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Abstract 
The epithelial-mesenchymal transition (EMT) is characterised by the loss of cell-cell adhesion and cell 

polarity, which is often exploited by cancer cells to adopt a motile, invasive and metastatic phenotype. 

Whilst EMT is often linked with cancer progression and therapy resistance, strategies for its selective 
targeting remain limited. In order to address this, we infer EMT states of cancer cell lines from their 

molecular signatures and use predictive and causal modelling to estimate the effect of EMT on drug 

susceptibility in high-throughput drug screens. For example, we show that EMT signatures in melanoma 

cells can predict favourable responses to the HSP90 inhibitor luminespib and demonstrate that 

epithelial-like melanoma cells can be sensitised to luminespib upon stimulation of EMT by TGF-β. Thus, 

we provide an analysis that systematically yields a set of potent drugs by exploiting vulnerabilities of 

cancer cells undergoing EMT, which may pave the way for therapies to target these cells. 

 

Introduction 
The epithelial-mesenchymal transition (EMT) is a cellular process that allows cells to transition between 

different phenotypic states 1. Rather than a switch between two distinct phenotypes, the EMT program 

describes a dynamic spectrum of phenotypes between epithelial and mesenchymal cells ranging from 

apical-basal polarity and strong cell-cell contacts to motile and spindle-like characteristics 2. EMT is an 

essential mechanism for embryonic development, wound healing and tumour plasticity, and has been 

regarded as a hallmark of cancer 1,3–5. The invasion of the extracellular matrix by cancer cells 

undergoing EMT prior to metastasis is accompanied by the loss of the adherens junction protein E-

cadherin and upregulation of N-cadherin, vimentin and fibronectin1,6. Scores derived from gene 
expression signatures of these molecular markers are typically used for assessing EMT and its 

associated cellular processes in cancers 2,7–10. Some of these processes can be used to externally 

stimulate cells to undergo EMT. For example, TGF-β signalling is an established mechanism for 

inducing EMT 11 and thus TGF-β treatment is widely used for external EMT induction in vitro 12–17. 

 

Sparse findings in cancer cell lines and human tumours have reported EMT as a putative drug response 

biomarker 7–10. For example, acquired resistance through EMT has been reported for commonly 
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employed chemotherapeutic agents, e.g. cisplatin and doxorubicin 18, and targeted therapies, e.g. 

EGFR or PI3K inhibitors 19. Furthermore, EMT was found to cause intrinsic resistance to KRAS 

inhibitors in lung cancer 20. Although the genetic background has been shown to play an important role 

in enabling EMT in cancer progression 10, it is still unclear to what extent initial cancer drug responses 
can be attributed to EMT. Thus, we hypothesised that predictive and causal modelling of EMT scores 

in drug high-throughput screens can assess the role of EMT in cancer drug sensitivity, which may lead 

to strategies that systematically exploit EMT as a cancer vulnerability.  

 

Here, we first estimated continuous EMT scores based on gene expression profiles of 790 cancer cell 

lines from 31 cancer types using four different methods 7,8,10,21. Consecutively, we benchmarked the 

contribution of EMT in drug response prediction models and quantitatively estimated the EMT effect 

with causal inference. For example, we revealed that EMT and its related processes in melanoma 
robustly predict sensitivity to HSP90 inhibition with luminespib and other HSP90 inhibitors. Indeed, we 

experimentally demonstrated that stimulating EMT with TGF-β pretreatment can sensitise epithelial 

melanoma cell lines to luminespib. 

 

Results 
We leveraged a high-throughput drug screen (HTS; Fig. 1a) of 790 cancer cell lines across 31 cancer 

types, which were treated with 544 unique compounds to obtain dose-response curves (Fig. 1b) 22–24. 

This was complemented with molecular profiling of cancer cell lines, i.e. somatic mutations, copy 

number alterations and gene expression (Fig. 1c) 22–24. For estimating EMT, we derived EMT scores 
from four established methods that leverage molecular signatures to infer EMT on a continuous 

spectrum using gene expression data (Fig. 1c); these were: Mak et al. 8, gene set variation analysis 21, 

Tan et al. 7 and Tagliazucchi and Wiecek et al. 10 (Methods), abbreviated as MAK, GSVA, TAN and 

TW, respectively (Supplementary Data 1). Then, we systematically benchmarked the EMT scores for 

predicting drug responses across all compounds and cancer types using (1) ablation of the EMT score 

and (2) causal inference of the EMT effect (Fig. 1c; Methods). Thereby, the cancer somatic alterations 

served as background predictors for assessing the EMT-specific component. 

