet_TcAs, as dependent 335 
variable. The models attained for the Spike and Nucleocapsid protein (Figure S5a) yield positive 336 
predictive values (PPV) similar to those attained for the epPe (Figure 3d). Interestingly, if we 337 
considered the entire proteome these values drop considerably up to 3-fold (Figure S5b). Thus, 338 
either a low density of positive hits, a high number of false positives, or most likely a combination 339 
of both should be responsible for these values. Interestingly, the ratio between the PPV for the 340 
experimental model vs. the in silico predictions (ratio epEp/ipEp) for Lig and Tet_TcAs 341 
identifications (Figure 3e) reveals that none of the methods outperforms clearly the other one 342 
when explaining entries from the IEDB curated data for these two antigens.  343 
 344 
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 345 
Figure 3. Overview of the in silico predictions considered. a. All potential 15-mers (sliding window of 1 amino acid) 346 
of the entire SARS-CoV-2 proteome (shown as concatenated proteins color-coded by orfs) were queried in silico as 347 
MHCII-binders/presented peptides using three different tools (NetMHCIIPan, Maria and Neon). The IEDB combined 348 
score of the CD4+ T cell immunogenicity prediction tool was used to flag potential candidates. Candidates identified by 349 
each of these tools (exemplified by DRB1*03:01 using the nucleocapsid protein), are mapped to each antigen 350 
(highlighted in red for the example). The IEDB immunogenicity prediction tool combined score ranges between 0 and 351 
100, and candidates above the 50 % percentile are considered very unlikely to become immunogenic (see legend). 352 
Candidates identified by any of these tools are considered in silico predicted Epitopes (ipEp). b. Correlation between 353 
predictors for each DR-allotype, indicated as number of predictors identifying each residue (overlap) for each allotype 354 
for the Spike (up) and Nucleocapsid (down) proteins. c. Overlap between the different predictors used for each allotype 355 
for the Spike and Nucleocapsid proteins shown as a bar-chart. d. Positive Predictive Value of the logistic regression 356 
models generated based on predictions to identify residues as: Ligands for individual allotypes where there is available 357 
information (Lig); Prevalent T cell epitopes (HF_TcAs, identified in pools of more than 10 individuals as eliciting 358 
responses in more than 5); Tetramers including peptide and MCHII allotype information (Tet_TcAs). e. PPV ratios for 359 
MS-derived and in silico models for Ligand and Tetramer identifications (see legend). A ratio lower than 1 refers to a 360 
better PPV of the in silico model whereas a ratio higher than 1 refers to a higher PPV of the MS-model for each allotype 361 
considered.  362 
 363 
Minimal peptide pools recapitulate CD4+ T cell responses observed with larger peptide 364 
pools ex vivo 365 
 366 
We have previously considered combining both experimental and in silico information to enable 367 
efficient epitope discovery from complex antigenic mixtures26,31. However, we did not consider 368 
using this information to gain mechanistic insights on epitope selection. We explored the potential 369 
of the combination of these two approaches to define a minimalistic set of candidates with a broad 370 
population coverage, validating their immunogenicity and addressing antigen processing 371 
mechanistic questions. We considered averaged MS1 intensity from the reconstituted antigen 372 
processing system for all DRB1* allotypes, and a cumulative Sp for all allotypes according to the 373 
in silico tools as explanatory variables. The performance of these variables, independently and in 374 
combination, to classify residues from the Spike and Nucleocapsid proteins as known HF_TcAs 375 
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IEDB reveals a certain improvement of their combination (Figure S6a). Owing to the different 376 
sizes, we considered whether any 15-mer identified as ipEp lies within epEp regions and used 377 
the number of tools selecting them suggest a prioritizing scheme (Figure 4a). This approach is 378 
limited two structural proteins Spike and Nucleocapsid, main targets of immune responses in 379 
natural infections9,10. However, since Membrane protein, as well as orf3a and orf8 are also 380 
relevant targets of immune responses upon infection9,10, we incorporated the main candidates 381 
from these antigens identified by the in silico approach for testing their immunogenicity. Our final 382 
selection of candidates comprised 59 peptides with 31 entries for the Spike (S pool), 15 for the 383 
Nucleocapsid (N pool), and 13 for the combined set of Membrane (6), orf3 (5) and orf8 (2) (Morf 384 
pool, Table S5, Figure S6b). To minimize the number of peptides we considered padding on either 385 
the N- or the C- termini to cover different restrictions where register shifts may occur between 386 
allotypes. 387 
 388 
We assayed the ability of each of the peptide pools to trigger T cell activation on Peripheral Blood 389 
Mononuclear Cells (PBMCs) from our donors by Intracellular Cytokine Staining (ICS). The panel 390 
of donors includes healthy individuals, who had not been exposed to SARS-CoV-2, and were thus 391 
considered as controls, and individuals who had been diagnosed and recovered from infection 392 
with SARS-CoV-2. Peptides from each antigen (Spike and Nucleocapsid, S and N Pools, 393 
respectively) as well as from the Membrane, orf3 and orf8 (Morf Pool) were used to trigger T cell 394 
activation. Overall, each of the pools yields a considerably higher activation level of CD4+ T cell 395 
on samples from post-infected individuals than it does for the control group, (CD4/CD137 shown 396 
in Figure 4b). The percent of CD4+ T cells activated in these individuals ranges between 2-15 %, 397 
reaching a very similar frequency of responders as previously shown by others9. There is a trend, 398 
not reaching statistical significance, on the extent of the increased response in individuals carrying 399 
a higher dosage of allotypes from our DRB1* panel. Of note, we detect similar activation levels in 400 
4 pre-pandemic samples (FUB55, FUB57, FUB58 and FUB59). Overall, these results along, with 401 
