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ABSTRACT 

Drug-induced liver injury (DILI) presents a significant challenge in drug discovery, often 

leading to clinical trial failures and necessitating drug withdrawals. In this study, we 

introduce a novel method for DILI prediction that first predicts eleven proxy-DILI labels and 

then uses them as features in addition to chemical structural features to predict DILI. The 

features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, 

in vivo (e.g., preclinical rat hepatotoxicity studies) data, pharmacokinetic parameters of 

maximum concentration, structural fingerprints, and physicochemical parameters. We trained 

DILI-prediction models on 1020 compounds from the DILIst dataset and tested on a held-out 

external test set of 255 compounds from DILIst dataset. The best model, DILIPredictor, 

attained a balanced accuracy of 70% and an LR+ score of 7.21. This model enabled the early 

detection of 26 toxic compounds compared to models using only structural features (4.62 

LR+ score). Using feature interpretation from DILIPredictor, we were able to identify the 

chemical substructures causing DILI as well as differentiate cases DILI is caused by 

compounds in animals but not in humans. For example, DILIPredictor correctly recognized 

2-butoxyethanol as non-toxic in humans despite its hepatotoxicity in mice models. Overall, 

the DILIPredictor model improves the detection of compounds causing DILI with an 

improved differentiation between animal and human sensitivity as well as the potential for 

mechanism evaluation. DILIPredictor is publicly available at https://broad.io/DILIPredictor 

for use via web interface and with all code available for download. 

Toxicity Prediction; DILI; Drug-Induced Liver Injury 
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INTRODUCTION 

The liver is a major organ of drug metabolism in the human body and thus it is vulnerable 

to not just drugs but also their reactive metabolites.1,2 Drug-induced liver injury (DILI) is a 

leading cause of acute liver failure3 (causing over 50% of such cases4) and accounts for a 

significant proportion of drug-related adverse events. DILI is detectable generally in phase III 

clinical trials and is also a leading cause of post-market drug withdrawals.5 Two common 

types of DILI are intrinsic and idiosyncratic.6 While intrinsic DILI is generally dose-

dependent and predictable, idiosyncratic DILI is unpredictable with a variable onset time and 

several phenotypes and is generally not dependent on dosage. The mechanisms underlying 

DILI are multifactorial7 and not completely understood. These include cellular toxicities such 

as mitochondrial impairment8, inhibition of biliary efflux9, oxidative stress10, and more. 

Additionally, DILI can be influenced by dose variations, pharmacokinetics (PK), and 

biological variations, such as variations in cytochrome P450 (CYP) expression11. Thus, 

predicting DILI is a challenging task that necessitates consideration of various factors and 

novel methods to aid in the early detection of DILI and reduce related drug failures. 

In the drug discovery pipeline, hepatotoxicity assessment encompasses a variety of in vitro 

and in vivo experimental models as well as in silico models. Several in vitro models for liver 

toxicity testing employ proxy endpoints (hepatotoxicity assays) with liver slices and cell lines 

such as primary animal and human hepatocytes12 or even three-dimensional systems with the 

dynamic flow for the primary cell and/or stem cell cultures.13 However, the ideal hepatocyte-

like cell model system depends on the evaluation of particular cellular functions given there 

are substantial differences among various human liver-derived single-cell culture models as 

previously explored in the context of drug disposition, bioactivation, and detoxification.14 

The agreement between in vitro data and human in vivo data is also low.15 For example, 
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methapyrilene is known to cause changes to the level of iron metabolism in the human 

hepatic HepaRG cell line16 and oxidative stress, and mitochondrial dysfunction in rats17 but 

has not been reported to cause hepatotoxicity in humans18,19. On the other hand, in vivo 

animal models also have low concordance as shown by recent studies using the eTOX 

database where organ toxicities were rarely concordant between species.20 The concordance 

between animal and human data for liver toxicity, specifically, is often low (with some 

studies indicating rates as low as 40%21 and others in the range of 39−44%22) which makes 

extrapolating safety assessments from animals to humans a challenging endeavour.23,24 For 

example, 2-butoxyethanol causes hepatic toxicity in mice via an oxidative stress mechanism 

but not in humans given humans have higher levels of liver vitamin E (and a high resistance 

to iron accumulation) compared to mice.25 Overall, this leads to a great need for improved 

DILI prediction from available data. 

DILIst26 and DILIrank27 are lists of compounds that have been classified as inducing DILI 

or not and were developed from FDA-approved drug labels. Binary classification from 

labelling documents is challenging and this is evident in the fact that many DILIrank 

compounds are labelled ambiguous although the DILI for some of these compounds has been 

reported in literature. For in silico models, these ambiguous compounds are generally 

removed. Generally, in silico models rely on identifying chemical structural alerts28 or use a 

range of chemical or physicochemical features. Ye et al. employed Random Forest 

algorithms and Morgan fingerprints for DILI prediction, achieving an AUC of 0.75 with 

random splitting (70% training, 30% testing).29 Liu et al. utilized Support Vector Machines 

and obtained a 76% balanced accuracy on an external test set using Morgan Fingerprints; 

however, their predicted protein target descriptors provided less accurate predictions 

(balanced accuracy of 59%) but offered better interpretability.30 Mora et al. employed 

QuBiLS-MAS 0–2.5D molecular descriptors to predict DILI (labels from various sources) on 
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an external test set comprising 554 compounds, achieving a 77% balanced accuracy.31 

Predicting organ-level toxicity solely based on chemical structure is challenging and the use 

of biological data helps improve toxicity prediction.32,33 More recently, predicted off-target 

effects have also been considered to improve DILI prediction.34 Chavan et al. integrated high-

content imaging features with chemical features for DILI label prediction, resulting in a 0.74 

AUC.35 Previously this, the authors of this work explored this in the case of mitochondrial 

toxicity36 (which at high doses is one of the mechanisms known to cause DILI) as well as 

cardiotoxicity37.  