 
Exemplifying our method, we leveraged the MAK EMT scores and drug responses quantified by IC50 

values in skin cutaneous melanoma (SKCM) and identified four inhibitory compounds, for which the full 

model including EMT significantly outperformed the baseline model (Fig. 1d; Methods). For example, 

response to luminespib in SKCM was predicted well by the full model, i.e. leveraging EMT scores and 

the mutational background with Pearson’s r = 0.50 between actual and predicted IC50 values. However, 

the performance of actual versus predicted IC50 dropped to Pearson’s r = 0.02 upon exclusion of the 

EMT score (Δr = 0.47, p = 5.0	× 10-4, t-test for resampled performance metrics; Supplementary Fig. 
1a). For the identified compounds, we applied double machine learning in conjunction with causal 

random forests to estimate the EMT-specific effect on drug responses with a 95% confidence interval 

(Fig. 1e; Methods) 25–28. Compounds with significantly increased performance and high inferred effect 
size for multiple EMT scores and both IC50 and area under the drug response curve (AUC) suggested 
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a causal component of EMT for determining drug responses (Supplementary Fig. 1b-f). This 

hypothesis was systematically dissected across the remaining cancer types, EMT scores and drug 

response readouts in the next section. 

 
Figure 1: Modelling drug susceptibility in cancer cell lines in the context of EMT. (a) The drug high-throughput 
screen contained 790 cancer cell lines treated with 544 compounds and (b) their dose-response curves. (c) 

Molecular profiling of cancer cell lines quantifies their mutational background and the transcriptional state. Shown 

in the schematic workflow for predictive and causal modelling, the mutational background are baseline features 
and EMT scores are derived from gene expression data. First, a regression-based ablation study assessed the 

predictive performances of the drug response prediction model upon excluding EMT from the model. Secondly, the 

EMT-specific effect on drug susceptibility was estimated by causal inference methods (Methods). (d) The 

systematic ablation study in SKCM yielded a set of compounds for which EMT improved the response predictions, 
showing the adjusted p-values of a t-test for performance metrics and the difference in Pearson’s correlation Δr. 

(e) The inferred EMT effects on responses to the identified set of compounds with the 95% confidence interval in 

SKCM is shown. 
 

Systematic analysis of EMT and its regulators as biomarkers of cancer drug sensitivity 
The distributions of MAK, GSVA, TAN and TW scores were predominantly cancer type specific (Fig. 
2a-d). For example, SKCM cell lines showed a more mesenchymal MAK EMT score, whilst breast 

cancer (BRCA) and colorectal cancer (COREAD) cell lines displayed rather epithelial MAK EMT scores 

(Fig. 2a), which highlighted the high tissue-specificity of EMT molecular signatures. MAK, TAN and TW 
scores showed high overall correlations (Pearson’s r > 0.87; Supplementary Fig. 2a), which were 

consistently high within cancer types. GSVA showed lower overall correlations with these scores 

(Pearson’s r < 0.39; Supplementary Fig. 2a) due to normalised scores (Supplementary Fig. 2b), but 

displayed consistently high correlations within cancer types as well (Supplementary Fig. 2a).  

 

We conducted the benchmark with the outlined modelling strategies (Fig. 1c; Methods), and recorded 

its results across all included cancer types, EMT scores, compounds and IC50 or AUC (Supplementary 
Data 2; Methods). Six cancer types showed at least one significant compound with FDR < 0.2 (Fig. 
2e; Methods). We estimated the EMT effects and confidence intervals for all compounds 

(Supplementary Fig. 3a,b; Methods), and further focused on five compounds in three cancer types 
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that consistently showed significant performance gains in at least three models (labelled in Fig. 2e,f; 
Table 1; Methods). For all of these compounds, mesenchymal cells showed higher drug responses 

than epithelial cells (Fig. 2f). 