the increased levels of all cytokines, activation and exhaustion markers tested for all post-COVID 402 
individuals when compared to those of healthy individuals validate our minimalistic peptide pools 403 
designed for the broad coverage DR-panel (Figure S7a).  404 
 405 

 406 
Figure 4. Overview of the design and validation of the broad coverage peptide pools based on the experimental 407 
information and the in silico prediction tools. a. Schematic representation of the scoring system considered. b. 408 
Frequency of activated (CD137+) CD4+ T cells upon stimulation with each of the pools indicated on the x-axis as 409 
determined by flow cytometry. Two groups were tested for each peptide pool, individuals non-previously infected with 410 
SARS-CoV-2 (Healthy, yellow, n=24) and individuals that had recovered from SARS-Cov-2 infection (Post-COVID, 411 
purple, n=48). The difference between the median of the responses was compared applying a non-parametric Mann-412 
Whitney test, and the significance is reported as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < or = 0.0001. 413 
Individuals with no response detected where set to 0.001. c. Pie charts illustrating the percentage of total cells 414 
responding to each of the peptide pools for a subset of Post-COVID individuals showing biased responses towards one 415 
of the pools. 416 
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Previous studies addressing immune responses to the entire viral proteome have shown the 417 
relative frequency of responses to each antigen9. We evaluated the extent of the response to 418 
each of these pools at the individual level. There is a homogeneous distribution of roughly one 419 
third of the total frequency of response measured to each of the three pools in almost every 420 
individual (Figure S7b). By exception, a handful of individuals (n = 8) feature an altered behavior 421 
showing an increased proportion of T cells responding to either the S or the N pools with only one 422 
individual (FUB29) with a relatively large proportion of T cells towards the Morf pool (Figure 4c). 423 
Together, these minimalistic peptide pool recapitulate activation levels achieved by larger pools 424 
and we could hypothesize that they shall contain immunodominant epitopes restricted by the 425 
broad-coverage DR allotypes.  426 

 427 
The combined action of in silico predictions and in vitro approaches highlights 428 
promiscuous binders and inter-individual differences in CD4+ T cell responses 429 
 430 
Our results validated the performance of the three peptide pools over a broad spectrum of 431 
restrictions. Next, we evaluated whether the selected peptides feature immunodominance from 432 
an allotype-specific point of view. We performed a targeted validation of these candidates over 433 
individuals carrying DRB1*03:01-*07:01 allotypes. We reasoned that the five individuals bearing 434 
this combination (2 uninfected, and 3 Post-COVID) will allow significant testing in a relatively 435 
confined HLA background (full HLA class II-type in Figure S8a). A total of 23 candidates out of 436 
the total of 59 peptides represented in all peptide pools were selected. These candidates include 437 
epEp/ipEp selected preferentially for either of the allotypes, or both (Figure 5a). We defined two 438 
pools, each of them consisting of 14 peptides for each allotypes with an overlap of 5 peptides. 439 
These peptides rank on the top positions for each DRB1 allotype according to our selection criteria 440 
(see Table S5). First, we tested the immunogenicity of these peptides when combined as pools 441 
via ELISPOT. We detected IFNg, as predominant pro-inflammatory cytokine in viral infections, 442 
and IL-10 as an immunosuppressive cytokine typically secreted by regulatory T cells. Each of the 443 
allotype-specific pools achieves a similar response as a positive control antigen for common 444 
human pathogens (Figure 5b). Minimal background responses towards the shortlisted peptides 445 
in pre-COVID samples is detected, while T cell reactivities in Post-COVID donors was clearly 446 
stronger. Notably, an additive effect was observed for the two pools, suggesting a complementary 447 
effect of the peptides found in each pool (Figure 5c). Interestingly, we note an individual-specific 448 
cytokine secretion pattern varying from predominant pro-inflammatory (FUB32 focused on IFNg) 449 
to mainly suppressive (FUB69 mostly secreting IL-10), with very low numbers of polyfunctional, 450 
or dual cytokine producing cells (Figure S8b). 451 
 452 
We then evaluated the contribution of the candidates considered in each of the pools to the total 453 
response generated and determined the potential restrictions of the peptides used. Owing to 454 
sample limitations we applied dual-peptide combinations in the same ELISPOT setup as 455 
described above. For each combination we included one candidate from each of the two pools. 456 
The total amount of immune response elicited by the dual peptide combinations reaches similar 457 
levels in all tested individuals (100 spots eq. 4x103 SFU/ 106 of CD4+ T cells). These results are 458 
very consistent in terms of frequencies of responders and cytokine profiles (IFNg:IL-10) for the 459 
sum of the dual peptide combinations, each allotype-specific pool, or its combination (Figure S8c). 460 
We used the binding affinity of each peptide to either of the two allotypes considered to define 461 
whether they have any preferential restriction (Figure 5d, Figure S8d). More than three quarters 462 
of the peptide candidates have a high (8 out of 23) or medium (10 out of 23) affinity towards at 463 
least one of the selected allotypes. Interestingly, some of the combinations tested triggered 464 
relatively high and recurrent responses in all three individuals recovered from SARS-CoV-2 465 
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infection (S972-988/N325-342, S998-1015/O3a64-88, and N302-319/S888-902), while others (S1150-1166/S933-947 and 466 
M91-114) seem to trigger responses preferentially in FUB32 (up to almost 25 % of the total 467 
response). It is worth noting that all MHCII allotypes sequenced in FUB32 are also present in 468 
FUB36 and FUB69. Under these premises only additional and non-sequenced MHCII (e.g. 469 