In this study, we significantly extended the use of different data sources to several in vivo 

and in vitro data types in developing the DILIPredictor model presented here. We identified 

liver injury endpoints such as human hepatotoxicity38, preclinical hepatotoxicity and animal 

hepatotoxicity38,39,40 and DILI datasets compiled by various studies31,41,42 (Table 1) These 

datasets provide the in vivo labels for DILI for different species at various stages of the drug 

discovery pipeline, from pre-clinical to post-market withdrawals. We identified three in vitro 

assays that could be indicative of liver toxicity and with public data: mitochondrial toxicity43, 

bile salt export pump inhibition (BSEP)44 and the formation of reactive metabolites45.7 

Mitochondria accounts for 13-20% of the liver, and mitochondrial dysfunction can impact 

ATP synthesis, increase ROS generation and trigger liver injury.46 The majority of the 

mitochondrial toxicity data in Hemmerich et al. originates from a Tox21 assay assessing 

mitochondrial membrane depolarization in HepG2 cells (which provides a distinct 

perspective compared to in vitro data derived from primary hepatocytes) thereby introducing 

additional biological information. When BSEP function is inhibited, bile salts accumulate 

within liver cells, causing hepatocyte injury and a risk of liver failure.47 Metabolic processes 

can form reactive metabolites that bind covalently to hepatic proteins, altering their function 

and leading to damage in liver tissues.48 Overall, in this study, we hypothesized that these 
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proxy-DILI labels along with chemical structure and physicochemical parameters would lead 

to enhanced predictivity in identifying potential liver injury endpoints while differentiating 

between sensitivities observed in human and animal proxy-DILI labels, allowing for 

interpretations of hepatotoxicity data across species. Finally, by including in vitro proxy-DILI 

labels, the models developed in this study have the potential for mechanistic evaluation and 

facilitating a comprehensive understanding of the underlying biochemical and cellular 

processes associated with drug-induced liver injuries.  
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MATERIALS AND METHODS 

The workflow followed in this study is shown in Figure 1 and described in more detail in 

the following. 

Drug-Induced Liver Toxicity Datasets: DILIst and DILIrank  

The human in vivo dataset for liver toxicity was collected by combining DILIst26 (714 toxic 

and 440 non-toxic compounds) and DILIrank27 (268 toxic and 76 nontoxic compounds from 

Chavan et al32) datasets. The DILIst dataset classifies compounds into two classes based on 

their potential for causing DILI. The DILIrank dataset was released by the FDA prior to 

DILIst. This dataset analysed the hepatotoxic descriptions from FDA-approved drugs and 

assessed causality evidence from literature and classified compounds into four groups: vMost-

, vLess, vNo-DILI concern and Ambiguous-DILI-concern drugs. For the DILIrank dataset, we 

retrieved data from Chavan et al32. We treated vMost- and vLess as DILI Positive and those 

labelled with vNo-DILI-concern as DILI Negative. Ambiguous-DILI-concern drugs were 

removed. Together these datasets form the largest drug list with DILI classification to date. 

Proxy-DILI datasets: in vivo and in vitro assays  

The first dataset we considered was the Liver Toxicity Knowledge Base (LTKB) 

benchmark dataset which was one of the earliest datasets developed from FDA-approved 

drug labels by NCTR and comprised drugs with the potential to cause DILI.49 We determined 

one proxy-DILI label from studies on human hepatotoxicity38, and two proxy-DILI labels 

from animal hepatotoxicity studies (animal hepatotoxicity A and B, and preclinical 

hepatotoxicity as detailed in Table 1)38,39,40. Animal hepatotoxicity datasets mentioned above 

consisted of data compiled by the authors from ToxRefDB50, ORAD40 and HESS51 as well as 

hepatic histopathologic effects. Three diverse DILI datasets contain heterogeneous data 
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collected by other studies31,41,42 (Divese DILI A, B and C as detailed in Table 1). These 

datasets consisted of data from the US drug-induced liver injury network, acute liver failure, 

withdrawn or suspended in the U.S. or compounds from the European markets, PubMed and 

FDA's MedWatch as well as compounds from the U.S. FDA Orange Book and Micromedex. 

We included three in vitro assays related to proposed or known mechanisms of liver injury, 

namely, mitochondrial toxicity43, bile salt export pump inhibition (BSEP)44 and the formation 

of reactive metabolites45 (as detailed in Table 1). The labels for these in vitro datasets were 

the assay hit calls defined by the original studies. Previous studies indicated that 

mitochondrial toxicity and BSEP are reasonable predictors for cholestatic and mitochondrial 

toxins, however, they fail when applied to a wider chemical space for drugs with different 

mechanisms.52 Many assay hits screened from chemical libraries often have unfavourable 

drug metabolism and pharmacokinetics presenting development challenges.53 Thus, we 

considered pharmacokinetics as one of the proxy-DILI labels and compiled pharmacokinetic 

parameters of maximum concentration (Cmax) from Smith et al.54 This dataset contains 

maximum unbound concentration in plasma for 534 compounds and maximum total 

concentration in plasma for 749 compounds. Together, as shown in Table 1, we obtained 

eleven in vivo and in vitro assays (proxy-DILI labels) related to liver injury and two 

pharmacokinetic parameters.  

Dataset pre-processing and Compound Standardisation  

Compound SMILES were standardized using the MolVS standardizer56 ( implemented 

using RDKit55 v.2022.09.5) which included tautomer standardization and canonicalization to 

the parent molecule. Standardization settings involved sanitization, normalization, largest 

fragment chooser, charge fixed and reionised such that the strongest acids ionize first 

tautomer enumeration, and canonicalization as described in the MolVS standardizer guide.56 
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Among the 1,317 compounds, in cases where DILIrank and DILIst contained the same 

compound SMILES with conflicting toxicity labels, we retained compounds in DILIst (which 

is an updated version of DILIrank). Finally, we obtained a dataset of 1,275 unique 

compounds and associated DILI labels (820 toxic and 455 non-toxic compounds). This 

dataset is henceforth referred to as the gold standard DILI dataset. 

For the proxy-DILI dataset, in case of any compounds with conflicting toxicity labels 

within a particular dataset after SMILES standardisation, we retained the compound as 

toxic/active (hence preferring the evidence of toxicity/activity which is a usual practice in 

drug discovery) resulting in a dataset of 18,679 compounds. For each of the eleven labels (as 

detailed in Table 1), if a compound was already present in the gold standard DILI dataset 

above, we removed the compound from the proxy-DILI dataset. This was done to avoid any 

information leaks in the models developed in this study. Finally, we obtained a dataset of 

15,080 compounds in total for eleven proxy-DILI labels which are henceforth called the 

proxy-DILI dataset in this study. 

