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Abstract

Current electrophysiology experiments often involve massively parallel recordings of neuronal activity
using multi-electrode arrays. While researchers have been aware of artifacts arising from electric cross-talk
between channels in setups for such recordings, systematic and quantitative assessment of the effects of
those artifacts on the data quality has never been reported. Here we present, based on examination of
electrophysiology recordings from multiple laboratories, that multi-electrode recordings of spiking activity
commonly contain extremely precise (at the data sampling resolution) spike coincidences far above the chance
level. We derive, through modeling of the electric cross-talk, a systematic relation between the amount of
such hyper-synchronous events (HSEs) in channel pairs and the correlation between the raw signals of those
channels in the multi-unit activity frequency range (250-7500 Hz). Based on that relation, we propose a
method to identify and exclude specific channels to remove artifactual HSEs from the data. We further
demonstrate that the artifactual HSEs can severely affect various types of analyses on spiking train data.
Taken together, our results warn researchers to pay considerable attention to the presence of HSEs in spike
train data and to make efforts to remove the artifacts from the data to avoid false results.

Introduction1

Modern electrophysiological experiments often use multi-electrodes, such as Utah arrays (Blackrock Microsystems,2

Salt Lake City, UT, USA) (Hatsopoulos et al., 1998; de Haan et al., 2018; Chen et al., 2022) and Neuropixels3

probes (Cambridge NeuroTech, Cambridge UK) (Jun et al., 2017), to record neuronal activity at multiple sites4

simultaneously. These recordings are known to be very sensitive to various sources of noise (Rey et al., 2015;5

Harris et al., 2016), which need to be mitigated to enable reliable and robust data analysis. Signal artifacts in6

neural recordings occur from both internal (heartbeats, eye movements, chewing etc.) and external (electric7

grid interference, loud noises etc.) sources (Fabietti et al., 2020). These sources are of non-neural origin, and8

can often be distinguished from neural activity owing to their particular frequencies and distinct waveforms.9

Common removal methods are based on independent component analysis (Bell & Sejnowski, 1995; Rong &10

Contreras-Vidal, 2006; Delorme et al., 2007), canonical correlation analysis (Hotelling, 1936; Wim De Clercq et al.,11

2006), wavelet methods, or certain combinations thereof. These are mostly applied to electroencephalogram (EEG)12

(Wim De Clercq et al., 2006; Delorme et al., 2007; Shackman et al., 2009; Barban et al., 2021; Mumtaz et al.,13
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2021) and magnetoencephalogram (Rong & Contreras-Vidal, 2006) data, and to a lesser extent to extracellular14

electrophysiology (Ludwig et al., 2009; Islam et al., 2014; Fabietti et al., 2020).15

Besides these common noise sources, capacitive coupling between shanks or cables can cause cross-talk between16

different channels (Nelson et al., 2017), leading to a mixing of neural signals that can persist even after spike17

sorting (Torre et al., 2016). Cross-talk is a well-known problem in EEG (Nagaoka et al., 1992) and electromyogram18

(Koh & Grabiner (1993); Kilner et al. (2002); Farina et al. (2004)) data recording systems. Yet, to the best of19

our knowledge, only a few studies have focused on cross-talk in electrophysiology systems (Musial et al., 2002;20

Nelson et al., 2017; Pérez-Prieto & Delgado-Restituto, 2021). One approach to avoid cross-talk in these systems21

is through hardware implementations, like improving the isolation and design of the circuits (Blot & Barbour,22

2014; Nelson et al., 2017; Pérez-Prieto & Delgado-Restituto, 2021; Perez-Prieto et al., 2021). However, most23

neuroscientists do not design their own custom hardware and thus the effects of cross-talk have to be mitigated24

with post-hoc methods.25

One artifact linked to cross-talk is extremely precise (at the data sampling resolution, e.g. 1
30 ms) spike26

synchrony (Yu et al., 2009; Torre et al., 2016; Dehnen et al., 2021; Chen et al., 2022). Spiking activity is known to27

be coordinated on the timescales of a few milliseconds (König et al., 1995; Riehle et al., 1997; Butts et al., 2007;28

Grün, 2009), but no observation of sub-millisecond coordination has been reported, nor are there any known29

mechanisms that enable sub-millisecond synchronization. Furthermore, the separation between electrodes in those30

studies was ≥ 400 µm, well beyond the spatial reach of extracellular electrodes (Henze et al., 2000), denying the31

possibility that the apparent sub-millisecond synchronization is merely an identical spike recorded by multiple32

electrodes. Therefore, these hyper-synchronous events were considered artifacts, which we name here synchrofacts33

(short for synchronous artifacts).34

Some studies remove suspicious spikes from further analysis either during the spike sorting process (Musial35

et al., 2002; Dann et al., 2016) or post-hoc (Torre et al., 2016; Dehnen et al., 2021). Other studies remove entire36

channels or neurons instead (Churchland et al., 2006; Yu et al., 2009; Snyder et al., 2021; Chen et al., 2022;37

Semedo et al., 2022; Morales-Gregorio et al., 2023). However, most removal methods are relatively complex,38

computationally expensive, and might require manual verification of the results.39

To overcome the limitations of the above mentioned methods, we here show that cross-talking channels can40

be detected from both the raw signal cross-correlation and the degree of spike coincidence. Our detection method41

is tested on two extracellular electrophysiology data sets from two different experimental laboratories (de Haan42

et al., 2018; Chen et al., 2022). A theoretical model confirms that the experimental observations are consistent43

with what is expected from cross-talk between recording channels. Furthermore, we propose and evaluate several44

methods to remove synchrofacts based on our metrics. Finally, we demonstrate that the presence of synchrofacts45

can radically affect analysis results: on a) estimation of neuronal tuning curves and on b) Unitary Event analysis46

(Grün et al., 1999, 2002a,b; Grün, 2009) for detection of excess spike synchrony. The application examples47

highlight the need for the detection and removal of synchrofacts. All in all, our methods construe a novel and48

simple approach to synchrofact removal that can be applied to any multi-electrode recording system to ensure49

cleaner and more reliable data.50

Results51

Synchronous spike events are ubiquitous in multi-electrode systems52

To demonstrate how synchrofacts appear in massively parallel spike train data, we inspect two data sets from two53

different laboratories and monkeys (Figure 1a). In the dot-display of the simultaneously recorded spike trains54

(Figure 1b, top), we notice events where many neurons exhibit spikes simultaneously (highlighted in gray). To55

examine the temporal scale of these events, we compute the population spike time histograms with different bin56

sizes (Figure 1b, bottom). At the resolutions of 1 ms and 1
30 ms, we find some bins with outstandingly high spike57
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Figure 1: Observation of hyper-synchronous event (HSEs). (a) Electrode arrays and implantation sites for the
two macaques, macaque Y: 6x6 electrode arrays in V1, V2, DP, 7A and 10x10 in M1/PMd (we focus here only
on the 10x10 array); macaque L: 14 8x8 arrays in V1 and two in V4 (focus here on an array pair with one in
V1 and one in V4). The arrays focused on are colored. (b) Dot display (top) and population histograms with
different bin sizes (bottom) for a 60 ms long data slice. HSEs are highlighted with gray. (c) Illustration of the
surrogate generation method. Original spike trains are shifted against each other by a random amount of time.
(d) Complexity distribution of the original data (colored bars), and the mean and standard deviation (line and
shade, respectively) for the complexity distribution of the respective surrogates. Top: 1 ms bin size; bottom:
1
30 ms bin size.

counts, not visible at the resolution of 10 ms. Whereas neurons can coordinate their activity with millisecond58

precision (König et al., 1995; Riehle et al., 1997; Butts et al., 2007), to the best of our knowledge, no neural59

mechanism has been reported to produce synchronization within 1
30 ms. We term these extremely precise spike60

coincidences as hyper-synchronous events (HSEs).61

We further quantify the HSEs by their complexity (i.e., number of involved neurons) (Grün et al., 2008)62

and compare the obtained complexities to those expected by chance using a surrogate method (Stella et al.,63