DRB3), or the specific combination of allotypes should be responsible for the observed responses 470 
in this individual. 471 

 472 
Figure 5. Validation of immunodominance patterns on a frequent HLA-background. a. Summary of the allotype-473 
specific peptides concerning their identification via the combination of in silico tools and the reconstituted in vitro antigen 474 
processing. Peptides are named according to the source antigen and its position in the full-length protein. The color-475 
coded heat-maps refer to their classification and ranking as candidates for each or both of the allotypes considered. b. 476 
Summary of the ELISPOT experimental setup and representative example of the ELISPOT performance using negative 477 
(Actin) and positive (CEFX-MHCII) controls, peptide pools containing all peptides selected for both allotypes (DR3-478 
DR7), for each allotype (DR3 and DR7). c. Summary of the results of the ELISPOT data of individuals recovered from 479 
SARS-CoV-2 infection. Data summarizes the results from three individuals tested on duplicates, and shows the results 480 
for IFNg positive cells (red) and IL-10 (blue). Bars indicate the average count per peptide combination and error bars 481 
(in the corresponding color) include the SD. Significance according to two-tailed paired t-test: *p < 0.05; **p < 0.01; ***p 482 
< 0.001; ****p < or = 0.0001. d. Representation of the average count of spots and SD per individual recovered from 483 
SARS-Cov-2 infection for each dual peptide combination (stated below using the same naming as in a) where the 484 
corresponding peptide affinity (measured in competition experiments and referred as IC50) is depicted (see legend; Aff 485 
= affinity, n.d. = not detected). The ratio between the measured binding affinities for each allotype (Pref. bind) is 486 
indicated according to the color legend shown below the graph. e. Pie-charts showing the contribution of each peptide-487 
combination to the total response (color scheme shown on the right side). 488 
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Molecular signatures of epitope selection for the Spike and Nucleocapsid proteins  489 

All previous results validated the immunodominant character of the selected epitopes. CD4+ T 490 
cell epitopes are considered to be primarily selected on the basis of MHCII binding motifs. 491 
However, additional antigenic features are known to play a key role on epitope selection. We 492 
wondered whether we could score the relevance of these features based on the available data 493 
on the IEDB, as well as on the in silico and in vitro candidates. We considered at first: i) the binding 494 
motifs (Bind_Motif) available in the antigens for each MHCII allotype considered (defined by 495 
NetMHCIIPan4.0), ii) the structural environment in which amino acids are located reflected by the 496 
relative surface accessible solvent area (rel_SASA), and iii) the resistance to proteases as 497 
experimentally defined by us (Res_Prot) (Figure 6a). Each of these antigen-related features were 498 
coded at the amino acid level (Figure S9a). Additionally, we considered a Binding-Motif-Summary 499 
for the entire DRB1*-panel referred to as BM_ALL (for those cases where MHC restriction is 500 
unknown), and proteolytic degradation maps that were generated in vitro for the two antigens 501 
considered (Figure S9b). Together, Nucleocapsid and Spike feature a different pattern for 502 
Res_Prot (Figure S9c), which may or may not have an impact on candidate peptide selection. 503 
 504 
We reasoned that it would be beneficial to take into account the context in which the amino acids 505 
are settled for scoring the impact of these antigenic features on peptide selection. We applied a 506 
sliding-window or context-dependent analysis whereby all residues included in an 507 
epitope/candidate are considered to generate the corresponding score (Figure 6a bottom). We 508 
attained the scores for each of the three referred features for the hits of our in silico analysis 509 
(Theo_ALL) and the reconstituted in vitro antigen processing system (MS_high), as well as for 510 
those peptides confirmed in tetramer stains (Tet_TcAs), and those yielding prevalent responses 511 
(HF_TcAs) in the IEDB. We also obtained these scores for a selection of random peptides of each 512 
of the antigens, which were used as controls (Random). This analysis confirms that Tet_TcAs 513 
and HF_TcAs from both antigens feature increased Bind_Motif scores. Thus far, only 514 
Nucleocapsid entries defined by our experimental approach follow a similar trend in terms of 515 
Bind_Motif (Figure 6b). Furthermore, the reconstituted in vitro antigen processing system seems 516 
to select a specific subset of entries from the Nucleocapsid protein, with high rel_SASA and 517 
Res_Prot (Figure 6c). Surprisingly, this behavior is partly followed by HF_TcAs entries, showing 518 
as well lower rel_SASA values.  519 
 520 
These results confirm that, the epitopes described in the IEDB with a clear restriction match the 521 
binding motifs of the relevant allotypes (Tet_TcAs). Moreover, a theoretical binding motif 522 
(BM_ALL) consisting of the combination of those Bind_Motif from the 11 DRB1* allotypes used in 523 
this work, is proven to be a descriptive feature for peptides yielding recurrent responses in the 524 
IEDB (HF_TcAs). We could differentiate a rather clear pattern for the candidates selected by the 525 
reconstituted in vitro antigen processing system in case of the Nucleocapsid protein. Thus, low 526 
SASA regions, resistant to proteases are preferentially selected, indicating that perhaps regions 527 
protected from degradation are made available to binding to MHCIIs at some point, thus favoring 528 
their selection. Interestingly a partial overlap of this behavior is seen as well for the HF_TcAs from 529 
this same antigen. 530 
 531 
 532 
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 533 
Figure 6. Impact of antigenic features on candidate epitope selection. a. Scheme illustrating antigen- and MHCII-534 
dependent features influencing antigenic peptide selection (top), and summary of the context-dependent analysis 535 
performed (bottom). Binding Motif (BM) matching for individual allotypes, or a sum of all alleles considered by our DRB1 536 