Assay Concordance with Experimental Values 

To evaluate the concordance of the eleven proxy-DILI labels and the gold standard DILI 

dataset with each other, we used all 18,679 compounds in the proxy-DILI dataset and 

compared them to the 1,275 compounds in the gold standard DILI dataset. To evaluate 

concordance, we used Cohen’s kappa (as defined in scikit-learn v1.1.157) to measure the level 

of agreement between activity values for each pair of labels which were present in the 

dataset. 

Exploring the Physicochemical Space 
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Physicochemical space was explored using six characteristic physicochemical descriptors 

of molecular weight, TPSA, number of rotatable bonds, number of H donors, number of H 

acceptors and log P, (as implemented in RDKit55 v.2022.09.5). We used a t-distributed 

stochastic neighbour embedding (t-SNE from scikit-learn v1.1.157) to obtain a map of the 

physicochemical space for all compounds in the gold standard DILI dataset and proxy-DILI 

dataset with a high explained variance (PCA: 86.53% using two components).  

Structural fingerprints, Mordred, and Physicochemical Descriptors 

We used Morgan Fingerprints58 of radius 2 and 2048 bits and 166-bit MACCS Keys59, as 

implemented in RDKit55 (v2022.09.5), as structural features for all compounds in the DILI 

dataset and proxy-DILI dataset. This resulted in 2,214-bit vector structural fingerprints. 

We used molecular descriptors (as implemented in the Mordred60 python package) and 

physicochemical properties (such as topological polar surface area TPSA, partition 

coefficient log P etc. as implemented in RDKit55 v2022.09.5) for all compounds in the DILI 

dataset and proxy-DILI dataset. We dropped descriptors with missing values which resulted 

in 610 molecular descriptors for each compound. 

Feature Selection 

We first used feature selection on the compounds in the proxy-DILI dataset using a 

variance threshold (as implemented in scikit-learn v1.1.157) to filter features (Figure 1 Step 

1). We used a low variance threshold of 0.05 for Morgan fingerprints resulting in 93 selected 

bits, a threshold of 0.10 for MACCS keys resulting in 100 selected keys, and a threshold of 

0.10 for Mordred descriptors resulting in 346 selected descriptors. Lower thresholds for 

variance ensured strict selection criteria, leading to fewer selected features to strike a balance 

between the length of all fingerprints and physicochemical parameters. An additional fifteen 
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calculated physicochemical parameters (as implemented in RDKit55 v2022.09.5: topological 

polar surface area, hydrogen bond acceptors and donors, fraction of sp3 carbons, log P, and 

the number of rotatable bonds, rings, assembled rings, aromatic rings, hetero atoms, 

stereocenters, positive and negatively charged atoms, and the counts of NHOH and NO) were 

also added. This resulted in 193 bit-vector structural fingerprints and 361 molecular 

descriptors for each compound in the proxy-DILI dataset. The same selected features were 

used for the gold standard DILI dataset (Figure 1 Step 4) to avoid any information leaks. 

Evaluation of predictions from individual proxy-DILI models  

First, we trained individual models for each of the eleven proxy-DILI endpoints for all of 

the other proxy -DILI endpoints. For each proxy-DILI endpoint, we trained individual 

Random Forest models (Figure 1 Step 2) with a 5-fold stratified cross-validation and random 

halving search hyperparameter optimisation (as implemented in scikit-learn v1.1.157 with 

hyperparameter space given in Supplementary Table 1). We used this hyperparameter-

optimised model to obtain predicted probabilities for all compounds for the other proxy-DILI 

endpoints for every 11×11 combination. For each model built on a proxy-DILI endpoint, we 

chose an optimal decision threshold based on the J-statistic value (see released code for 

implementation) by comparing the predicted probabilities to the true values. We obtained 

final binary predictions using this threshold thereby choosing the best-case scenario where 

the balanced accuracy is optimised from the AUC-ROC curve. Next, we compared how well 

each proxy-DILI model was at predicting other proxy-DILI labels by comparing the F1 Score 

and Likelihood Ratios.  

Evaluating predictivity of individual proxy-DILI models for the gold standard DILI 

dataset 
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To train and evaluate models for DILI, we first split our gold-standard DILI dataset 

(containing 1,275 unique compounds) using a stratified split (Figure 1 Step 3) into training 

DILI data (of 1,020 unique compounds) and a held-out DILI test set (of 255 unique 

compounds). We evaluated the performance of individual models built on each of the eleven 

proxy-DILI endpoints on the held-out DILI test set (255 compounds). First, for each of the 

eleven individual models, we obtained out-of-fold predicted probabilities on the DILI 

training data (1,020 compounds) using cross-validation with a 5-fold stratified split. We used 

these out-of-fold predicted probabilities and true values to obtain an optimal decision 

threshold based on the J-statistic value. Finally, we used each of the individual models and 

the corresponding optimal decision threshold to obtain predictions of the held-out DILI test 

set. We used the Jaccard similarity coefficient score (as implemented in scikit-learn v1.1.157) 

to compare the similarity of predictions, that is, the predicted DILI vectors from each model. 

The Jaccard similarity coefficient measures the similarity between two sets of data counting 

mutual presence (positives/toxic) as matches but not the absences. 

Models for prediction of Cmax 

Next, we trained two Random Forest regressor models to predict the median pMolar 

unbound plasma concentration and median pMolar total plasma concentration for 534 and 

749 compounds respectively (Figure 1 Step 2). We used the selected 193 bit-vector structural 

fingerprints and 361 molecular descriptors as features to train the models with a 5-fold 

stratified cross-validation and random halving search hyperparameter optimisation as 

described above. The best estimator was refit on the entire dataset and the final model was 

used to generate predictions for compounds and these predicted features were used for 

training DILI models.  

Models for prediction of DILI 
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In this study, we built models (Figure 1 Step 5) using (a) selected 193-bit structural 

fingerprints, (b) selected 361 molecular descriptors, (c) a combination of selected 193-bit 

structural fingerprints and selected 361 molecular descriptors, (d) predicted eleven proxy-

DILI labels and two predicted pharmacokinetic parameters , and (e) a combination of all 

three features spaces.  