2022)(Figure 1c; see STAR Methods for details). Figure 1d shows the distributions of complexity values from the64

original and the surrogate data, for two different bin sizes (1 ms and 1
30 ms). For both bin sizes, the original data65

contains much more events with high complexities than the surrogate data Thus, HSEs occur by chance much66

less than what we observe in the experimental data. Considering that the coordination of spike times on the67

timescale of 1
30 ms is very unlikely, we conclude that many of the HSEs in the experimental data are artifacts,68

which we name synchrofacts.69

We find synchrofacts in two separate data sets originating from two different laboratories, recorded in two70

different cortical areas of different monkeys. Therefore we suspect that synchrofacts are common across recordings71

of the same type. While both data sets were recorded with Blackrock recording systems, it has been reported72
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that synchrofacts also occur in other recording systems, e.g. in Neuropixel recordings (Jain et al., 2022). Taken73

together, our observations and previous reports highlight the ubiquity of synchrofacts.74

One might think that the data can be cleaned by simply removing all HSEs. However, that is not an75

appropriate solution to get rid of synchrofacts, since this also removes many genuine neuronal spikes and neural76

synchrony. One can demonstrate this by removing all spikes in the bins with complexity of two or larger at77

1
30 ms resolution, and then calculating the complexity distribution, to compare it to the surrogate complexity78

distribution. The surrogate distribution obtained in this way contains complexities of two or higher that occur by79

chance. However, the original distribution totally lacks complexities higher than 2, and hence it differs vastly80

from the surrogate distribution (see Supplementary Figure S1). Thus, removing all HSEs alters the statistic81

properties of the spike trains significantly, which can lead to false results regarding fine temporal correlations.82

To summarize, HSEs in massively parallel spike trains commonly contain synchrofacts, which are artifactual83

spike coincidence events on a timescale of the data sampling frequency. They can only be spotted when analyzing84

the data on very fine timescales and show themselves as an excess of HSEs. Since HSEs contain not only85

synchrofacts but also genuine neuronal synchrony (as well as chance coincidences), removing all HSEs for cleaning86

the data is not a proper approach. Hence, we aim at selectively removing synchrofacts from the data, and to this87

end, we need to discriminate synchrofacts from chance coincidences of real spikes.88

Synchronous spike events with nearly identical raw signals are not of neural origin89

Following the observations in the previous section, we now take a deeper look into the HSEs for features90

discriminating synchrofacts from chance spike coincidences. Whereas an HSE with a very high complexity is91

likely to be a synchrofact, we cannot rule out the possibility that it is a real spike synchrony. In fact, there is no92

way of discriminating between them on the description level of spikes. Thus, seeking for additional information to93

spot synchrofacts, we inspect the raw signals from which the spike events are extracted.94

The spike extraction was done by thresholding the band-pass filtered raw signals in the frequency range of95

250 Hz − 7500 Hz (see Signal processing and threshold crossings in STAR Methods for details). For simplicity,96

we henceforth refer to the band-pass filtered raw signal merely as raw signal, unless noted otherwise. Figure 2a97

shows the raw signals of multiple channels around the timing of one HSE. We observe highly similar spike-like98

waveforms in multiple channels simultaneously, but with different amplitudes. Furthermore, the ongoing signal99

fluctuations before and after the HSE appear to be correlated across these channels. The electrodes of these100

channels are not necessarily in close spatial proximity, as shown in Figure 2b. We measure the distances between101

the electrodes of channels participating in each and every HSEs with high complexities, and observe that the high102

complexity HSEs often involve electrodes that are far apart, up to several millimeters (Figure 2c). In particular,103

in the case of macaque L, HSEs appear even across the two arrays located on opposite banks of the lunate sulcus.104

To summarize, we have observed i) sub-millisecond synchronization of spikes across channels, ii) the nearly105

identical waveforms of those spikes, iii) the visible correlation between raw signals, and iv) the large distance106

between the participating electrodes. Taken together, these observations strongly suggest that many of these107

events are artifacts due to electric cross-talk between channels, rather than multiple electrodes recording the108

same neuron or some novel form of fast neuronal synchronization.109

Cross-correlation and hyper-synchronous events can detect synchrofacts110

An electric cross-talk between a channel pair is expected to increase the Pearson correlation coefficient between111

the raw signals of these channels. Figure 3a shows the raw signal correlation coefficient ci,j between channels i112

and j (see Cross-correlation of high-pass filtered raw signals in STAR Methods for details) for all channel pairs113

in the two data sets in a matrix form (only for i ̸= j), and Figure 3b the distribution of the ci,j values in the114

matrix. The coefficients are mostly larger than zero, i.e., the raw signals are generally positively correlated. The115

coefficient values vary strongly across channel pairs, with some pairs showing quite strong correlation, in both116
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Figure 2: HSEs in relation to the raw signals, for macaque Y (red) and L (blue). (a) Dot display (top) centered
around a single HSE and the corresponding band-pass filtered (250 Hz - 7500 Hz) raw signals of the channels
participating in the HSE. Spike-like excursions are aligned on the HSE. (b) Positions of the electrodes on the
respective array for the raw signal channels participating in the HSE in (a). The trace of the spike-like excursion
in each channel is shown at the corresponding position. (c) Distances between the electrodes involved in all
HSEs with high complexity, selected based on the surrogate analysis from Figure 1. For reference, the distance
distribution between all possible electrode pairs is shown in gray.
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recording setups from different laboratories.117

There may be multiple possible origins for such strong correlations, ranging from damages on the electrodes118

to electric shortcuts between channels due to various reasons, e.g., crossing of the implanted cables below the119

skull, dirt in the headstage connector, interference between the cables connected to the amplifier, etc. (Yu et al.,120

2009). As shown in Figure 2b and c, the artifacts are not limited to spatially proximal channels but extend over121

the whole array or even across arrays, indicating that a deficit in a local group of channels cannot be the primary122

reason for these correlations. Another possibility is a local deficit on the headstage connector, but this is also123

denied by examining the spatial extent of correlated channels mapped on the connector (see Macaque L data in124

Supplementary Figure S2). Thus, no single reason can explain the observed correlations, but rather there would125

be multiple causes residing on different stages of the setup. Eliminating all possible causes from the setup is126

practically not feasible, and hence we cannot avoid having such correlations in the data.127

Excluding the channels with strong correlations from the analysis would be easy, if their correlation coefficients128

were distinctly different from the other channels. However, the distribution of the correlation coefficient values129

typically shows a smooth decay towards high values (Figure 3b), indicating no clear critical correlation coefficient130

value above which the respective channel pairs are considered to be problematic.131

To find an appropriate value for such a critical correlation, we examine the relation between the raw signal132

correlation ci,j and the spike coincidences in the respective raw signals. For channel pairs with a large ci,j value,133

their raw signals must be similar to each other. Hence, if one channel of such a pair had spike-like waveforms, the134

other channel should also have those at the same time. This leads to the expectation that a channel pair with a135

larger ci,j should show more synchrofacts. To confirm this, we first count, for each channel pair, the number136

of HSEs containing spikes from that pair. We then define the HSE index Ii,j of channel i and j as the ratio of137

the obtained HSE count to the spike counts of these two channels (see Measure of spike synchrony in STAR138

Methods for the formula). Figure 3c shows the Ii,j values obtained from the two data sets in a matrix form139

(only for i ≠ j), and Figure 3d the distribution of those values in the matrix. We find Ii,j values ranging from140

zero to 0.5, while the value expected from an independent pair of spike trains is of order of magnitude 10−3 (see141

Supplementary Figure S3).142

We then plot Ii,j against the correlation coefficients cij to look for a systematic relation between them143

(Figure 3e). We find that a majority of channel pairs have HSE index values close to zero, meaning that hardly144

any spikes are shared by these pairs. Especially the channel pairs with low correlation coefficients ci,j such as145

< 0.4 have very low HSE index values. As the correlation ci,j gets larger than 0.4, the HSE index value rapidly146

increases, indicating a critical correlation beyond which spikes becomes very likely to be detected in both channels.147

Note that an HSE index larger than zero does not immediately indicate synchrofacts. As shown in (Figure 1d), a148

certain amount of HSEs can be explained by chance. However, as we mentioned before, the HSE index expected149

from independent spike trains is very small, on the order of 10−3. Hence, an HSE index excessively greater than150

this strongly indicates presence of synchrofacts.151

Cross-talk model explains the emergence of synchrofacts152

To understand the origin of the relation between the raw signal correlation and the HSE index, here we present153

a simple model of cross-talk between channels (see Cross-talk model in STAR Methods for details). This154

model enables us to derive an analytic expression of the relation, which is in agreement with our experimental155

observations (Figure 3e).156

Our model assumes two Gaussian white noise (mean 0, variance σ2) time series x1 and x2 as the cross-talk-free157