 
Table 1: The five top-ranked EMT-dependent compounds. Each of the five compounds is characterised by its 
name, target and cancer type for which the association was found. The statistics for the ablation study (Δr and 

(adjusted) p-value) and causal inference (effect size plus interval in terms of Δlog(IC50) or ΔAUC) are given for 

each response readout and EMT score. Furthermore, the enriched TFs and GO terms for the responding cell lines 
and the enriched GO terms in transcriptional signatures for the compounds in SKCM are shown. Selected GO 

terms are annotated in the footnotes. 
 

Drug Target Cancer
type

Readout EMT
Score

�A Raw
?-value

Adj.
?-value

Effect
and
interval

TF Responder
GO

Downregulated
GO

Upregulated
GO

Luminespib HSP90 SKCM ic50 MAK 0.47 0.0005 0.049 �0.881±
0.380

MITF GO:0016241
GO:1902600

Epi:
GO:0042127 1

GO:0045595 2

Mes:
GO:0007178
GO:0006355
GO:0045893
GO:1903844 4

GO:0017015 5

GO:0045596 6

Epi:
GO:0036503
GO:0006986 3

Mes:
GO:0034976
GO:0006986 3

auc MAK 0.51 0.0002 0.050 �0.084±
0.035

MITF GO:0007035
GO:1902600
GO:0035751

auc GSVA 0.39 0.0008 0.156 �0.076±
0.020

CHIR-99021 GSK3A/B SKCM ic50 MAK 0.61 2.8⇥10�5 0.008 �0.628±
0.218

MITF GO:0032438
GO:0045333

Mes:
GO:1901203
GO:0007178
GO:0007179 7

auc MAK 0.60 0.0005 0.066 �0.037±
0.012

MITF GO:0019646
GO:0042775
GO:0045333

auc GSVA 0.54 0.0012 0.169 �0.031±
0.015

ic50 GSVA 0.54 0.0001 0.042 �0.538±
0.259

auc TW 0.59 7.4⇥10�7 0.0003 �0.038±
0.014

Staurosporine broad
multi-
kinase

SKCM ic50 MAK 0.47 0.0013 0.100 �0.553±
0.336

MITF GO:0051452
GO:0032438

auc MAK 0.43 0.0010 0.091 �0.065±
0.036

MITF GO:0007032
GO:0051452
GO:1902600

auc GSVA 0.61 0.0003 0.146 �0.068±
0.039

ic50 GSVA 0.63 0.0005 0.074 �0.618±
0.379

GSK269962A ROCK1/2 LUAD ic50 MAK 0.51 0.0001 0.032 �0.666±
0.236

SOX2 GO:0018212
GO:0010632 8

ic50 TAN 0.46 0.0006 0.157 �0.604±
0.288

ic50 TW 0.58 5.4⇥10�5 0.014 �0.517±
0.310

AZD7762 CHEK1/2 BRCA auc MAK 0.59 2.3⇥10�5 0.013 �0.046±
0.069

ESR1 GO:0010256
GO:0072659
GO:0006892
GO:1990778

auc GSVA 0.63 1.5⇥10�7 8.0⇥10�5 �0.069±
0.042

auc GSVA 0.56 0.0014 0.183 �0.118±
0.054

1 Regulation of cell population proliferation
2 Regulation of cell differentiation
3 Response to unfolded protein
4 Regulation of cellular response to transforming growth factor beta stimulus
5 Regulation of transforming growth factor beta receptor signaling pathway
6 Negative regulation of cell differentiation
7 Transforming growth factor beta receptor signaling pathway
8 Regulation of epithelial cell migration

1
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To interpret the five top-ranked EMT-dependent compounds, we employed gene set enrichment 

analysis of the set of differentially expressed genes between higher and lower responding cell lines 

leveraging the entire transcriptome (Supplementary Data 3; Methods). The enrichment analysis found 

upstream transcription factors (TF) acting as master regulators that can affect both molecular EMT 
markers and the set of differentially expressed genes. For example, we found that responses to the 

CHK1 inhibitor AZD7762 in BRCA were successfully predicted by the MAK and GSVA EMT scores 

(Fig. 2e; Supplementary Fig. 3c; Table 1), and identified that the TF target genes of ESR1 were 

enriched (adj. p = 4.3 × 10-28, odds ratio = 2.44, Fisher’s exact test; Supplementary Data 3; Table 1). 

Furthermore, lower response to AZD7762 was associated with higher ESR1 expression 

(Supplementary Fig. 4a). 