For each feature space, we used repeated nested cross-validation. First, the DILI training 

data was split into 5-folds. One of these folds was used as a validation set while the data from 

the remaining 4 folds were used to train and hyperparameter optimise a Random Forest 

Classifier (as implemented in scikit-learn v1.1.157). We optimised the classifier model using a 

random halving search (as implemented in scikit-learn v1.1.157) and 4-fold cross-validation 

(see Supplementary Table S1 for hyperparameter space). Once hyperparameters were 

optimised, we then used the fitted model to generate 4-fold cross-validated estimates for each 

compound in the fitted data. These predicted probabilities along with the real data were used 

to generate an optimal threshold using the J statistic value (see released code for 

implementation). Finally, we predicted the DILI endpoint for the validation set and used the 

optimal threshold to determine the DILI toxicity. The process was repeated 5 times in total 

until all 1020 compounds in the DILI training data were used as a validation set. This entire 

nested-cross validation set-up was repeated eleven times with different splits. The model with 

the highest AUC was fit on the entire DILI training data and we obtained the optimal 

threshold using the J statistic value on the 4-fold cross-validated estimates for each of these 

compounds. Finally, this threshold was used to evaluate our models (Figure 1 Step 6) on the 

held-out DILI test set (255 unique compounds). Thus, for each model using a feature space 

(or the combination), we obtained evaluation metrics on (a) the nested cross-validation (on 

training data), and (b) the held-out test set. The best-performing model (Figure 1 Step 7), as 

shown in the Results section, was the combination of all three feature spaces. This model was 
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retrained (Figure 1 Step 8) on the complete gold-standard DILI dataset consisting of 1,275 

distinct compounds. This model, DILIPredictor, can be accessed through a web application 

https://broad.io/DILIPredictor and have all code available for local use on GitHub at 

https://github.com/srijitseal/DILI. 

To calculate the structural similarity of the held-out test to training data, we first calculated 

pairwise Tanimoto similarity (using 2048-bit Morgan fingerprint, see released code for 

implementation) for each test compound to each training compound. Finally, we calculated 

the mean of the three highest Tanimoto similarities (that is the three nearest neighbours) 

which was used to define the structural similarity of the particular test compound. 

Evaluation Metrics 

All predictions (nested-cross validation and held-out test set) were evaluated using 

sensitivity, specificity, balanced accuracy (BA), Mathew’s correlation constant (MCC), F1 

scores, positive predictive value (PPV), likelihood ratio (LR+)61, average precision score 

(AP), Area Under Curve-Receiver Operating Characteristic (AUC-ROC) as implemented in 

scikit-learn v1.1.157. 

Feature importance measures to understand the chemistry and biological mechanisms 

for common DILI compounds 

For the final model released publicly that used a combination of all feature spaces, we used 

SHAP values (as implemented in the shap python package62) to obtain feature importance for 

each input compound. This included proxy-DILI data, pharmacokinetic parameters, 

physicochemical features as well as MACCS key substructures that contributed to DILI 

toxicity/safety. Further, we show how DILIPredictor can be used to eluate the causes of DILI, 

both in chemistry and via mechanisms on the biological level using the importance measures 
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on proxy-DILI labels. For this purpose, we chose a total of 16 compounds that were not 

present in the training data of these models. As shown in Table 4, several of toxic compounds 

were related to the study by Chang et al who compiled compounds causing DILI in patients 

undergoing chemotherapy.63 We also included two pairs of compounds studied by Chen et al 

such as doxycycline/minocycline and moxifloxacin/trovafloxacin; these pairs were defined 

by a similar chemical structure and mechanism of action but differed in their liver toxicity 

effects.64 Overall, fourteen of these compounds are known to cause DILI in humans while 

two compounds did not cause DILI in humans, namely, 2-butoxyethanol and astaxanthin. 

Statistics and Reproducibility  

We have released the datasets used in this proof-of-concept study which are publicly 

available at https://broad.io/DILIPredictor. We released the Python code for the models 

which are publicly available on GitHub at https://github.com/srijitseal/DILI.   
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RESULTS AND DISCUSSION 

In this work, we trained models on each of eleven proxy-DILI endpoints related to liver 

toxicity. We used these models to obtain predicted proxy-DILI labels for 1,275 compounds in 

the gold standard DILI dataset (as defined in Methods) none of which overlapped with the 

proxy-DILI dataset. We then trained new models using those predicted proxy-DILI labels as 

inputs, together with the compounds’ structural fingerprints, physicochemical properties, and 

a combination thereof, for 1,020 compounds the gold standard DILI datasets. We then 

evaluated the models on a held-out test set of 255 compounds. 

Comparing chemical spaces for the proxy-DILI and gold standard DILI datasets 

We first examined the diversity and representation of compounds in the proxy-DILI and 

gold standard DILI datasets, to ensure the evaluation would be reasonable. The distribution of 

compounds in each of the eleven labels of the proxy-DILI dataset covers a diverse range of 

physicochemical parameters as shown in Supplementary Figure S1. Gold standard DILI 

compounds effectively capture the diversity and representativeness of the compounds in the 

proxy-DILI dataset as shown in Supplementary Figure S2 for the physicochemical space of 

the 1,275 compounds in the gold standard DILI dataset compared to 15,080 compounds in 

the proxy-DILI dataset. Further, the held-out DILI test set (255 compounds) was also 

representative of the training DILI data (1,020 compounds) as shown in Supplementary 

Figure S3. The main caveat to consider is that the six characteristic physicochemical 

descriptors capture the variability of physicochemical space only to a certain extent. Overall, 

we conclude that the chemical space covered by the datasets is sufficiently similar for our 

evaluation to be reliable.  