“ground truth” signals. We model the cross-talk as a linear mixing of these two signals (Figure 4a), such that the158

measured signals s1 and s2 of channel 1 and 2, respectively, are:159

s1 = x1 + αx2

s2 = x2 + αx1,
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Figure 3: Relation of pairwise raw signal correlations to respective pairwise occurrences of HSEs. (a) Pairwise
correlation coefficients ci,j of the raw signals. Data are shown in matrix form; the channels are sorted by largest
maximum correlation. (b) Distribution of the ci,j values that appear in the matrix shown in (a). (c) HSE index
Ii,j for all channel pairs shown in a channel-by-channel matrix form. The channels are sorted in the same order
as in (a). (d) Distribution of the Ii,j values that appear in the matrix shown in (c). (e) Scatter plot of the raw
signal correlation coefficient ci,j against HSE index Ii,j of the corresponding channel pair. Each dot represents
one channel pair.
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where 0 ≤ α ≤ 1 is the strength of the cross-talk: s1 and s2 are identical with α = 1, and independent with α = 0.160

The Pearson correlation coefficient c1,2 between s1 and s2 can be written in terms of α as (see Cross-talk model161

in STAR Methods for derivation):162

c1,2 =
2α

1 + α2
. (1)

Thus the correlation c1,2 increases nonlinearly with the cross-talk strength α (see Figure 4b).163

For the derivation of the HSE index, we need to introduce spikes to the signals. We model spikes by subtracting164

a value Ai, representing the spike amplitude, from the ground truth signal xi at random time points (i ∈ {1,2}).165

We parameterize Ai as Ai = σrSNi , where rSNi is the signal-to-noise ratio of the spike waveform in xi. Spikes are166

then extracted from the measured signals s1 and s2 by thresholding, as commonly done for experimental data.167

We set the threshold for si at−mσsi , where σsi =
√
1 + α2σ is the standard deviation of si and m is a multiplier168

(Quiroga et al., 2004). The expected numbers n1 and n2 of spikes detected in s1 and s2 are:169

n1 = p1,1
(
α, rSN1 ,m

)
N1 + p1,2

(
α, rSN2 ,m

)
N2

n2 = p2,1
(
α, rSN1 ,m

)
N1 + p2,2

(
α, rSN2 ,m

)
N2,

where N1 and N2 are the number of spikes introduced in x1 and x2, and pij are the probabilities that a spike170

from xi is detected in sj , see Cross-talk model in STAR Methods for more details.171

The spikes transferred across channels by the cross-talk are detected in both channels, so the sum of the172

numbers of such spikes, i.e., n1,2 = p1,2N2 + p2,1N1 represents the number of synchrofacts in this pair of channels.173

We can now calculate the HSE index as I1,2 = n1,2/min(n1, n2) (see Cross-talk model in STAR Methods for174

detailed derivations).175

Through the dependence of pi,j on the cross-talk strength α, the HSE index I1,2 is dependent on α and thereby176

the correlation coefficient c1,2 (Figure 4c). Interestingly, no synchrofacts are observed in the model for α < 0.2 or177

c1,2 < 0.4, suggesting that some degree of cross-talk might be tolerable in recording systems. However, for higher178

α or c1,2, the HSE index rapidly increases in the form of a sigmoid, depending on the signal-to-noise ratio rSN.179

So far we have grouped spikes in one channel into a single class, i.e., spikes that originate from different ground180

truth signals (and therefore from different neurons) were not discriminated. In analyses of real spike train data,181

however, researchers are often interested in examining properties of the spiking activity of a single individual182

neuron, i.e., single unit activity (SUA). SUA spikes are sorted out from a spike train in a single channel, based on183

the waveforms of individual spikes. The original spike train before the sorting potentially contains spikes from184

multiple different neurons, termed multi-unit activity (MUA). In our analyses so far, the HSE index has been185

computed based on the MUA spikes of a pair of channels. We can instead consider the HSE index between a pair186

of individual SUAs, in the same manner as for the MUAs.187

Let us examine how the HSE index for SUA pairs differs from that for MUA pairs, for the case shown in188

Figure 4a. Here only one SUA (blue spikes) is detected in channel 1, while in channel 2 two SUAs (blue and189

orange spikes) could be detected, if the spike waveforms differed distinctly enough for successful spike sorting.190

Here we assume that these spikes are correctly sorted, and consider the HSE index between SUA11 and SUA21191

shown in Figure 4a, and between SUA11 and SUA22 (note that the HSE index between SUA21 and SUA22 is192

zero, since there can be no HSEs between SUAs on the same channel.) For the SUA11-SUA21 pair, all their193

spikes originate from x1, and hence all SUA21 spikes (i.e., the spikes transferred from x1 to s2) are found in194

SUA11 at the same spike times. Thus, the HSE index for this SUA pair is 1. Note that this is generally the case195

for any pair of SUAs that originate from a single ground truth signal and bleed into different channels due to the196

cross-talk. On the other hand, the HSE index for the SUA11-SUA22 pair should be as small as expected from197

chance coincidences, since these SUAs represent spikes of independent neurons in different ground truth signals.198

This is generally the case for any pair of SUAs that originate from different ground truth signals.199

To summarize, the HSE index between SUAs can only take a value of either 1 or as a small number as expected200
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Figure 4: Cross-talk model of synchrofacts. (a) Illustration of the setup for derivation of the synchrofact index.
Ground truth signals for channels 1 and 2 are mixed, representing the cross-talk, to yield the signals measured in
a pair of channels. Spikes (vertical lines) are introduced to the ground truth signals, and they “bleed” into the
measured signal of the other channel via the cross-talk. (b) The correlation c1,2 between the channels plotted
against the cross-talk strength α. (c) The HSE index I1,2 of the channels plotted against the cross-talk strength α
(left) and the correlation c1,2 between the channels (right). Here the signal-to-noise ratios of spikes in x1 and x2

are set to be identical rSN1 = rSN2 = rSN, and varied between 5 and 15 in steps of 1, while keeping the threshold
multiplier at m = 5. The curves for different values of rSN are plotted in different shades of gray.
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from chance coincidences. This conclusion applies to any pair of SUAs as long as spike trains are perfectly sorted201

into SUAs in all channels. Thus, any intermediate values of HSE index between these two can only happen when202

the index is computed for a MUA pair. If such HSE values were obtained between SUAs, that would indicate that203

the spike sorting is not perfect and some SUAs contain spikes bleeding from other channels due to the cross-talk.204

Channel removal for synchrofact mitigation205

We now consider how we utilize the knowledge from the model to remove synchrofacts from the data. Let us first206

consider the case with unsorted MUA spikes. In this case, the model indicates more synchrofacts in channel pairs207

with stronger raw signal correlation. Thus, one approach to remove synchrofacts in this case would be to discard208

the MUAs of channels strongly correlated with any other channel(s). For such screening of channels, we identify209

the highest correlation coefficient for each channel, denoted as Ci for channel i and defined as:210

Ci = max
j ̸=i

(ci,j), (2)

where ci,j denotes the correlation coefficient between the raw signals of channel i and j. We then choose a211

threshold value on Ci, such that all channels with Ci values above this threshold are excluded. Since the model212

shows that the HSE index grows rapidly as the correlation coefficient increases beyond 0.4 (see Cross-talk model213

explains the emergence of synchrofacts in Results), we set the threshold on Ci at 0.4.214

To see how the channel-wise highest correlation coefficient Ci is related to occurrences of HSEs in channel i,215

we introduce yet another measure evaluating the participation of each channel in HSEs. We term this as the216

global HSE index Ii for channel i, defined as the ratio of the number of HSEs including channel i to the number217

of all spikes on channel i (see Measure of spike synchrony in STAR Methods for the formula). The HSE index Ii,j218

that we have introduced before for a pair of channels i and j is henceforth referred to as pairwise HSE index.219