 

ESR1 expression is associated with clinical BRCA subtypes (PAM50), especially the invasive basal 

BRCA subtype is characterised by low ESR1 expression 29. Accordingly, we confirmed that cell lines 

derived from the more invasive basal-like BRCA displayed higher MAK EMT scores resembling the 

mesenchymal phenotype (p = 0.002, ANOVA F-test; Fig. 2g). Therefore, we added the PAM50 subtype 
to the EMT score and ESR1 expression as fixed effects in a regression model predicting AZD7762 

response and found that it did not further improve our model (p = 0.64, ANOVA F-test for multiple 

regression coefficient; Fig. 2g). Similar to ESR1 expression, it is established that BRCA1/2 regulates 

the cell cycle by activating CHK1 in response to DNA damage and its mutations are associated with 

oncogenesis 30. Thus, we repeated the same analysis by excluding cell lines that carry BRCA1/2 

mutations (p = 0.73, ANOVA F-test for multiple regression coefficient; Fig. 2g), which also did not further 

improve our model. Concordantly, EMT regulators were previously shown to underlie DNA damage 

responses through their interaction with CHK1/2 (target of AZD7762) in BRCA cells 31. In summary, 
EMT as a predictive biomarker for AZD7762 response in BRCA reflected but was not further enhanced 

by BRCA subtypes and somatic mutations in BRCA1/2. 

 

Furthermore, we observed performance gains for the ROCK1 (Rho kinase 1) inhibitor GSK269962A, to 

which lung adenocarcinoma mesenchymal-like cell lines with a higher MAK, TAN and TW EMT score 

were more responsive (Supplementary Fig. 4b; Table 1). We identified an associated TF SOX2 (adj. 

p = 1.5 × 10-13, odds ratio = 8.95, Fisher’s exact test; Supplementary Data 3; Table 1), which was 

previously found to be associated with EMT and metastasis in multiple cancer types, including lung 

cancer 32. We expanded the enrichment analysis of the set of differentially expressed genes for 

responder cell lines to Gene Ontology (GO) biological processes and found that upregulated genes in 
LUAD cell lines responding to GSK269962A were enriched in genes involved in the regulation of 

epithelial cell migration (adj. p = 0.0004, odds ratio = 35.07, Fisher’s exact test; Supplementary Data 
4; Table 1; Methods), which is orchestrated by ROCK1 33. 

 

In summary, our proposed method was able to robustly identify compounds in HTS that demonstrated 

distinct drug responses depending on EMT, its upstream regulators and related processes in several 
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cancer types. In the next section, we focused on elucidating further mechanisms on the compounds 

identified in SKCM. 

 
Figure 2: EMT as a predictive component of drug sensitivity. Distributions of (a) MAK, (b) GSVA, (c) TAN and 

(d) TW EMT scores depending on the cancer type are displayed. (e) The systematic ablation study demonstrates 
EMT as a predictor of drug sensitivity in cancer cell lines for four different EMT scores and two response readouts, 

i.e. IC50 and AUC, with six cancer types that showed at least one significant compound (FDR < 0.2). The 

compounds and cancer types that showed at least 3 significant performance changes are labelled. The horizontal 
axis represents the difference in mean Pearson’s correlation Δr between predicted and actual IC50 or AUC values 

of the models, including and excluding EMT, whereas the vertical axis measures the significant improvement in the 

performance over the baseline model using a t-test for resampled performance metrics. (f) For the IC50 prediction 
models, the estimated EMT effects plus 95% confidence intervals are displayed. (g) The boxplot shows the 

response to CHK1/2 inhibitor AZD7762 depending on BRCA PAM50 subtypes, the MAK EMT score and mutations 

in BRCA1/2. The centre on the boxplot represents the median, while the box illustrates the interquartile range 
(IQR). The whiskers show a range that is 1.5 times the size of the IQR. 