Concordance of Proxy-DILI dataset and DILI compounds 
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Next, we aimed to evaluate the concordance of labels in the proxy-DILI dataset with the 

gold standard DILI dataset. To do so, we compared all 18,679 compounds in the proxy-DILI 

dataset to the 1,275 compounds in the gold standard DILI dataset. It is important to note that 

these compounds (that overlapped between the proxy-DILI and gold standard DILI dataset) 

were only used to analyse concordance in this section and not in training the models, because 

that would leak information. As depicted in Figure 2, we observed a strong concordance 

between the data sourced from Liver Toxicity Knowledge Base and the human hepatotoxicity 

dataset (Cohen’s Kappa = 0.50), preclinical data (0.54), and the three diverse DILI datasets 

(0.70, 0.80 and 0.82) used in this study. The lack of perfect concordance is reasonable given 

these datasets are primarily derived from human-related data, as opposed to animal data or in 

vitro assays. Note, concordance between DILI and proxy-DILI labels may be affected as the 

proxy-DILI dataset used here includes some of the DILI compounds (these overlapped 

compounds were removed later when training models). 

Individual proxy-DILI models are complementary to each other and distinct in their 

prediction for DILI compounds 

We next used the individual models built on the eleven proxy-DILI labels to predict the 

other proxy-DILI labels (with evaluation metrics as shown in Supplementary Table S2). As 

shown in Figure 3, we observed the Liver Toxicity Knowledge Base (the label most similar 

to the gold standard DILI label) was well predicted using human hepatotoxicity (LR+ = 4.56, 

F1=0.87) and preclinical hepatotoxicity (LR+ = 5.92, F1=0.89), as well as by the diverse 

DILI datasets (mean LR+ = 5.52, mean F1=0.85). Bile salt export pump inhibition (BESP) 

and mitochondrial toxicity were strongly predictive of each other (LR+ = 2.85, F1= 0.38 

when using BSEP to predict mitotox and LR+ = 3.56, F1=0.73 when using mitotox to predict 

BSEP). Overall, the assays in the proxy-DILI dataset can be used to train individual models 
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to generate predicted proxy-DILI labels which then provide a complementary source of 

information.  

We next analysed the eleven individual proxy-DILI models and a model built on the two 

PK parameters (Cmax unbound and total) for their predictions on the 255 compounds in the 

held-out compounds of the gold standard DILI dataset. As shown in Figure 4 (further details 

in Supplementary Table S3), the best-performing models were the model built on the 

preclinical animal hepatotoxicity (AUC=0.67, LR+ = 2.04), the model built on the LTKB 

dataset (AUC=0.67, LR+=1.88), and the model built on PK parameters (AUC=0.68, LR+ = 

1.30), and. Although the LTKB dataset contained only 103 compounds, this dataset was used 

to inform the labels selected by the FDA in its gold standard DILI dataset, which explains its 

high performance. However, other biological labels have compounds covering a wider 

biological and chemical space coverage which warrants their inclusion in our study as shown 

by Jaccard similarity for predictions on the held-out DILI dataset. Predictions from models 

built on animal hepatotoxicity labels were not similar to predictions from models built on 

human hepatotoxicity labels (Figure 5; mean Jaccard similarity of 0.03). We found that 

predictions from models built on human-related labels were similar (e.g., predictions from the 

preclinical hepatotoxicity model and LTKB models have a Jaccard similarity of 0.69). 

However, predictions from human-related labels were dissimilar to predictions from in vitro 

assays (e.g., predictions from the preclinical hepatotoxicity model had only a 0.02 Jaccard 

similarity to predictions from the mitotox model and 0.03 Jaccard similarity to predictions 

from the reactive metabolite formation model). Overall, we conclude that each model built on 

a proxy-DILI label and the PK parameters was distinctive in its prediction, thus providing 

complementary information on compounds’ potential for DILI. 
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Models combining chemical structure, physicochemical properties, PK parameters and 

predicted proxy-DILI data outperform individual models 

We next compared models built on combinations of proxy-DILI labels (including PK 

parameters), chemical structure, and physicochemical properties including Mordred 

descriptors (Table 2). When comparing results from 55 held-out test sets from the repeated 

nested cross-validation (as shown in Figure 6 with the comparison of differences in 

distribution using a paired t-test.), the models combining structural fingerprints, 

physicochemical properties, Mordred descriptors, PK parameters and predicted proxy-DILI 

labels achieved a mean AUC = 0.71 (mean LR+ = 2.02) compared to the second-best models 

using only physicochemical properties and Mordred descriptors with a mean AUC=0.70 

(mean LR+ = 1.93) and models using structural fingerprints, physicochemical properties and 

Mordred descriptors which also achieved a mean AUC of 0.70 (mean LR+ = 1.93). Models 

using only structural fingerprints achieved a mean AUC of 0.69 (mean LR+ = 1.87) while 

models using only predicted proxy-DILI labels and PK parameters as features achieved a 

mean AUC of 0.69 (mean LR+ = 2.09) in the nested cross-validation. Supplementary Figure 

S4 compares the distribution of balanced accuracy for all model combinations using all 

feature sets (predicted proxy-DILI labels and PK parameters, structural features, and Mordred 

physicochemical descriptors).  

We next retrained all hyperparameter-optimised models on the DILI training data (1020 

compounds) and evaluated the final models on the held-out DILI test set (255 compounds). 

The DILIPredictor model (combining all predicted proxy-DILI labels and PK parameters, 

structural features, and Mordred physicochemical descriptors) achieved an AUC = 0.74 (LR+ 

= 2.50) (Table 2). This was quite successful compared to other models such as AUC = 0.74 

(LR+ = 1.92) for the model using both structural, Mordred and physicochemical descriptors, 
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AUC = 0.73 (LR+ = 1.67) for structural models, AUC = 0.74 (LR+ = 1.96) for the model 

using only proxy-DILI and PK parameters, and AUC = 0.72 (LR+ = 2.29) for the model 

using Mordred and physicochemical descriptors.  

One metric relevant in predictive safety/toxicology is the positive likelihood ratio61 and the 

detection of toxic compounds with a lower false positive rate. We next analysed the 

performance of models along the AUC-ROC curve from a false positive rate of 0 to 1. When 

predicting the first 26 compounds correctly as true positives (or approximately 10% of the 

255 compounds in the held-out test set), DILIPredictor achieved the highest LR+ score of 

7.21 (26 toxic compounds correctly predicted out of 28 compounds, PPV = 0.93) compared 

to the structural model which achieved an LR+ score of 4.62 (25 toxic compounds correctly 

predicted out of 28 compounds, PPV = 0.89). This improvement is mainly from being able to 

detect compounds at a wider range of structural similarity to training data (as shown in 

Supplementary Figure S5 using the distribution of the top true positives detected early with 

low false positive rates for each model). Overall, this shows that using all feature types in 

DILIPredictor allows for the early detection of a greater number of toxic compounds with a 

low false positive rate.  