Figure 5a (left) shows the global HSE indices Ii plotted against their respective highest correlation coefficients Ci220

for all channels in macaque Y and L data sets. As expected from the model, the channels with high Ci values are221

indeed also the channels with high Ii values, while the channels with Ci below 0.4 show rather small Ii.222

As proposed above, we now exclude all channels with Ci values higher than 0.4 to remove synchrofacts. For223

the present data sets this excludes a lot of channels from the analysis. For example, in the case of macaque224

Y, more than a half of the channels are excluded (Figure 5b). After discarding MUAs on those channels, the225

complexity distribution matches the expectation from chance coincidences (Figure 5c, middle), indicating that226

synchrofact HSEs are successfully removed (together with all the spikes on the excluded channels) while keeping227

chance HSEs on the remaining channels intact.228

Among the channels excluded above, there are a considerable number of channels showing low Ii values229

comparable to those of the channels kept for analyses (Figure 5a, middle). According to the model, these would230

be the channels with spikes of such small amplitudes that they do not cause synchrofacts (because they do not231

cross the threshold even if they bleed into other channels), and not receiving spikes from other channels either. If232

this is the case, these channels should be kept in analyses, since they contain only the spikes recorded at their233

respective electrodes. This leads to an idea of channel screening by thresholding not on Ci, but on Ii. Therefore234

we devise a second method to exclude channels as follows: 1) set a threshold for Ci; 2) take the highest of the Ii235

values for all the channels with Ci below this threshold; 3) exclude all channels with an Ii higher than the value236

taken in (2). This excludes considerably less channels than the previous method (Figure 5b), but is similar in237

results with regard to the complexity distribution (Figure 5c). Thus, regardless of which method we choose, if we238

exclude the right channels, we can avoid most of the synchrofacts.239

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.01.11.575181doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575181


Figure 5: Synchrofact removal based on channel screening. a) The channel-wise highest correlation coefficient Ci

(x-axis) vs. the global HSE index Ii (y-axis) for channel i. (Left) Ci vs. Ii calculated using all channels. (Middle)
Recalculated using only channels with a Ci lower than 0.4. (Right) Recalculated using only channels with a low
Ii. b) Channels excluded by the proposed methods, shown on the electrode grid of the arrays. Crosses indicate
the excluded channels. Colors indicate the Ii values of the remaining channels. c) Complexity distribution for the
channels remaining after the two channel screening methods (middle and right), compared to the original (left,
calculated as in Synchronous spike events are ubiquitous in multi-electrode systems).
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Synchrofacts can remain in spike sorted data240

We then also consider the case with sorted SUA spikes. In this case, the model indicates that, if the spike sorting241

is perfect, the HSE index for a SUA pair must be either 1 or a very small value reflecting chance coincidences. If242

this is the case, that would make the screening of SUAs for synchrofact removal almost trivial. Here we investigate243

whether this really applies to experimental data, using semi-manually sorted data of macaque Y (see Spike Sorting244

in STAR Methods for the spike sorting procedure). One needs to note here that the spike sorter used for this245

data set (Plexon Offline Sorter, version 3.3.3) has a functionality to reject cross-channel artifacts, which marks246

spike-like events that occur simultaneously on a defined percentage of channels (70%) as “invalidated waveforms”247

(see Spike Sorting in STAR Methods). Thus, HSEs with extremely high complexities, which can be caused by248

common noise artifact (an extreme example is shown in Supplementary Figure S4), had already been removed by249

the sorter. However, pairwise or group-wise correlations that are expected from cross-talk might go unnoticed,250

since spike sorting was done independently per channel and hence the similarity of waveforms and/or spike times251

between channels cannot be noticed during the process. Additionally, to ensure the quality of the spike trains252

after spike sorting, typically a number of quality metrics are used to filter SUAs. Here we require the waveform253

signal-to-noise ratio to be larger than 2.5, and reject SUAs with an average firing rate < 1Hz.254

In the following we perform the same analysis as for the MUA data, but now on pairs of SUAs. We compute255

the pairwise HSE index Ii,j as before (see Measure of spike synchrony in STAR Methods), with the subscripts i256

and j here denoting different SUAs rather than channels. Figure 6a shows Ii,j for SUA pairs plotted against the257

raw signal correlation coefficient ci,j for the channels that the respective SUAs belong to. Similar to the results258

from channel pairs (c.f. Figure 3e, left), the Ii,j values increase with increasing ci,j values, with a sharp increase259

after ci,j ∼ 0.4 taking values between 0 and 1. This spread of Ii,j values between 0 and 1 is contradictory to260

the model prediction for the case of perfect spike sorting. Thus, in the SUA pairs with intermediate Ii,j values261

between 0 and 1, the respective SUAs should include spikes from different neurons, which were not separated by262

the spike sorting.263

Those SUAs that are contaminated by cross-talk should be removed from analyses, since they do not faithfully264

represent the activity of a single neuron and hence would hamper correct interpretation of respective analysis265

results. In a similar manner to the channel screening in the previous section (see Channel removal for synchrofact266

mitigation in Results), we can consider a screening of SUAs based on the global HSE index computed for SUAs267

and the respective channel-wise highest raw signal correlation coefficient. The global HSE index Ii for SUA i is268

calculated in the same way as for a channel (equation (2)), i.e., now as the ratio of the number of SUA i spikes269

participating in HSEs to the total number of of the SUA i spikes. Figure 6b shows Ii for SUAs plotted against270

their respective Ci. One can screen SUAs based on this plot, either by setting a threshold on Ci or on Ii. As271

shown in the complexity distribution (Figure 6c), we obtain similar results as we got for MUAs: excluding the272

worst SUAs removes most of the synchrofacts from the data set. Thus, the proposed method remains valid and273

necessary for spike sorted data.274

Impact of synchrofacts on data analysis275

Synchrofacts that remain unnoticed in the data can affect the results and interpretation of various analyses. To276

illustrate the danger of undetected synchofacts, we demonstrate their impact on two types of analyses.277

First, we show that synchrofacts can significantly alter the estimation of neuronal tuning curves. We simulate278

spike trains of motor cortex neurons with a hand movement direction preference (Georgopoulos et al., 1982). The279

neurons modulate their firing rates in a sinusoidal manner as a function of the direction of the hand movement:280

the highest firing rate occurring at the preferred hand movement direction. Here, we consider a pair of neurons281

with different preferred directions (PDs), mean firing rates (FRs), and rate-modulation depths (MDs). We282

assume that these neurons are recorded in two separate channels, cross-talking with strength α, such that one283

channel (referred to as the source channel) provides artifact spikes to the other channel (referred to as the target284
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Figure 6: Detection and removal of synchrofacts in spike sorted data from macaque Y. (a) Pairwise HSE index
Ii,j for SUA pairs vs. raw signal correlation ci,j of the respective channel pairs. Note that SUA pairs on an
identical channel always yield (ci,j , Ii,j) = (1, 0). (b) Global HSE index Ii of SUA i vs. the channel-wise highest
raw signal correlation coefficient Ci of the corresponding channel. The vertical and horizontal lines indicate
the threshold for Ci and Ii, respectively, used for removal of SUAs with the proposed method. (c) Complexity
distribution computed from the spike sorted data, (left) the original data, (middle) data after SUA removal with
the Ci thresholding method, (right) data after SUA removal based on the Ii thresholding method.
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channel). The neurons in the source and target channel are referred to as the source neuron and the target285

neuron, respectively.286

With this setup, we examine how the tuning curve estimated from the spike train in the target channel is287

modulated by the artifact spikes from the source channel (Figure 7a). We consider various levels of cross-talk288

strength α and their impact on the estimated tuning curve (gray curves in Figure 7a). The three examples in289

Figure 7a illustrate cases with different combinations of FRs, MDs, and PDs of the two neurons. In Figure 7a290

(left), the target and source neuron have PDs of 180◦ (blue curve) and 90◦ (orange curve), respectively, and291

both have the same FR and MD. With increasing cross-talk strength, the FR and the MD of the estimated292

tuning curve gets larger, and in particular, the peak of the estimated tuning curve shifts closer to the source PD.293

Figure 7a (center) shows a similar example, where the target neuron has a lower FR and smaller MD than the294

source neuron, while the PDs of both neurons are unchanged. As in the first case, the estimated tuning curve295

changes with increasing α, but here it reaches a much higher similarity to the source tuning, due to the higher296