panel (BM_ALL), Resistance to Proteases (Res_Prot) determined experimentally, and relative Solvent Accessible 537 
Surface Area (rel_SASA) are coded at the amino acid level. For each candidate (Pepi) considered an average value 538 
for each feature (“y”) is retrieved based on the values for these features (“x”) of the constituent amino acids(aai). b. 539 
Distribution of rel_SASA, Res_Prot and BM of all hits previously described in the IEDB (HF_TcAs and Tet_TcAs), those 540 
identified by our reconstituted antigen processing system (MS_high), the in silico approach proposed (Theo_ALL), and 541 
a Random set of peptides for the Spike protein. In case of HF_TcAs and Theo_ALL the values from BM_ALL are 542 
considered in the corresponding graph as there is no restriction known for each entry. The violin plots show the density 543 
of each distribution, as well as the mean. Saphiro-Wilk’s test confirmed that most data do not follow a normal distribution 544 
(details in Figure S10. Differences in the average values for each feature considered between the selection of random 545 
picked entries and each of the sub-sets indicated were evaluated by Wilcoxon signed-rank test. Significance: *p < 0.05; 546 
**p < 0.01; ***p < 0.001; ****p < or = 0.0001. c. Same as in (b) but for the Nucleocapsid protein. 547 
 548 
 549 
Discussion  550 
 551 
Our work conceives a pipeline for the identification of immunodominant epitopes to human 552 
pathogens and applies it to SARS-CoV-2 antigens. This pipeline relies on experimental 553 
information, which is combined and integrated with in silico predictions for a broad population 554 
coverage panel of DRB1* allotypes. The output of a reconstituted antigen processing system for 555 
the DRB1* panel considering two major antigens of SARS-CoV-2, and in silico predictions for the 556 
entire proteome, allow us designing three minimalistic peptide pools consisting of a total of 59 557 
peptides from five viral proteins. The immunogenicity of the resulting candidates is validated ex 558 
vivo by comparing responses of un-infected and SARS-CoV-2 exposed individuals. The extent of 559 
the responses from COVID19-recovered individuals with these pools reaches similar levels as 560 
those attained with 10-times larger pools9. Moreover, 15 out of a restricted set of 23 peptides 561 
considered for fine-testing on a frequent HLA-background (DRB1*03:01/07:01) feature 562 
immunodominant responses, demonstrating the performance of the proposed workflow. Taking 563 
advantage of the validated pipeline as well as available knowledge acquired over the pandemics, 564 
we provide evidence for immunodominance patterns beyond individual MHCIIs and binding 565 
motifs. The reconstituted antigen processing system recurrently selects candidates from regions 566 
with high predicted affinities, low SASA and high resistance to proteases, features previously 567 
described to be involved in antigen processing. Interestingly, these features are well represented 568 
in epitopes that have been previously validated for this antigen. In case of the Spike glycoprotein, 569 
the larger pool of known epitopes and selected by our workflow feature exclusively agreement 570 
with the corresponding binding motifs. Our work in terms of antigen processing-related features 571 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.10.574975doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.10.574975


 16 

should be nurtured with more data to provide a more comprehensive picture. Together, this 572 
research provides the basis for conceptualizing minimal peptide pools with broad population 573 
coverage that should enable improved peptide vaccination strategies. 574 
 575 
Accessing immunodominance patterns to score immunological function would enable maximizing 576 
the number of epitopes that provide the broadest coverage while keeping the complexity of the 577 
mixture as low as possible. Under these premises it is worth noting that more than 1800 CD4+ 578 
epitope entries and approximately double the number of T cell assays were compiled at the IEDB 579 
between November 2019 and September 2022. Despite sampling bias, we reasoned that we 580 
could benchmark our epitope discovery scheme with regard to the existing information as it is 581 
regularly performed for the in silico prediction validation33–35, but also to gain insights on the impact 582 
of antigen processing constraints and HLA-restriction. We opted for a scheme, where epitopes 583 
flagged as tetramers and affinity values below a conventional threshold (Aff < 1000nM) were 584 
considered sufficient to define HLA restrictions of a ligand, similar to a recent publication38. In 585 
contrast to this conservative approach, we considered entries eliciting recurrent responses (RF > 586 
0.5, and n>10, named here HF_TcAs here) where the restriction element was unknown. Our 587 
DRB1* panel has a decent coverage throughout the individuals considered in these studies, 588 
hence these allotypes are potential restricting elements of those HF_TcAs. Exemplarily, 80 % of 589 
the individuals recruited in one of the most comprehensive studies validating immunodominance 590 
to SARS-CoV-2 expresses at least one of the allotypes considered by us9. Likewise, if we take 591 
into account all epitopes described in TcAs data with associated HLA information, the estimated 592 
probability that one of our selected allotypes is the restricting element is higher than 0.5 in 593 
approximately 80% of the entries. This value reflects the phenotypic coverage for each individual 594 
entry of our panel according to those restrictions stated by these studies.    595 
 596 
We considered accessing immunodominance patterns at the human population level prioritizing 597 
experimental information and refining the searches supported by in silico tools. We have 598 
previously validated this pipeline for the assessment of immune responses in the context of 599 
complex antigenic mixtures for a limited set of MHCII restrictions26. Note that these experiments 600 
provide direct evidence for peptide binding to the MHCII used, but also degradation under 601 
proteolytic conditions and editing by HLA-DM. Important differences with regard to previous works 602 