We subsequently compared our models to those reported in earlier publications. Table 3 

presents a selection of recent DILI prediction models that employ chemical features and 

biological data to predict liver toxicity. Since most previous studies did not emphasize early 

detection or likelihood ratios, it is not possible to compare LR+ scores; therefore, we can only 

make comparisons within the models developed in this study. It is important to note that the 

size, source, and consequently the quality of training and test datasets vary across previous 

literature, rendering direct comparisons infeasible. In our study, the final DILIPredictor 
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model achieved a high AUC-ROC of 0.74 on the held-out gold standard DILI dataset (255 

compounds), which aligns with the average AUC (0.74) from prior studies.  

Feature Interpretation 

We next used feature interpretation to analyse the chemistry and biological mechanisms for 

compounds known to cause DILI. We chose sixteen compounds (Table 4) of which fourteen 

were known for their DILI63 and two compounds that do not cause DILI in humans (namely, 

2-butoxyethanol and astaxanthin). DILIPredictor could detect structural information relevant 

to causing DILI (six compounds shown in Figure 7 and further in Table 4 and Supplementary 

Figure S6). The MACCS features most contributing to the toxicity for gemcitabine (a 

nucleoside analogue drug) was related to the presence of a ribose ring, which is key to the 

attachment of the three phosphates and then works as a faulty base in DNA synthesis, causing 

cell death65 (Figure 7). Further, DILIPredictor correctly predicted compounds such as 2-

butoxyethanol and astaxanthin to be non-toxic in humans even though they cause hepatic 

injury in animal models17,25 (Figure 7). In these compounds, proxy-DILI features associated 

with either animal hepatotoxicity or preclinical hepatotoxicity contributed to predicting 

toxicity in humans, however, the proxy-DILI indicators related to human hepatotoxicity 

ultimately led to the prediction of non-toxicity.  

Finally, among structurally similar pairs of compounds, acitretin was correctly predicted as 

toxic while astaxanthin was correctly predicted to be non-toxic. For acitretin, the preclinical 

hepatotoxicity label contributed to the toxicity prediction. Conversely, labels associated with 

human hepatotoxicity contributed to correctly predicting astaxanthin as non-toxic. Among 

tetracyclines, pairs of compounds doxycycline (prediction scores = 0.72) and minocycline 

(0.73), and among fluoroquinolones, pairs of compounds moxifloxacin (0.84) and 

trovafloxacin (0.86) were correctly predicted toxic. Furthermore, the prediction scores 
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obtained from DILIPredictor were in agreement with the less-toxic or more-toxic DILI 

annotations collated by Chen et al.64 Among compounds withdrawn from market, sitaxentan, 

trovafloxacin and ximelagatran were flagged with prediction scores above 0.80 threshold; 

however many compounds currently on the market such as docetaxel and paclitaxel were also 

flagged in the same threshold as being DILI-toxic. Overall, DILIPredictor combined 

chemical structures and biological data to correctly predict DILI in humans. 

Limitations of DILIPredictor 

The primary focus of this study was the generation of binary classification models for drug-

induced liver injury. Besides using predicted Cmax (unbound ant total), we did not 

incorporate factors such as dose or time point into this study due to its scarcity in available 

public data. Labelling schemes are not always binary but sometimes include an “ambiguous” 

class (such as in the DILIrank dataset) and these compounds are hence not included in this 

study. While in vitro data can provide valuable insights into drug toxicities, they are still 

proxy endpoints for the in vivo effects. Toxic compounds detected in in vitro assays can often 

cause corresponding toxicity in vivo, but compounds that appear to be safe in in vitro are not 

necessarily safe in humans.23,24  
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CONCLUSIONS 

In this work, we trained models to predict drug-induced liver injury (DILI) using not only 

chemical data but also heterogeneous biological in vivo (human and animal) and in vitro data 

from various sources. We found a strong concordance in observed data between compounds 

with the proxy-DILI labels and DILI compounds. The eleven proxy-DILI models were not 

predictive of each other- this complementarity suggests that they could be combined to 

predict drug-induced liver injury. Random Forest models that combined different types of 

input data - structural fingerprints, physicochemical properties, PK properties and proxy-

DILI labels - improved predictive performance, especially in early detection (with low false 

positive rates), with the highest LR+ score of 7.21 (26 toxic compounds with PPV=0.93). 

DILIPredictor accurately predicted the toxicity of various compounds known to cause DILI, 

including fourteen notorious DILI-inducing compounds, by recognizing chemical structure as 

well as biological mechanisms. DILIPredictor was further able to differentiate between 

animal and human sensitivity for DILI and exhibited a potential for mechanism evaluation for 

these compounds. Overall, the study demonstrated that incorporating all complementary 

sources of information can significantly improve the accuracy of DILI prediction models. 

Furthermore, the availability of larger, high-quality, and standardized datasets for DILI in the 

public domain can greatly enhance the development of predictive models for drug-induced 

liver injury such as from the Omics for Assessing Signatures for Integrated Safety 

Consortium (OASIS).66 We released our final interpretable models at (with all code available 

for download at GitHub at https://github.com/srijitseal/DILI) and datasets used in this study 

at https://broad.io/DILIPredictor.  
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TABLES  

Table 1. Sources of Liver-safety and Toxicity Data Used in this study. 