FR of the source neuron than the target neuron. In Figure 7a (right), the two PDs are opposite: the target at297

180◦ and the source at 0◦. Due to the high FR and large MD of the source neuron, the estimated PD becomes298

more and more similar to the source PD with increasing α, switching the PD by 180◦, and its FR becomes much299

higher than the original target neuron. From these examples we conclude that any of the PD, FR, and MD of the300

tuning can be considerably altered by the cross-talk. High firing rate does not protect a neuron from the impact301

of cross-talk. Thus, cross-talk can fully alter the result from tuning curve estimations, leading to false results.302

Another example of the impact of synchronfacts is on the analyses for excess spike synchrony using Unitary303

Event (UE) analysis, as explained in Unitary Event analysis in STAR Methods. UE analysis (Grün et al.,304

2002a,b; Grün & Rotter, 2010) detects excess spike synchrony in a simultaneously recorded pair of spike trains by305

computing the empirical and expected number of spike coincidences. Here we consider a pair of independent306

Poisson spike trains (10 spikes/s, 5 s duration) as the ground truth spike signals of a pair of channels, and examine307

how the cross-talk between these channels affects the result of the UE analysis. According to our model, the308

empirical number nemp of spike coincidences is obtained as n1,2 derived in Subsection Cross-talk model explains309

the emergence of synchrofacts, while the expected number nexp is calculated from the firing rates of the measured310

spike trains. Figure 7b (left) shows the difference between nemp and nexp as a function of raw signal correlation311

ci,j between the two channels, for a range of the ground truth spike amplitude rSN. The larger the ci,j value (due312

to the stronger cross-talk), the more spikes bleed across channels (see Cross-talk model explains the emergence of313

synchrofacts in Results) and thus more synchrofacts are generated, resulting in the increased difference between314

nemp and nexp. This effect is stronger with larger spike amplitude rSN. As a consequence, for large ci,j values,315

the significance of the difference (Figure 7b, right), expressed here as the surprise (see Unitary Event analysis in316

STAR Methods), rises beyond the 5% significance level. The larger the spike amplitude rSN, the lower the value317

of ci,j at which the surprise crosses the significance threshold. This result shows that, if cross-talk goes unnoticed,318

the data may be wrongly found to contain significantly excess spike synchrony. This will also happen when the319

data are binned at larger bin sizes, e.g. 1 ms or more. By excluding channels as proposed here to remove artifacts320

one can avoid such false positive results.321

These are just two examples showing the impact of synchrofacts, but other types of analysis would also be322

similarly affected and could also produce wrong results in the presence of synchrofacts. To avoid false results, we323

encourage researchers to make considerable efforts to remove synchrofacts from their data.324

Discussion325

We have shown, based on examination of electrophysiological recordings from multiple laboratories, that HSEs in326

massively parallel spike trains commonly contain synchrofacts, i.e., artifactual extremely precise (at the data327

sampling resolution) spike synchrony events. Synchrofacts express themselves in the raw signal as nearly identical328

activity traces, observed in distant electrodes with submillisecond precision, strongly suggesting that they originate329
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Figure 7: Impact of synchrofacts on data analyses. (a) Impact on neuronal tuning, for three example cases with
different combinations of target and source neuron’s tuning properties. The tuning curves of the target and
source neuron are shown by blue and orange curves, respectively. The tuning curve estimated from the spike
trains measured in the target channel is shown in gray, with different shades according to the cross-talk strength
α as indicated in the legend to the right. (b) Impact on Unitary Event analysis. Left: excess spike synchrony,
measured as the difference between the empirical and expected number of synchronous spike events, as a function
of raw signal correlation. Right: surprise of the excess synchrony as a function of raw signal correlation. The
surprise value corresponding to the 5% significance level is indicated by the red horizontal line. In both plots,
results for different values of spike amplitude rSN are shown in different shades of gray.
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from external noise or cross-talk in the recording hardware. We introduced a new measure, the HSE index (Ii,j),330

to quantify the occurrences of HSEs in each channel pair, and showed its systematic relation to the correlation331

coefficient (ci,j) of the band-pass filtered raw signals. We also presented a minimal model of cross-talking signals332

that explains the observed relation between Ii,j and ci,j , suggesting that cross-talk is the main source for the333

synchrofacts. Based on the observations and the model, we suggested excluding particularly affected channels by334

thresholding either Ii,j or ci,j , which removes nearly all above-chance HSEs. We also showed that spike sorting335

alone does not necessarily remove synchrofacts and further filtering is still required. We thus highlighted the336

importance of removing these artifacts from neural data, since they could bias analyses and produce misleading337

results.338

As a first step to mitigate artifacts, we tried to identify their physical sources in the experimental recording339

setup. We found many short lived artifacts associated with external events such as switching on a light or closing340

of a door. Unfortunately, it was not feasible to construct a Faraday cage around the recording setup to avoid341

external electromagnetic waves. Cross-talk was another potential source of artifacts, which had been known to342

happen between electrode shanks at relatively short distances (Nelson et al., 2017). Since we observed artifacts343

at large distances Figure 2, we searched for alternative locations of the cross-talk. Since the placement of the344

individual channels in the connector to the head stage does not seem to explain the cross-talk Figure S2, the345

circuitry inside the headstage is our primary suspect for cross-talk. There the analog signals from many channels346

are simultaneously amplified, filtered and converted to digital; steps known to be very sensitive to cross-talk347

(Pérez-Prieto & Delgado-Restituto, 2021; Perez-Prieto et al., 2021). Indeed, in the case of macaque Y, previous348

recordings had used the analog signal processing headstage ’Samtec’ and ’Patientcable’ (Blackrock Microsystems)349

(Riehle et al., 2013; Brochier et al., 2018), and after updating it to ’Cereplex E’ (Blackrock Microsystems) we350

observed far fewer artifacts, likely due to the improved insulation and circuit design. In the case of macaque L351

’Cereplex M’ (Blackrock Microsystems) was used. Since it was not possible to determine the sources of cross-talk,352

we developed the post-hoc artifact removal methods presented in this paper.353

We have suggested two approaches to remove synchrofacts: applying a threshold on the channel-wise maximum354

correlation Ci of the raw signals , or a threshold on the global HSE index Ii. Applying the Ci threshold excludes355

slightly more channels than the Ii threshold. We advise using the Ci threshold because the remaining channels356

better agree with the chance distribution of HSEs. Which approach to take depends on the planned analysis and357

its sensibility to precise spike correlations.358

The complete removal of the HSEs with complexities > 1 on the 1/30 ms timescale can damage the data,359

since the lack of chance synchrony (see Figure S1) can be noticed even on longer timescales on the order of several360

ms. As a result, potentially existing neuronal spike synchrony may be undetected (Oberste-Frielinghaus, 2022).361

A previous study (Torre et al., 2016) removed all HSEs with complexities ≥ 2. This led to an underestimation of362

the chance synchrony in the data (see Figure S1). While the study has already revealed a particular organization363

of synchronous spike patterns, re-examination of the same data with our new synchrofact removal method might364

lead to stronger and clearer results.365

A previous study (Chen et al., 2022) defined a ‘synchrofact participation’ (SP) ratio as the number of366

synchronous spike events above chance, derived by a bootstrap method on the complexity distribution. The367

channels with highest SP were removed iteratively, which re-evaluates the chance levels after removing each368

channel. This iterative approach is less strict than ours, in the sense that, when two channels have strong369

cross-talk, only removing one of them will avoid above-chance synchrony. However, some of the spikes detected in370

the remaining channel could actually originate from the removed channel, and hence the physical location of the371

neurons becomes unclear. To avoid such ambiguities we did not employ such an iterative approach here, opting372

to remove both contaminated channels.373

An obvious idea is that false ’spikes’ are filtered out by spike sorting, since it involves multiple filtering steps374

that would reject spurious spikes. However, following our model, the cross-talk copies spikes into other channels375

without major distortions to the waveform, and therefore the copied spikes cannot be readily distinguished from376
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real spikes. In fact, in a former study (not shown here) we tried to discriminate between real spikes and artifact377

spikes by cross-correlating spike waveforms, but it was not successful. Here we found that also in spike sorted378

data synchrofacts are present, demonstrating that spike sorting does not completely remove artifacts (Figure 6,379