are: the number of restrictions tested, and the use MHCII molecules pre-loaded with CLIP as 603 
compared to “empty”-molecules6,25,37, mimicking endosomal conditions where epitope selection 604 
primarily takes place. Our results highlight a limited number of regions recurrently selected by all 605 
allotypes for the Nucleocapsid protein, exemplified by the NII region, in contrast to a broader 606 
sampling for the Spike protein. Previously, we refined candidate selection from the experimental 607 
work, by the identification of candidates fitting binding motifs26. Now, we considered the combined 608 
output of three state of the art MHCII binding/presenting predictors to streamline this candidate 609 
epitope selection. Interestingly, the regions identified by these three predictors lie within the 610 
threshold of the IEDB immunogenicity prediction tool to consider them immunogenic. A popular 611 
alternative approach for accessing immunodominance as the one presented here considers in 612 
silico predictions to point out potential immunogenic regions, and then deconvolutes T cell 613 
reactivities using peptide pools of candidates spanning these regions experimentally. This 614 
framework was implemented for Mycobacterium tuberculosis antigens38 and it has been applied 615 
recently to SARS-CoV-239. This strategy limits the initial selection of regions to the 20 % percentile 616 
of hits estimated for seven common DRB allotypes by the IEDB immunogenicity prediction tool 617 
and it is estimated to reach up to 50 % of individual’s immune response to a pathogen. Together, 618 
we can only conclude that each of these approaches has its own advantages and limitations. 619 
 620 
An interesting aspect dealt with, is that of the design of peptide pools dedicated to CD4+ T cell 621 
research, which usually consist of more or less complex mixtures of 15-mers overlapping 10-mer9 622 
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or 11-mer10. These pools have proven to be extremely useful but neither all binding registers nor 623 
the impact of N- and C-terminal extensions for CD4+ T cell responses are usually taken into 624 
account40. Exemplarily, we focused on five highly immunogenic antigens at the population level9,10 625 
whose coverage for fine epitope-mapping using 15-mers will require either 2000 (to cover all 626 
potential 15-mers), 550 (to reach all binding registers), or 454 (to reach the estimated 50 % of the 627 
total response considered by the abovementioned report) peptides. Applying our workflow, we 628 
considerably reduced these numbers to attain similar activation levels of T cells as it has been 629 
reported with peptide pools that are considered to reach 50 % of the total immune responses 630 
under very similar experimental conditions (measured as % of CD137+ in CD4+ cells in the range 631 
of 0.5-10 %)15,41. We can therefore conclude that the reported strategy represents a highly efficient 632 
method to define immunogenic regions and postulate peptide pools. Future studies should aim at 633 
scoring the tradeoffs of considering different peptide lengths and/or peptides to aim at covering a 634 
broader spectrum of the total response.  635 
 636 
We prioritized minimizing the impact of additional MHCII restrictions for validating the 637 
immunodominant profile of these candidates selected. Thus, we opted for a very specific MHCII 638 
background (DRB1*03:01/DRB1*07:01) with minimal allotype variation. The set of 23 peptides 639 
(over 59) consisting on two sub-pools covering both DRB1* restrictions displayed an excellent 640 
performance for re-calling immune responses by each pool, their combination, or the dual peptide 641 
combinations considered. We could assign a clear restriction by either or both allotypes for more 642 
than 2/3 of the tested peptides by measuring their affinities to the MHCIIs. However, our selection 643 
of candidates included 1 peptide with no measurable binding affinity for these allotypes under the 644 
assayed conditions (S933-947), and 5 with relatively low binding affinity (S414_430, S623_639, S1150-1166, 645 
N339-361 and M91-114). All of the low-affinity binders except for the M91-114, have been identified by 646 
the reconstituted antigen processing system. The stringent identification and filtering criteria 647 
applied in the experimental setup led us to consider poor-binders as intermediate or final products 648 
of antigen processing hot-spots (e.g. preferentially selected upon binding and proteolysis), or mis-649 
assigned peptides in the final candidate list refinement. Exemplarily, the region of the Spike 650 
protein selected in the DRB1*07:01 experiments covers S937-951 (representing up to 0.17 of the 651 
TIC of this antigen) instead of S933-947 selected by us. While this may have allowed us covering 652 
other restrictions, we may have neglected a relevant binding register in this case.  Interestingly, 653 
these candidates may yield relevant individual-specific responses. Under these premises one 654 
could speculate that either personalized antigen processing profiles or TcR repertoires could be 655 
responsible for this effect. Together, these results validate the performance of the proposed 656 
approach for the identification of immunodominant epitopes. Importantly, despite the previous 657 
extensive work using overlapping peptide pools, and specifically addressing this MHCII 658 
background9, our approach is still able to reveal new reactivities, e.g. N81_99, S985_1006 and O3a23_41. 659 
 660 
Seminal studies have demonstrated the impact of antigen processing constraints on the selection 661 
of immunodominant epitopes focusing on the DRB1*01:01 allotype in relation to Infuenza’s HA5 662 
and recently the entire HIV6 proteome. Thus, antigen processing constraints could significantly 663 
inform epitope discovery37,42–44. However, the main limitations of these studies are: i) their 664 
restricted MHCII diversity (e.g. how general are the observations found for one allotype), and ii) 665 
the experimental and logistic limitations for epitope mapping/validation (e.g. assessment of T cell 666 
responses from relevant samples). Previous studies into the impact of antigen-specific constraints 667 
on immunodominance pointed out structural features of regions that are preferentially selected 668 