Data Source Assay Type Cell 

line 

used 

Used in this study Total 

number of 

compounds 

Number of 

compounds 

in Active 

Class 

Description Reference (data 

retrieved from) 

Liver Toxicity Knowledge Base DILI N/A Training Data (Liv) 103 77 Liver Toxicity 

Knowledge 

Base (LTKB), 

prescription 

drugs, 

hepatotoxicity,  

Chen et al 

Human hepatotoxicity Human 

hepatotoxicity 

 Training Data (Liv) 1582 933 Human 

hepatotoxicity 

Mulliner et al  

Animal hepatotoxicity A Animal 

hepatotoxicity 

 Training Data (Liv) 602 203 Chronic oral 

administration, 

Hepatic 

histopathologic 

effects, 

ToxRefDB 

Liu et al 

Animal hepatotoxicity B Animal 

hepatotoxicity 

 Training Data (Liv) 738 412 Hepatocellular 

hypertrophy, 

rats, ORAD, 

HESS,  

Ambe et al 

Preclinical hepatotoxicity  Animal 

hepatotoxicity 

 Training Data (Liv) 2750 2112 Preclinical 

hepatotoxicity  

Mulliner et al  

Diverse DILI A Heterogenous 

Data  

N/A Training Data (Liv) 1230 474 Large-scale 

and diverse 

DILI dataset,  

He et al 
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Diverse DILI B Heterogenous 

Data  

N/A Training Data (Liv) 143 71 US drug-

induced liver 

injury network, 

acute liver 

failure, 

withdrawn or 

suspended in 

US or 

European 

markets, 

PubMed and 

FDA's 

MedWatch. 

Zhu et al 

Diverse DILI C Heterogenous 

Data  

N/A Training Data (Liv) 556 291 Transient liver 

function 

abnormalities, 

adverse 

hepatic effects, 

U.S. FDA 

Orange Book, 

Micromedex 

Mora et al 

BESP Mechanisms of 

Liver Toxicity 

 Training Data (Liv) 763 354 Bile Salt Export 

Pump 

Inhibition 

McLoughlin et al 

Mitotox  Mechanisms of 

Liver Toxicity 

 Training Data (Liv) 6111 874 Mitochondrial 

Toxicity 

Hemmerich et al 

Reactive Metabolite  Mechanisms of 

Liver Toxicity 

 Training Data (Liv) 502 118 Reactive 

Metabolite  

Mazzolari et al 

Cmax (total) Pharmacokinetic 

Properties 

 Predicted Property 749 N/A Maximum total 

concentration 

in plasma  

Smith et al 

Cmax (unbound) Pharmacokinetic 

Properties 

 Predicted Property 534 N/A Maximum 

unbound 

Smith et al 
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concentration 

in plasma  

DILIst DILI N/A Test Data (DILI) 1123 698 DILIst 

Classification 

Tong et al 

DILIrank DILI N/A Test Data (DILI) 152 122 DILIrank 

dataset  

Chen et al, Chavan et al  
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Table 2: Performance of combination models from (a) 55 held-out test sets from repeated nested cross validation and (b) the 255 compounds in 

the held-out DILI dataset. rNCV: repeated nested cross validation 

Model Features Used Evaluation 
data 

Balance
d 
Accurac
y (BA) 

Mathew’s 
correlatio
n constant 
(MCC) 

Area Under 
Curve-
Receiver 
Operating 
Characteristi
c (AUC-
ROC) 

Sensitivit
y 

Specificit
y 

F1 
Scor
e 

Likelihoo
d ratio 
(LR+) 

Positive 
predictiv
e value 
(PPV) 

Average 
precisio
n score 
(AP) 

proxy-DILI data 
only 

 11 in vitro and in vivo 
labels 

rNCV 
(mean) 

0.64 0.28 0.69 0.59 0.69 0.72 2.09 0.76 0.79 

External 
Test 

0.67 0.32 0.74 0.68 0.65 0.71 1.96 0.79 0.85 

Chemical 
Structure only 

Morgan Fingerprints 
and MACCS Keys 

rNCV 
(mean) 

0.63 0.26 0.69 0.60 0.66 0.70 1.87 0.75 0.78 

External 
Test 

0.64 0.28 0.73 0.71 0.57 0.66 1.67 0.78 0.82 

Physicochemica
l properties 

Mordred Descriptors 
and Physicochemical 
parameters  

rNCV 
(mean) 

0.65 0.28 0.70 0.63 0.66 0.70 1.93 0.77 0.79 

External 
Test 

0.68 0.37 0.72 0.67 0.70 0.75 2.29 0.79 0.79 

Chemical 
Structure and 
Physicochemica

Morgan Fingerprints, 
MACCS Keys, 
Mordred Descriptors, 
Physicochemical 

rNCV 
(mean) 

0.65 0.29 0.70 0.64 0.66 0.71 1.93 0.77 0.80 
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l Properties parameters  External 
Test 

0.68 0.34 0.74 0.74 0.62 0.70 1.92 0.81 0.82 

DILIPredictor Morgan Fingerprints, 
MACCS Keys, 
Mordred Descriptors, 
Physicochemical 
parameters and 11 in 
vitro and in vivo labels 

rNCV 
(mean) 

0.66 0.31 0.71 0.64 0.67 0.72 2.02 0.78 0.80 

External 
Test 

0.70 0.39 0.74 0.67 0.73 0.76 2.50 0.80 0.81 

  

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted January 12, 2024. 
; 

https://doi.org/10.1101/2024.01.10.575128
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2024.01.10.575128
http://creativecommons.org/licenses/by/4.0/


 44

Table 3: Previously published models used in the evaluation of hepatotoxicity/liver injury (for test sets only) 

Model Features Compounds in the Train 
set 

Compounds in the Test 
set 

Balanced Accuracy AUC-ROC Source 

Ensemble of RF and 
SVM  

Molecular fingerprints 1241 286  0.82 0.9 Ai et al. (2018)  

Random Forests Imaging Phenotypes and 
Chemical Descriptors 

346 41 0.52 0.74 Chavan et al (2020) 

Ensemble Models Molecular features, 
physicochemical 
properties 

1254 204 0.72 0.73 He et al (2019) 

Random Forests 2D molecular descriptors 996 341  0.67 0.71 Kotsampasakou et al. 
(2017) 

Random Forests 2D molecular descriptors 996 921 0.57 0.59 Kotsampasakou et al. 
(2017) 

SVM Morgan Fingerprints 923 49 0.67 - Liu et al (2021) 

SVM Predicted protein targets 923 49 0.59 - Liu et al (2021) 

Random Forests 0−2.5D molecular 
descriptors 

1075 554 0.77 0.81 Mora et al (2020) 

GA-SVM 2D and 3D molecular 
descriptors 

3712 375 0.75 0.73 Mulliner et al (2016) 

Random Forests Morgan Fingerprints 845 362 - 0.75  Ye et al (2022) 

Naïve Bayes Morgan Fingerprints 336 84 0.73 0.81 Zhang et al (2016) 

SVM MACCS keys 1317 88 0.68 0.62 Zhang et al. (2016)  

Average    0.68 0.74  
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Random Forests Structural, 
Physicochemical, in vitro 
and in vivo 

1020 225 0.7 0.74 Present Study 
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Table 4: Table 4: DILI predictions for 14 compounds known to cause DILI and 2 compounds which do not cause DILI in humans (not used in 

training models in this study) and top 3 proxy-DILI labels positively and negatively for contributing to the prediction. 