Figure S3). However, spike sorted data does show less artifacts than unsorted data, so spike sorting somewhat380

reduces the problem.381

In this work we only showed data recorded with hardware from the same manufacturer, which raises the382

question whether recordings using other electrodes, such as high-density Neuropixels probes, may be less affected383

by such artifacts. Neuropixels record individual neurons on more than a single recording site, since they are very384

close (40 µm) to each other. This enables spike sorting that takes into consideration more than one signal per385

neuron, e.g. by using the Kilosort sorter (Steinmetz et al., 2021; Pachitariu et al., 2023). Nevertheless, we also386

found above-chance HSEs in Neuropixels recordings (Jain et al., 2022), highlighting the ubiquity of artifacts and387

the importance of adequate postprocessing methods.388

In summary, we showed that synchrofacts are ubiquitous in multi-electrode recordings and are likely caused by389

cross-talk in the recording system. We suggest to compare the complexity distribution of the data with surrogate390

data at the data sampling resolution for indications of artifacts. The approach we proposed here to remove391

synchrofacts requires access to the original broadband signal at data sampling resolution. This enables us to392

relate the pairwise coincidence of spike-like events to the raw signal correlation, and remove the most affected393

channels. In our data, cross-talk was the primary source of synchrofacts, and our proposed method effectively394

removed the synchrofacts by excluding the most affected channels. If higher-than-chance complexity events395

remain after the channel exclusion, artifacts originating from common external noise may be present and should396

also be removed by excluding the affected time periods from further analysis. Synchrofacts are ubiquitous in397

multi-electrode neural recordings and their presence can affect various analyses. Therefore detection and removal398

of synchrofacts is crucial for avoiding false results and ensuring a sound interpretation of the obtained results.399

STAR Methods400
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS415

Macaques416

We analyzed the resting state data from two (N=2) rhesus macaques (Macaca mulatta), recorded in two different417

experimental laboratories. The data from macaque L was collected at the Netherlands Institute for Neuroscience,418

and previously published (Chen et al., 2022). The data from macaque Y was collected at the Institut de419

Neurosciences de la Timone, with the recording apparatus described by de Haan et al. (2018). At the time of420

the array implantation macaque L (male) was 7 years old and weighed ∼ 11 kg; and macaque Y (female) was421

6 years old and weighed ∼ 7 kg. All experimental and surgical procedures for macaque L complied with the422

NIH Guide for Care and Use of Laboratory Animals, and were approved by the institutional animal care and423

use committee of the Royal Netherlands Academy of Arts and Sciences (approval number AVD-8010020171046).424

All experimental and surgical procedures for macaque Y were approved by the local ethical committee (C2EA425

71; authorization Apafis#13894-2018030217116218v4) and conformed to the European and French government426

regulations.427

METHOD DETAILS428

Data collection429

Both macaques were recorded using setups based on the Blackrock Microsystems ecosystem.430

Macaque L See Chen et al. (2022) for an in-depth description of this data set. Briefly, electrophysiological431

signals originating from the V1 and V4 regions were recorded using a configuration of 1024 channels distributed432

across 16 Utah Arrays, each comprising 8x8 electrodes. Sampling was performed at a rate of 30 kHz. The433

signal pathway commenced with the passive conduction of neuronal signals from the 1024-channel pedestal to an434

Electronic Interface Board (EIB). This EIB was equipped with 32 36-channel Omnetics connectors, facilitating435

the interface with eight 128-channel CerePlex M headstages. The CerePlex M headstages applied a 0.3–7500436

Hz analog filter at unity gain, refraining from signal amplification. Analog-to-digital conversion (ADC) was437

conducted by the CerePlex M, employing a 16-bit resolution with a sensitivity of 250 nV/bit. The digitized signal438

was subsequently routed to a 128-channel Digital Hub, with each Digital Hub processing data originating from439

one CerePlex M, which in turn was linked to two electrode arrays. The Digital Hub undertook the conversion of440

the digital signal into an optic-digital format. This transformed signal was then transmitted via an optic-fiber441

cable to a 128-channel Neural Signal Processor (NSP) for subsequent processing and storage. Each Digital Hub442

supplied the signal to a single NSP. In total, eight NSPs were employed, with each NSP managing data derived443

from two electrode arrays. In the present study, we focused on a single data stream (NSP1) from one session,444

which included one array in V1 and one array in V4. These arrays showed many synchrofacts in a previous less445

exhaustive analysis (Chen et al., 2022), including events across both arrays, even though they were separated by446

the lunate sulcus. Thus, this data stream was particularly useful to demonstrate the non-neural origin of the447

synchrofacts. We manually found a large artifact event (see Common noise artifact example) which we cut out448

before the analysis of the data.449

Macaque Y Electrophysiological signals originating from V1, V2, DP, and 7A were recorded with four separate450

6x6-electrode Utah Arrays. Additionally, M1/PMd was recorded with a 10x10-electrode Utah Array. Sampling451

was performed at a rate of 30 kHz. In contrast to monkey L, the signal pathway commenced with two 128-channel452

pedestals (CerePort): One for the four 36-channel arrays and one for the 100-channel array. Each of the pedestals453

interfaced with a 128-channel CerePlex E headstage. Notably, the CerePlex E headstages applied a 0.3–7500454

Hz analog filter at unity gain, refraining from signal amplification. Analog-to-digital conversion (ADC) was455

conducted by the CerePlex E, employing a 16-bit resolution with a sensitivity of 250 nV/bit. The digitized signal456
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was subsequently routed to a 128-channel Digital Hub, with each Digital Hub processing data originating from457

one CerePlex E, which in turn was linked to one 100-channel array or four 36-channel arrays. The Digital Hub458

undertook the conversion of the digital signal into an optic-digital format. This transformed signal was then459

transmitted via an optic-fiber cable to a 128-channel Neural Signal Processor (NSP) for subsequent processing460

and storage. Each Digital Hub supplied the signal to a single NSP. In total, two NSPs were employed. In the461

present study, we focused on the M1/PMd array from one session, to demonstrate that synchrofacts are not462

limited to visual processing areas.463

Signal processing and threshold crossings464

All offline signal processing steps (except for spike sorting) and data analysis described below were performed465

by original custom codes written in the Python programming language and executed in a pipeline defined as a466

Snakemake workflow (Mölder et al., 2021). The recorded raw signals were band-pass filtered in the frequency range467

of 250 Hz − 7500 Hz (a second order Butterworth filter, as implemented in the signal_processing.butter()468

function in the Elephant toolbox (Denker et al., 2018)). According to Quiroga (2007), putative spikes were469

extracted from the high-pass filtered raw signal of each channel by thresholding it at470

Threshold = −5 · median
(

|si|
0.6745

)
,

where si denotes the high-pass filtered raw signal of channel i. The time of threshold crossing of each putative471

spike was registered as the time of that spike. The resulting spike times per channel were taken as the spike train472

of the multi-unit activity of that channel.473

Spike Sorting474

Spike sorting was performed only on the macaque Y data. Details of the sorting procedure are described by475

Brochier et al. (2018). The spike waveforms which were extracted and saved during the recording were offline476

sorted using the Plexon Offline Sorter (version 3.3.3). We started by merging all online extracted waveforms477

back into one pool per channel and marking them as “unsorted waveforms” in the Plexon Offline Sorter. For the478

invalidation of cross-channel artifacts (e.g., chewing artifacts), all waveforms that occurred simultaneously on a479

defined percentage of channels (70%) were then marked as “invalidated waveforms” in the Plexon Offline Sorter.480

Furthermore, a waveform rejection was performed. Thereby all waveforms of abnormally large amplitude and/or481

atypical shape on a channel were manually also marked as “invalidated waveforms” in the Plexon Offline Sorter.482

The actual spike sorting was then performed on the remaining unsorted waveforms (i.e., those not marked as483

invalidated waveforms) individually for each channel. We used different algorithms to split these waveforms into484

clusters in a 2- or 3-dimensional principal component (PC) space. The dimensionality of the PC space was chosen485

according to the best separation. The main algorithms used were K-Means(-Scan) and Valley Seeking (chosen486

according to the best separation). We used a fixed threshold for outliers (a parameter to be determined in the487