0.5

0.6

0.7

0.8

0.9

1.0

ba
sa

l
he

r2
lum

A
lum

B
no

rm
al NA

BRCA subtype

lo
g(

IC
50

)

BRCA1/2 mutation
0

1

−4

−2

0

2

4
EMT score

Anova, F (4,52) = 4.14, p = 0.005, ηg
2 = 0.24

C
ou

nt
a

−0.5 0.0 0.5

1
5
9

1
5
9

1
5
9

1
5
9

1
5
9

1
5
9

TAN

‘T
CG

A 
De

sc
‘

c

0.50

cancer type
BRCA

COREAD

GBM

LUAD

SCLC

SKCM

0.50

cancer type
BRCA

COREAD

GBM

LUAD

SCLC

SKCM

Cancer typecancer type
BRCA

COREAD

GBM

LUAD

SCLC

SKCM

g

A
ZD

77
62

 lo
g(

IC
50

)

AZD7762 (BRCA, auc, GSVA)

AZD7762 (BRCA, auc, MAK)

Staurosporine (SKCM, auc, GSVA)

Staurosporine (SKCM, ic50, GSVA)
Staurosporine (SKCM, auc, MAK)
Staurosporine (SKCM, ic50, MAK)

GSK269962A (LUAD, ic50, MAK)

GSK269962A (LUAD, ic50, TAN)

GSK269962A (LUAD, ic50, TW)

CHIR−99021 (SKCM, auc, GSVA)

CHIR−99021 (SKCM, ic50, GSVA)

CHIR−99021 (SKCM, auc, MAK)

CHIR−99021 (SKCM, ic50, MAK)

CHIR−99021 (SKCM, auc, TW)

AZD7762 (BRCA, auc, GSVA)

Luminespib (SKCM, auc, GSVA)

Luminespib (SKCM, auc, MAK)
Luminespib (SKCM, ic50, MAK)

FDR<20%

0

1

2

3

4

−0.25 0.00 0.25 0.50
delta Pearson correlation

un
ad

ju
st

ed
 −

lo
g1

0(
p)

Δ Pearson correlation

A
dj

us
te

d 
-lo

g 1
0(

p)

e

Label:
Drug (cancer type, readout, EMT score)

Higher performance 
with EMT

−1.0

−0.5

0.0

Lu
mine

sp
ib 

(SKCM, ic
50

, M
AK)

GSK26
99

62
A (L

UAD, ic
50

, M
AK)

CHIR−
99

02
1 (

SKCM, ic
50

, M
AK)

Stau
ros

po
rin

e (
SKCM, ic

50
, G

SVA
)

GSK26
99

62
A (L

UAD, ic
50

, T
AN)

Stau
ros

po
rin

e (
SKCM, ic

50
, M

AK)

CHIR−
99

02
1 (

SKCM, ic
50

, G
SVA

)

GSK26
99

62
A (L

UAD, ic
50

, T
W)

St
an

da
rd

ise
d 

es
tim

at
ed

ca
us

al
 e

ffe
ct

f

H
igher response 

in m
es. cells

E
st

im
at

ed
 c

au
sa

l 
ef

fe
ct

 (Δ
lo

g(
IC

50
))

EMT score

−5.0 −2.5 0.0 2.5

1
5
9

1
5
9

1
5
9

1
5
9

1
5
9

1
5
9

MAK

‘T
CG

A 
De

sc
‘

b

−0.50−0.25 0.00 0.25 0.50 0.75

1
5

1
5

1
5

1
5

1
5

1
5

GSVA
‘T

CG
A 

De
sc

‘
d

−2 −1 0 1 2 3

1
5
9

1
5
9

1
5
9

1
5
9

1
5
9

1
5
9

TW

‘T
CG

A 
De

sc
‘

cancer type
BRCA

COREAD

GBM

LUAD

SCLC

SKCM

Cancer type

wild type

mutant

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.16.575190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Potential regulators and drug response mechanisms of EMT in melanoma cell lines 

We focused on the three remaining compounds in SKCM, i.e. CHIR-99021, luminespib and 

staurosporine, for which mesenchymal-like SKCM cell lines showed higher sensitivity consistently 
across at least three models (Fig 2e,f; Table 1). In the TF enrichment analysis (Methods), we found 

that MITF was enriched in the set of differentially expressed genes for these compounds, i.e. CHIR-

99021 (adj. p = 3.7 × 10-36, odds ratio = 3.44), luminespib (adj. p = 6.8 × 10-7, odds ratio = 7.54) and 

staurosporine (adj. p = 5.3 × 10-89, odds ratio = 4.47; Fisher’s exact test; Supplementary Data 3; Table 
1) and showed responses associated with MITF expression (Fig. 3a). For luminespib, 39 genes were 

significantly downregulated in responding mesenchymal-like cells, from which 23 were putative MITF 
target genes (Fig. 3b). MITF is a melanocyte master regulator and is often described as an oncogene 

in melanoma 34. It was proposed to act as a phenotype-switching regulator in melanoma, for which cells 

with trace MITF levels show senescent properties characterised by cell cycle arrest and cell motility, 

low-to-intermediate MITF levels display proliferative properties, and higher MITF levels can drive cell 

differentiation 35–38.  