Compound 

Name 

DILI 

(Literatu

re) 

DILI 

Predicit

on 

DILI 

Probabil

ity 

Hepatoto

xic 

Potential 

(Chen et 

al) 

Remarks Most Contribution proxy-DILI endpoints to Prediction 

Ranked 1 Ranked 2 Ranked 3 

2-

Butoxyethan

ol 

Not 

Toxic 

Not 

Toxic 

0.53  Known DILI in 

mice, not in 

human 

Liver Toxicity 

Knowledge Base 

Human hepatotoxicity Diverse DILI B 

Acitretin Toxic Toxic 0.88  Vitamin A 

derivative; 

Retinoid that 

causes DILI 

Preclinical 

hepatotoxicity 

Mitotox BESP 

Astaxanthin Not 

Toxic 

Not 

Toxic 

0.56  Vitamin A 

derivative; High 

structural 

similarity to 

retinoid but 

does not cause 

DILI 

Human hepatotoxicity Diverse DILI C Liver Toxicity 

Knowledge Base 

Cabazitaxel Toxic Toxic 0.86   Diverse DILI B Mitotox BESP 

Clopidogrel Toxic Toxic 0.8 Less toxic  Thienopyridines

; Adverse 

Reaction 

Preclinical 

hepatotoxicity 

Liver Toxicity 

Knowledge Base 

Human hepatotoxicity 

Docetaxel Toxic Toxic 0.86  In Market Diverse DILI B Mitotox BESP 

Doxycycline Toxic Toxic 0.72 Less toxic  Tetracyclines; 

Adverse 

Reaction 

Diverse DILI B Diverse DILI A Liver Toxicity 

Knowledge Base 
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Entacapone Toxic Toxic 0.82 Less toxic  Catechol-O-

methyl 

transferase 

inhibitors 

Preclinical 

hepatotoxicity 

Liver Toxicity 

Knowledge Base 

Mitotox 

Enzalutamid

e 

Toxic Toxic 0.83   Preclinical 

hepatotoxicity 

Diverse DILI B Liver Toxicity 

Knowledge Base 

Gemcitabine Toxic Toxic 0.77  In Market Liver Toxicity 

Knowledge Base 

Diverse DILI A Diverse DILI B 

Minocycline Toxic Toxic 0.73 More 

toxic 

Tetracyclines, 

Wanring/Preca

ution 

Diverse DILI B Diverse DILI A Liver Toxicity 

Knowledge Base 

Moxifloxacin Toxic Toxic 0.84 Less toxic  Fluoroquinolon

es, Adverse 

Reaction 

Preclinical 

hepatotoxicity 

Diverse DILI B Liver Toxicity 

Knowledge Base 

Paclitaxel Toxic Toxic 0.87   Diverse DILI B Mitotox BESP 

Sitaxentan Toxic Toxic 0.82  Withdrawn Preclinical 

hepatotoxicity 

Diverse DILI B Liver Toxicity 

Knowledge Base 

Trovafloxaci

n 

Toxic Toxic 0.86 More 

toxic 

Fluoroquinolon

es, Withdrawn 

Preclinical 

hepatotoxicity 

Diverse DILI B Liver Toxicity 

Knowledge Base 

Ximelagatra

n 

Toxic Toxic 0.82  Withdrawn Diverse DILI B Liver Toxicity 

Knowledge Base 

Human hepatotoxicity 
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FIGURES 

 

Figure 1: Workflow of the current study. Individual models for eleven in vivo and in vitro assays in the Proxy-DILI dataset and 2 PK 
were used to predict these endpoints for compounds in the gold standard DILI dataset. A combination of these predictions along wit
structure and molecular descriptors were then used to train and evaluate the models on DILI c

48

K parameters 
ith chemical 
compounds.

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted January 12, 2024. 
; 

https://doi.org/10.1101/2024.01.10.575128
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2024.01.10.575128
http://creativecommons.org/licenses/by/4.0/


 49

 

 

Figure 2: Concordance of compounds overlapping in-between eleven labels in the proxy-
DILI dataset (18,679 compounds) including compounds that overlapped with DILI data 
(1,275 compounds). Concordance is given using Cohen’s kappa (and the number of 
overlapping compounds given as annotations). Overall, the human-related proxy-DILI labels 
and diverse heterogenous DILI labels showed high concordance with DILI compounds and 
among each other.
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Figure 3. Performance metrics for models built on eleven proxy-DILI labels when predicting labels for the other proxy-DILI in the m
evaluated using (a) AUC-ROC and (b) Likelihood Ratio (LR+). 
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Figure 4. Performance Metrics AUC-ROC and Balanced Accuracy achieved by each of eleven individual models built on the proxy-D
and a model built on two pharmacokinetic parameters (Cmax total and unbound) when tested on the 255 compounds in the held
dataset.  
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Figure 5: Jaccard Similarity of predictions on the held-out DILI dataset (255 compounds) for individual models built on eleven p
labels in the proxy-DILI dataset. 
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Figure 6. Performance metrics AUC-ROC for combination models from 55 held-out test sets from repeated nested cross-validation
selected 193-bit structural fingerprints, (b) selected 361 molecular descriptors, (c) selected 193-bit structural fingerprints and se
molecular descriptors, (d) predicted eleven proxy-DILI labels and 2 PK parameters, and (e) a combination of all three features spaces
with a paired t-test.  
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Figure 7: MACCS substructure (highlighted) and proxy-DILI labels positively contributing 
to DILI when using DILIPredictor for four compounds known to cause DILI and two 
compounds which do not cause DILI in humans (further details for another 10 compounds in 
Supplementary Figure S5). The highest positive contribution from the MACCS substructure 
is highlighted with the chemical structure. 
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