Plexon Offline Sorter) between 1.8 (K-Means) and 2 (Valley Seeking) to get comparable sorting results. The488

spikes of the sorted clusters were then controlled using the inter-spike interval (ISI) distributions and the auto-489

and cross-correlation plots. Clusters with unacceptable outcomes (completely or partly overlapping waveforms),490

including those with only a few spikes, were left assigned as “unsorted waveforms” in the Plexon Offline Sorter.491

Cross-talk model492

Electric cross-talk between channels and its influence on the signals are modeled as follows. First, we consider the493

“ground truth” signals (i.e., not contaminated by cross-talk) x1(ti) and x2(ti) for channel 1 and 2, respectively,494

where ti (i = 1, 2, 3, ...) are discrete sampling times. For simplicity, we assume that x1 and x2 are time495
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series of independent Gaussian white noise with the same mean E[x1] = E[x2] = 0 and the same variance496

Var(x1) = Var(x2) = σ2.497

Next, we model the cross-talk as a linear mixing of these two signals. Concretely, we define the measured498

signals s1(ti) and s2(ti) for channel 1 and 2, respectively, as:499

s1 = x1 + αx2

s2 = x2 + αx1,

where α is a parameter representing the strength of the cross-talk: s1 and s2 are identical when α = 1, and they500

are independent when α = 0. By this construction, both s1 and s2 obey a Gaussian distribution with the mean501

E[s1] = E[s2] = 0 and the variance Var(s1) = Var(s2) = (1 + α2)σ2. The Pearson correlation coefficient c12 for502

the signals s1 and s2 is derived as:503

c12 = E [s1s2] /

(√
E [s21]

√
E [s22]

)
= E [(x1 + αx2) (x2 + αx1)] /

(√
E
[
(x1 + αx2)

2
]√

E
[
(x2 + αx1)

2
])

= 2ασ2/
(√

(1 + α2)σ2
√

(1 + α2)σ2
)

= = 2α/
(
1 + α2

)
.

We further introduce spikes to the signals. Here we model spikes in channel 1 by adding a value A1, representing504

the spike amplitude, to x1 at various, random time points. We parameterize A1 as A = σrSN1 , where rSN1 is the505

signal-to-noise ratio of the spike waveform, such that SUAs with different spike amplitudes are represented by506

modifying the value of rSN1 . The spikes introduced in the ground truth signal x1 are transferred to the measured507

signals s1 and s2 via the cross-talk. To count those transferred spikes, we extract spikes from s1 by thresholding508

it at mσs1 , where σs1 =
√
1 + α2σ is the standard deviation of s1 and m is a multiplier determining the threshold509

in relation to the standard deviation. Assuming that N1 spikes were introduced to x1, we can derive the expected510

number n11 of the spikes transferred from x1 and detected in s1 (= x1 + σrSN1 + αx2 at spike times) as:511

n11 = N1 · P
(
x1 + σrSN1 + αx2 > mσs1

)
= N1 · P

(
x1 + αx2 >

(√
1 + α2m− rSN1

)
σ
)

= N1 · P
(
N
(
0,
(
1 + α2

)
σ2
)
>
(√

1 + α2m− rSN1

)
σ
)

= N1 · P
(
N (0, 1) > m− rSN1 /

√
1 + α2

)
= N1 · erfc

((
m− rSN1 /

√
1 + α2

)
/
√
2
)
/2,

where erfc(·) is the complementary error function. 1
512

Note that the factor p11 ≡ erfc
((
m− rSN1 /

√
1 + α2

)
/
√
2
)
/2 in front of N1 in the above expression represents513

the probability that a spike transferred from the ground truth signal x1 is detected in the measured signal514

s1. In a similar manner, the probability p21 that a spike originally in x1 is detected in s2 is derived as515

p21 = erfc
((
m− αrSN1 /

√
1 + α2

)
/
√
2
)
/2. Furthermore, assuming N2 spikes in the other ground truth signal x2,516

the probabilities p12 and p22 that those spikes are detected in the measured signals s1 and s2, respectively, are517

derived as p12 = erfc
((
m− αrSN2 /

√
1 + α2

)
/
√
2
)
/2 and p22 = erfc

((
m− rSN2 /

√
1 + α2

)
/
√
2
)
/2.518

With these probability values, the expected numbers n1 and n2 of spikes detected in the measured signals s1519

1Note that, for simplicity, this formalism does not consider “noise” spikes which arise from the random fluctuations of the
background signal that happen to cross the threshold by chance.
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and s2, respectively, are represented as:520

n1 = p11N1 + p12N2

n2 = p21N1 + p22N2,

given the numbers N1 and N2 of spikes in the ground truth signals x1 and x2, respectively. Note that the terms521

p12N2 and p21N1 represent the number of spikes transferred from the other channel, and hence these spikes are522

detected in the both of the measured signals. Thus, the sum of these terms: n1,2 = p12N2 + p21N1 represents the523

number of synchrofacts in this pair of measured signals. Using this, the HSE index I1,2 between the measured524

signals s1 and s2 (synchrofact index) is expressed as:525

I1,2 =

n1,2/n1 = (p12N2 + p21N1) / (p11N1 + p12N2) (n1 ≤ n2)

n1,2/n2 = (p12N2 + p21N1) / (p21N1 + p22N2) (n1 > n2)
,

which takes a value between 0 and 1 depending on the parameters.526

QUANTIFICATION AND STATISTICAL ANALYSIS527

Complexity and estimation of chance levels528

To study fine-temporal correlation and detect potential synchronous artifacts in parallel spike train data, we first529

bin the time axis of the spike trains with a predefined bin width (in the present study we use 1, 0.1, and 1/30 ms530

bin widths) and compute the complexity of spiking activity at each bin, i.e., the number of units contributing531

spikes to that bin. Then we make a histogram of the complexity values for all the bins throughout the recording,532

called complexity distribution (Grün et al., 2008). For easier comparison of the results from different data sets,533

the histogram is normalized by dividing the counts of all complexities (including the complexity of zero, i.e., bins534

with no spikes) by the total number of bins, such that the sum of the histogram values over all complexities535

equals to unity.536

We compare the empirical distribution to chance levels from independent data, to elucidate if the real data537

contains excess spike synchrony. To estimate the complexity distribution of independent data, we use surrogate538

data, i.e., modified versions of the original data where spike times are intentionally altered. Stella et al. (2022)539

compared a number of surrogate methods, and according to that, we employ here the ’time-shift’ method (with540

a 30 ms shift width, (Pipa et al., 2008)), by which the spike trains are randomly shifted in time against each541

other. Time shifting destroys potential correlations between spike trains, while conserving many other features542

of the data such as the inter-spike interval distribution, the firing rate modulations and autocorrelation (Stella543

et al., 2022). We generate 200 surrogate spike train data sets, and for each of them we compute the complexity544

distribution. The mean and standard deviation of the count are calculated for each complexity, and plotted545

together with the empirical complexity distribution for comparison.546

Cross-correlation of high-pass filtered raw signals547

The correlation cij between the raw signals of channel i and j is evaluated by the Pearson correlation coefficient548

as:549

ci,j =
Cov(si, sj)√

Var(si)Var(sj)
,

where si and sj represent the high-pass filtered raw signals of channel i and j, respectively, obtained as described550

in Signal processing and threshold crossings, and Var(si) and Cov(si, sj) represent the variance of si and the551

covariance between si and sj , respectively.552
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Measure of spike synchrony553

Assume that we have ni spikes in channel i at times tpi (1 ≤ p ≤ ni). We discretize the time axis in bins of554

width b, which should be small enough to contain at most one spike in a bin, and obtain a set of bin indices555

Ti = {τpi |1 ≤ p ≤ ni}, which indicates the positions of the time bins where the spikes are observed (in other556

words, the time of the p-th spike is in the time range (τpi b, (τ
p
i + 1) b)). The number ni,j of spike synchrony events557

between channels i and j is obtained as ni,j = |Ti ∩ Tj |. We define the pairwise HSE index Ii,j as558