for display, showing a relation to folding and solvent accessible surface area (SASA)42,43. Our 669 
work capitalizes on the extensive data resulting from the impact of SARS-CoV-2 pandemics. This 670 
work allows us to design a dedicated and controllable experimental workflow to provide a 671 
comprehensive overview of the impact of antigen processing constraints on a broad panel of 672 
DRB1* allotypes. Indeed, we could assign specific epitope selection patterns depending on 673 
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antigenic features. The present work elaborates on a limited context-dependent analysis for a 674 
relatively limited number of antigens. However, future works elaborating on expanding knowledge 675 
on CD4+ T cell epitopes27 combined with novel tools as AlphaFold enabling efficient structure 676 
predictions45  will probably grant us with more accurate information.  677 
 678 
Our method demonstrates the potential of integrating experimental and in silico approaches to 679 
access and understand immunogenicity. We conclude that the impact of allotype-specific 680 
parameters such as DM-susceptibility46, antigen-related features (e.g. SASA or protein 681 
foldedness)44,45 and experimentally definable processing constraints (e.g. proteolytic degradation) 682 
should be funneled into the next generation pipelines of effective MHCII-immunodominance 683 
prediction. Integrating these diverse factors into prediction platforms holds the potential to improve 684 
our ability to tailor vaccines and therapies in an HLA halplotype manner. Thus, this perspective 685 
might become increasingly relevance for the future design of more personalized T cell responses 686 
during the course of a new pandemic or in cancer immunotherapy. 687 
 688 
Materials and Methods 689 
In silico candidate epitope prediction  690 
The SARS-CoV-2 genome sequence was obtained from the NCBI database 691 
https://www.ncbi.nlm.nih.gov/nuccore/1798174254. We extracted the sequences of the proteins 692 
orf1ab, S, orf3a, E, M, orf6, orf7a, orf7Bb, orf8, N, and orf10 based on the reference genome. We 693 
used a sliding window size of fifteen amino acids and a step of one amino acid for the following 694 
analysis (9591 peptides). Potential SARS-CoV-2 epitopes were identified using a novel selection 695 
workflow based on the integration of prediction algorithms for peptide-MHC class II binding and 696 
immunogenicity.  The peptide-MHC class II binding/presentation prediction was performed using 697 
three different algorithms, netmhcIIpan33, maria34, and neonmhc235, with percentile score cut-off 698 
of 10 %. Immunogenicity scores used as flagging criteria were determined using the IEDB tool36 699 
applying an immunogenicity score cutoff value of 50 %, yielding 1643 immunogenic peptides. 700 
Potential SARS-CoV-2-derived epitopes were identified as the top-ranked overlapping candidates 701 
for each allotype of the eleven MHC class II allotypes. Next, allele-specific lists of peptides with a 702 
minimum length of 15 residues were defined for each SARS-CoV-2 protein. 703 
 704 
Peptides and viral antigens 705 
Peptides were purchased from GL Biochem (Shanghai) Ltd (10 mg purity > 95 %). Lyophilized 706 
peptides were diluted at a final concentration of 10mM in DMSO and subsequently diluted in PBS. 707 
When necessary, the pH was adjusted to 7.4. 708 
 709 
Nucleocapsid and Spike Glycoproteins expressed in HEK cells were purchased from Sino 710 
biological (Cat Numbers. 40588-V08B for Nucleocapsid and 40589-V08B1 for Spike) as C-711 
terminal His-tagged. Lyophilized proteins were reconstituted according to the manufacturer 712 
specifications. 713 
 714 
Protein methods 715 
MHC proteins (HLA-DRs and HLA-DM) were expressed as previously described47. Briefly, HLA-716 
DR cDNAs are cloned into the pFastBacDual vector and include Leu-Zippers in their C-termini as 717 
well as a sequence encoding for the CLIP peptide followed by Thrombin cleavage site and a G4S 718 
linker in the N-termini of the DRB1 polypeptides. Furthermore, the DRA polypeptide encodes as 719 
well a Biotin Acceptor Sequence in the C-termini of the corresponding Leu-Zipper. Expression 720 
was achieved by infection of Sf9 cells at an MOI of 5 and harvesting the cells after 4 days. Protein 721 
purification was achieved by immunoaffinity chromatography using a L243-FF-Sepharose resin 722 
casted in house. In all cases HLA-DR proteins were cleaved with Thrombin and gel-filtrated using 723 
a Sephadex S200. For the reconstituted in vitro system, these proteins were also cleaved with V8 724 
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protease to remove the Leu-Zippers. HLA-DM cDNAs are cloned into pFastBacDual and include 725 
a Flag-Tag in the C-termini of HLA-DMA chain. Purification in this case was achieved using an 726 
immunoaffinity M2-Sepharose resin, protein was eluted using Glycine pH3.5. After dialysis, the 727 
protein was concentrated (Vivaspin MWCO 10kDa) and gel filtrated (Sephadex S200). 728 
 729 
Peptide binding experiments 730 
Peptide binding affinities to selected HLA-DR molecules were determined by competition 731 
experiments using fluorescently labelled reporter peptides. Reporter peptide binding signal was 732 
measured by FP. HLA-DR molecules expressed in insect cells were thrombin cleaved to facilitate 733 
peptide exchange. Competition experiments were set by adding 100 nM HLA-DR, 100nM reporter 734 
peptide (CLIP-FITC for DRB1*07:01 or MBP-FITC for DRB1*03:01) and tittered concentrations of 735 
the corresponding peptide in 50mM Citrate Phosphate buffer containing 150mM NaCl at pH 5.3. 736 
Each reaction was measured after 12h incubation at 37° C, and the corresponding IC50 values 737 
for each peptide were retrieved by fitting a sigmoidal function to the obtained data points. 738 
 739 
In vitro reconstituted antigen processing system 740 
The previously described cell-free reconstituted in vitro system25 was modified according to the 741 
specific needs of the experiments26. HLA molecules together with the candidate antigens and the 742 
HLA-DM were incubated for 2 h at 37° C in citrate phosphate 50 mM pH 5.2 in the presence of 743 
150 mM NaCl. Cathepsins were added to reaction mixtures after incubation with L-Cysteine (6 744 