Ii,j =
ni,j

min(ni, nj)
,

which is a measure of the abundance of spike synchrony events between a pair of channels i and j. We choose to559

divide by the smaller spike count so that the HSE index is independent of the channel order (i.e., Ii,j = Ij,i) and560

also sensitive to HSEs occurring on channels with small number of spikes.561

In a similar manner, we define the global HSE index Ii as562

Ii =
ni,̄i

ni
,

where ni,̄i is defined as ni,̄i = |Ti ∩
⋃

j ̸=i Tj |, which represents the number of spike synchrony events between563

channel i and any other channel. Thus, the global HSE is a measure of the abundance of spike synchrony events564

between channel i and any other channel.565

Unitary Event analysis566

Unitary Event analysis (Grün et al., 2002a,b; Grün & Rotter, 2010) is a statistical method which enables to567

derive excess spike synchrony from a simultaneously recorded pair of spike trains. The method computes the568

empirical and the expected number of synchronous spike events and evaluates the statistical significance of the569

difference between the two. Suppose that we have two simultaneously recorded spike trains of duration T . We570

bin the time with a bin width of b and count spikes of each spike train (if multiple spikes are in a bin, the count571

is clipped to 1). Then we count the empirical number nemp of spike coincidences by counting the number of filled572

bins at the same times in both spike trains. Next, we compute the expected number nexp of spike coincidences in573

the following steps: 1) estimate the spiking probabilities p1 and p2 for the two spike trains, by dividing the total574

number of spikes in each spike train by the total number of the bins (i.e., T/b). 2) estimate the probability of575

spike coincidence in a bin as p1p2, by assuming independence of the spike times of the two spike trains. 3) obtain576

the expected number nexp of spike coincidences by multiplying the coincidence probability by the total number577

of bins, i.e., nexp = p1p2T/b. If the spike trains obey the Poisson statistics, the spike coincidence count should578

obey a Poisson distribution of the mean nexp. Hence, the p-value of the empirical coincidence count nemp can be579

derived (under the null-hypothesis of Poisson spike trains) as p = Σ∞
n=nemp

Ppoisson(n|nexp). The significance of580

the p-value is quantified by the joint surprise S defined as S = log10(1− p)/p.581
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KEY RESOURCES TABLE582

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Macaque monkey (macaca mulatta) N/A N/A

Deposited data

Raw data macaque L (Session L_RS_090817) Chen et al. (2022) https://doi.org/10.12751/g-node.i20kyh

Raw data macaque Y This paper Link will be provided upon publication

Software and algorithms

Python 3 Python Software Foundation https://python.org

Snakemake 7.32.4 Open Source https://snakemake.readthedocs.io (Mölder et al., 2021)

Elephant 1.0.0 NeuralEnsemble https://elephant.readthedocs.io (Denker et al., 2018)

Custom Code Open Source Link will be provided upon publication

Other

Data acquisition system Blackrock Microsystems LLC https://blackrockneurotech.com/products/cerebus

Utah Array Blackrock Microsystems LLC https://blackrockneurotech.com/products/utah-array
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Supplementary Material732

Complexity distribution after removing all synchronous spikes733

We examine the effect of the naive approach to remove all HSEs from the spike trains as proposed by Torre et al.734

(2016). Therefore we calculate the complexity distribution for the data after all spikes in HSEs are removed735

and compare this to the surrogates obtained from the data after the removal of the spikes. As to be expected,736

the distribution for the original data after the removal only contains entries for complexities of zero and one.737

However in the surrogates we find complexity up to six in the surrogate data, concluding that the data after738

removal significantly lacks synchrony since a certain amount of HSEs is expected. This shows that the naive739

approach should not be taken to remove synchrofacts.740

Figure S1: Complexity distribution after removing all synchronous spikes, Complexity distribution of the original
data (colored bars), and the mean and standard deviation (line and shade, respectively) for the complexity
distribution of the respective surrogates, 1

30 ms bin size.
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Connector mapping versus array mapping741

In search for causes of strong raw signal correlations between channels, we examine the spatial distribution of the742

channels showing strong correlations on two spatial maps of channels: one on the level of the electrode arrays743

and the other the head stage connectors. In the case of macaque Y, the relative positions of channels are almost744

identical between the two maps, and hence we cannot conclude on which level the cross-talk is localized. In the745

case of macaque L, however, the spatial distribution of highly correlated channels is largely different between the746

array mapping and the connector mapping, indicating that the cause of the high correlations is localized on the747

level of the electrode arrays.748

Figure S2: Comparison of spatial distribution of maximal raw signal correlation per channel (Ci) on the electrode
array layout (left) and the headstage connector layout (right) for (a) macaque Y and (b) macaque L. Black lines
connect electrode pairs with pairwise raw signal correlations ci,j > 0.4.
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Comparison between empirical and surrogate HSE index749

To examine how large the HSE indices obtained from real data are in comparison to those from independent750

spike trains with matched firing rates, we plot the empirical pairwise HSE indices in the macaque Y data against751

the respective surrogate HSE indices obtained from time shifted surrogate data (Figure S3a; the mean over 200752

surrogates is taken for each channel pair). The majority of channel pairs show larger empirical HSE index values753

than the respective surrogate values. This could reflect a bias originating from the definition of the HSE index754

that synchrofacts in channels with small numbers of spikes can be over-represented in the index. Hence, we755

next focus only on channels with firing rates greater than 1 spikes/s (Figure S3b). While a certain amount of756

channel pairs with large empirical HSE indices were screened out by this conditioning, we still see a considerable757

number of channels with extremely large empirical HSE indices compared to the surrogates, which are most likely758

the ones suffering from the cross-talk. After applying our proposed channel exclusion methods (Figure S3c and759

d), those channel pairs are screened out and the remaining ones show empirical HSE indices comparable to the760

surrogate indices, meaning that the remaining channels have as many HSEs as in independent spike trains. The761

mean of the empirical HSE indices over channel pairs is still slightly higher than the mean of the surrogate HSE762

indices, which is likely due to other causes of synchrofact than cross-talk. One of such causes is common external763

noise across channels. Spike-like events generated by such noise typically show waveforms dissimilar to real spike764

waveforms, and hence can be effectively excluded by spike sorting. To check whether that is actually the case,765

we plot the HSE indices for SUA pairs in the same manner as before (Figure S3e-g). Again, after applying our766

proposed methods, SUA pairs show only as many HSEs as in the surrogates, and in this case of SUA pairs, the767

mean empirical HSE index is much more consistent with the mean surrogate HSE index than in the case of768

channel pairs.769

Figure S3: Comparison of the pairwise HSE index Ii,j in the experimental data and the average of the corresponding
surrogate data ⟨Isurri,j ⟩nsurr , each point corresponding to one channel pair. Mean of each variable is shown with a
dashed line. The diagonal line indicates the identity between the two measures. The color shading represents the
difference from the theoretically random data, at the point where the mean surrogate index ⟨⟨Isurri,j ⟩nsurr

⟩ crosses
the diagonal; large deviations from this point are indicative of above-chance HSEs. The different panels show the
results for the same session based on (a-d) all threshold crossings (TCs), or (e-g) spike sorted single units (SUAs).
The different columns show different removal methods: (b, e) threshold on the firing rate, (c, f) threshold on
firing rate and maximum cross-correlation Ci, and (d, g) threshold on firing rate and global HSE index Ii.
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Common noise artifact example770

The data of macaque L contained highly synchronized activity in the data lasting for about 500ms (see Figure S4,771

bottom), which is likely due to strong common noise contaminating all the channels equally. Such common772

noise can enter the system via the reference electrode. We identified this burst of synchronous spike activity as773

artifacts since these synchronous spikes also still exist on the sampling rate resolution (top). It introduced in the774

complexity distribution a huge amount of events with complexities up to 35. Therefore, we removed this piece of775

data (1000 ms) before any further analysis. We did not detect such events in the data from macaque Y.776

Figure S4: Burst artifact in monkey L. The left column, bottom shows the whole burst artifact, that expresses a
lot of synchrofacts (on sampling rate of 30 kHz) one after the other over a period of about 500 ms. The plots
above show higher resolutions of that event, and on the top the total display shows piece of the data lasting 5 ms.
On the right top, the complexity distribution of the whole data set is shown, below after the complete removal of
this burst event, which still contains artifacts. But as shown in Figure 5 these can be completely removed by our
removal procedure.
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