mM) and EDTA (5 mM). The final reaction mixture was incubated at 37° C for 2 to 5 hours. 745 
Afterwards the pH was adjusted to 7.5, and Iodoacetamide was added (25 µM). 746 
Immunoprecipitation (IP) of the pMHCII complexes was performed using L243 covalently linked 747 
to Fast Flow sepharose. Peptides were eluted from purified MHCII adding TFA 0.1 % to the 748 
samples. Peptides are separated from the MHCII molecules by using Vivaspin filters (10 kDa 749 
MWCO). Cathepsin B (Enzo), H (Enzo) at a molar ratio of 1:250, and S (Sigma) at a molar ratio 750 
of 1:500 were used in these experiments. 751 
 752 
Proteolytic degradation of antigens 753 
Spike and Nucleocapsid proteins were incubated in the presence of cathepsins in the molar ratios 754 
indicated above. Reactions were performed at 37 °C citrate phosphate 50 mM pH 5.2 in the 755 
presence of 150 mM NaCl and stopped at t = 0, and t = 3 h, by adding Iodoacetamide, immediate 756 
transfer of the samples to ice. The pH was then adjusted to 7.5 by adding Tris-HCl 1 M pH8.0. 757 
Samples were splitted, and used for SDS-PAGE analysis, Western blotting and peptide 758 
identification by MS. For MS analysis, samples were dried in a SpedVac and treated as described 759 
below. 760 
 761 
LC-MS measurements 762 
All samples were initially cleaned up by reverse phase C18 enrichment. The eluates were dried 763 
in a SpeedVac, and peptides were reconstituted in 20 µl of H2O containing acetonitrile (4 %), and 764 
TFA (0.05 %). 6 µl of these mixtures were analyzed using a reverse-phase capillary system 765 
(Ultimate 3000 nanoLC) connected to an orbitrap connected to a Q Exactive HF mass 766 
spectrometer (Thermo Fisher Scientific). Samples were injected and concentrated on a trap 767 
column (PepMap100 C18, 3 μm, 100 Å, 75 μm i.d. × 2 cm, Thermo Fisher Scientific) equilibrated 768 
with 0.05 % TFA in wather. After switching the trap column inline, LC separation was performed 769 
on a capillary column (Acclaim PepMap100 C18, 2 μm, 100 Å, 75 μm i.d. × 25 cm, Thermo Fisher 770 
Scientific) at an eluent flow rate of 300 nL/min. Mobile phase A contained 0.1 % formic acid in 771 
water, and mobile phase B contained 0.1 % formic acid in 80 % acetonitrile/ 20 % water. The 772 
column was pre-equilibrated with 5 % mobile phase B followed by a linear increase of 5–44 % 773 
mobile phase B in 70 min. Mass spectra were acquired in a data-dependent mode utilizing a 774 
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single MS survey scan (m/z 350–1,650) with a resolution of 60,000, and MS/MS scans of the 15 775 
most intense precursor ions with a resolution of 15,000. The dynamic exclusion time was set to 776 
20 seconds and automatic gain control was set to 3x106 and 1x105 for MS and MS/MS scans, 777 
respectively.  778 
 779 
Mass spectrometry data processing 780 
MaxQuant (v2.0.3.0) with implemented Andrmeda peptide search engine was used for analyzing 781 
the raw MS and MS/MS data. All searches were done on the basis of unspecific protease 782 
cleavage, main ion search tolerance of 10 ppm and MSMS tolerance search of 50 ppm and 783 
enabling the feature “match between runs”. The reconstituted in vitro antigen processing samples 784 
were searched against a database containing the sequences of all SARS-CoV-2 proteins (note 785 
that Spike and Nucleocapsid were substituted for the sequences of the recombinant ones), 786 
cathepsins, MHCII and all reviewed Spodoptera frugiperda proteins (Uniprot, access on March 787 
2020) as an internal control. The database used for the cathepsins digestion experiments included 788 
only the protein antigen sequence used, and the corresponding sequences of the cathepsins. In 789 
both cases a FDR of 0.01 (1 %) was used ased on a decoy search. All identifications with an FDR 790 
higher than 0.01, reverse identifications and contaminants (identified by MaxQuant) were 791 
removed for data analysis. Each set of experiments was analyzed together, treating technical and 792 
biological replicates as independent samples. 793 
 794 
All MS raw files from the reconstituted in vitro antigen processing experiments were processed 795 
as previously reported in26. In brief, allotype-specific subset identifications from the evidence file 796 
were submitted to the plateau webserver using the same database used for the peptide 797 
identification. Each of the consensus peptides identified was then used to determine replication 798 
and retrieve a MS1 relative intensity. These relative intensities were averaged throughout the 799 
different replicates, and unless otherwise indicated only peptides found in at least 2 technical 800 
replicates out of 2 independent experiments were considered. For the proteolytic degradation 801 
experiments we took the spectral counts for each peptide identified from the corresponding 802 
peptide.txt files. 803 
 804 
Donor recruitment and HLA-typing 805 
Donors were recruited in the Medizinische Fakultät/Universitätsklinikum of the Otto-von-Guericke 806 
Universität Magdeburg. Informed consent was signed and agreed upon according to the ethic 807 
protocol approved by the corresponding university. HLA-typing was performed by the DKMS-LSL 808 
facility. 809 
 810 
PBMC isolation and fractionation  811 
PBMCs were isolated from blood samples of either healthy individuals or donors recovered from 812 
SARS-CoV-2 infection via density-gradient sedimentation. PBMCs were either frozen in cell-813 
freezing medium supplemented with 10 % DMSO or further processed for isolation of monocytes 814 
and CD4+ T cells. PBMCs were thawed and counting of living cells was performed using trypan 815 
blue in a cell counting chamber. When stated PBMCs were used directly in specific experiments, 816 
and for others specifically isolated cellular fractions were used. In these cases, cells were isolated 817 
by magnetic cell separation using CD14 microbeads for monocytes, and subsequently CD4 818 
microbeads for T helper cells (all Miltenyi Biotec, Bergisch Gladbach, Germany). The 819 
homogeneity of the cell preparations was controlled by flow cytometry. 820 
For flow cytometric analysis a total of 1x105 PBMCs per well were seeded on 96-well plates, 821 
cultured in X-VIVO 15 medium (Lonza, Basel, Switzerland) supplemented with 4 % human AB 822 
plasma (Innovative Research, Novi, MI, USA), and provided with the corresponding peptide pools 823 
(17.5 ng/ml per peptide).  824 
 825 
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ELISpot 826 
Dual secretion of IFNg and IL10 was determined using the enzymatic Human IFNg/IL-10 Double-827 
Color ELISPOT Kit (Cellular Technology, Shaker Hieghts, OH, USA) and using pre-isolated 828 
CD14+ monocytes and CD4+ T cells. 5x104 APC were seeded together with 1x105 CD4+ T cells 829 
in the presence of relevant peptides at 2.5 ng/ul diluted in X-VIVO 15 medium (Lonza, Basel, 830 
Switzerland) supplemented with 4 % human AB plasma (Innovative Research, Novi, MI, USA) in 831 
96-well plates. The cells were then pre-incubated for 48 h, washed, transferred to an ELISpot 832 
plate and further incubated for 60 h. The secreted cytokines were determined according to the 833 
manufacturer’s instructions; counting of spots place on an ImmunoSpot analyzer (Cellular 834 
Technology). Dual secretion of cytokines was determined by overlapping the corresponding 835 
signals (IFNg-red and IL-10-blue). The extent of the response is directly correlated to the surface 836 
area covered by each signal, in this case determined for each colony counted. 837 
 838 
Antibodies and reagents used in cell culture experiments 839 
The following antibodies were purchased from the stated vendors and used according to the 840 
manufacturer specifications: for western-blots Rabit anti-6HisTag (Abcam ab1187). In flow 841 
cytometry experiments we used: anti-CD4, anti-CD137, anti-CD319 (all Miltenyi Biotec), anti-CD3, 842 
anti-PD-1, anti-IL-2, anti-TNFa, anti-IFNg (all Biolegend). And in case of Elispots we considered: 843 
anti-IFNg (capture and FITC-labelled detection antibodies), anti-IL-10 (capture and biotinylated 844 
detection antibodies), anti-FITC HRP (all Cellular Technology). 845 
 846 
Flow cytometry 847 
To accumulate cytokines, cells were treated for 4 h with 5 mg/ml Brefeldin A (Merck, Darmstadt, 848 
Germany) after 140 h incubation time. Further, cells were briefly reactivated by addition of 10 849 
ng/ml PMA and 1 µg/ml ionomycin (all Merck) for 1h prior to flow cytometric analysis. Cells were 850 
then harvested, Fc-receptors blocked (FcR Blocking reagent, Miltenyi) and stained for 851 
extracellular markers (CD3, CD4, CD137, PD-1, and CD319), subsequently fixed with 2 % 852 
paraformaldehyde (Morphisto, Offenbach am Main, Germany), permeabilized with 0.5 % 853 
saponine (Merck), and stained for intracellular cytokines (IFN-g, IL-2, and TNFa). Samples were 854 
acquired on a FACSCanto II flow cytometer with FACS-Diva software (v10, BD Bioscience).  855 
 856 
Analysis of antigen processing rules and antigenic peptide features 857 
Each protein residue was assigned a value for each of the parameters considered: resistance to 858 
proteolytic degradation (Res_Prot), relative surface accessible solvent area (rel_sasa) and 859 
binding motif matching (BM). For the parameter resistance to proteases we considered the sum 860 
of spectral counts for each residue (see details above). For rel_SASA we used the relative values 861 
calculated using the pdb PISA tool48 using as input the structural models available for the Spike 862 
and the Nucleocapsid protein as of September 2021 in the Zhang lab website 863 
(https://zhanggroup.org//COVID-19/). For the binding motif parameter (Bind_Motif) we considered 864 
all weak (coded as 1) and high (coded as 2) affinity binding cores (9mers) defined by 865 
NetMHCIIPan4.033 for each antigen and specific allotype. Note that Bind_Motif is allele-specific 866 
and thus, we considered as well a cumulative value to represent the potential overlap between 867 
binding motifs for all allotypes used (BM_ALL). Likewise, for this analysis all available entries in 868 
the IEDB described as epitopes, ligands or T cell Assay related (TcAs) were equally coded as 869 
binary vectors (0: not present, 1: part of a hit) (Accessed Sept 2022). The sum of appearances of 870 
each residue as a Hit facilitates defining their relative frequency. Furthermore, where additional 871 
data was available, e.g. binding affinity measured experimentally, this information was used to 872 
subset those hits. Finally, each candidate epitope identified by the reconstituted antigen 873 
processing system was coded at the amino acid level considering the MS1 intensity (e.g. 874 
Spike_DRB1*01:01_n for candidate n derived from the Spike protein identified for DRB1*01:01). 875 
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We worked with either normalized (to the maximum of each vector), count-based of hits or binary-876 
based vectors, as stated in each case.  877 
 878 
For the context dependent analysis, we determined the average for each parameter according to 879 
the values of each amino acid. As control we used a randomized pool of peptides. 880 
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 883 
Statistical analysis and model description 884 
All analysis were carried out using R, version 4.2.1 over the RStudio suite unless otherwise stated. 885 
Binary logistic regression models were generated based on the general expression: 886 
 887 

 𝑙𝑜𝑔𝑖𝑡(𝑝)~	(𝛽) + 𝛽$𝑥$ + 𝛽*𝑥* +⋯+ 𝛽+𝑥+) 888 
𝑝(𝑥!𝐻𝑖𝑡|𝑥!𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) 889 

 890 
Each predicted candidate from the in silico tools (ipEp), identified experimentally (epEp) or its 891 
combination (pEp) were considered as single or combined explanatory variables (b1 to  bn) to 892 
define a binary response output at the residue level (y = 0 for negative, or y = 1 for positive or 893 
selected hits). Different types of IEDB curated entries were considered as response variables 894 
following the criteria indicated (Ligand, Tetramers and HF_TcAs). A more detailed description is 895 
also provided in the supplemental information. 896 
 897 
Goodness of fit and the performance of the models were estimated by calculating the Akaike 898 
Information Criterion (AIC) and considering the Area Under the Curve (AUC) from Reiceiver 899 
Operator Curves (ROC). Likewise, we considered the positive predictive value of each model as 900 
indicated below:  901 

𝑃𝑃𝑉 =
𝑛𝑇𝑃

𝑛𝑇𝑃 + 𝑛𝐹𝑃
	 902 
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