 

The MAK EMT score in SKCM was associated with previously proposed SKCM subtypes 39 (p = 5.6 × 

10-8, ANOVA F-test; Fig. S4c-e), i.e. melanocytic cell lines characterised by high MITF expression 

showed low EMT scores (Fig. S4c-e). To quantify their impact on responses to the three compounds, 

we added these SKCM subtypes to the MAK EMT score and MITF expression as fixed effects in a 

regression model predicting IC50 values. Modelling subtypes improved predictions for staurosporine (p 

= 0.0008, ANOVA F-test for multiple regression coefficient; Fig. S4c), whilst we did not observe 

improvements for luminespib (p = 0.31, ANOVA F-test for multiple regression coefficient; Fig. S4d) or 

CHIR-99021 (p = 0.24, ANOVA F-test for multiple regression coefficient; Fig. S4e), thus highlighting 

the predictive capability of EMT in SKCM. 

 

To gain further insights into the mechanisms of luminespib, CHIR-99021 and staurosporine, we 

extracted transcriptional signatures from the Library of Integrated Network-Based Cellular Signatures 

(LINCS) 40. We retrieved luminespib signatures of mesenchymal-like A375 and epithelial-like SK-MEL-
28 SKCM cell lines and tested the 100 up- and down-regulated genes for enrichment in Gene Ontology 

(GO) biological processes (Supplementary Data 5; Table 1; Methods). The top process for both cells 

was the upregulation of genes involved in the response to unfolded proteins (A375: adj. p = 4.9 × 10-

19, odds ratio = 130.34; SK-MEL-28: adj. p = 6.0 × 10-11, odds ratio = 68.09, Fisher’s exact test; 

Supplementary Data 5; Table 1). Notably, genes involved in the regulation of TGF-β receptor 

signalling, such as SMAD3, were significantly downregulated among the top two enriched processes 
(A375: adj. p = 0.0004, odds ratio = 17.55, Fisher’s exact test; SK-MEL-28: adj. p = 0.02, odds ratio = 

8.81, Fisher’s exact test; Supplementary Data 5; Table 1), suggesting that luminespib response may 

depend on TGF-β signalling components. Commonly downregulated genes of the CHIR-99021 

signature included SMAD3 and PXN, which were also enriched in TGF-β receptor signalling (A375: adj. 

p = 0.0006, odds ratio = 123.73, Fisher’s exact test; Supplementary Data 5; Table 1), whereas for the 
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staurosporine signature, TGF-β receptor signalling showed trends of enrichment (A375: adj. p = 0.06, 

odds ratio = 23.7, Fisher’s exact test; Supplementary Data 5). 

 

In summary, these results demonstrated that response to the HSP90 inhibitor luminespib in the GDSC 
HTS may depend on EMT components, their regulators MITF and TGF-β, and their associated 

subtypes. Therefore, the next section assessed the generalisation of EMT-dependent drug responses 

to other HSP90 inhibitors and their validation in independent HTS experiments. 

 

EMT is associated with drug sensitivity to HSP90 inhibition in melanoma cell lines 
For evaluating the robustness of EMT as a drug sensitivity biomarker to HSP90 inhibitors in SKCM, we 

tested for correlations between EMT scores and sensitivity to five HSP90 inhibitors across two high-

throughput drug screens (Methods; Supplementary Fig 5). First, we assessed the IC50 values of 
HSP90 inhibitors in the GDSC, here exemplified with tanespimycin (r = -0.40, p = 0.036, correlation 

test; cell lines with higher than mean NQO1 expression 41; Fig. 3c), elesclomol (r = -0.34, p = 0.015, 

correlation test; Fig. 3d), a luminespib replicate screened in both GDSC1 and GDSC2 (r = -0.33, p = 

0.021, correlation test; Supplementary Fig. 5a) and SNX 2112 (r = -0.21, p = 0.14, correlation test; 

Supplementary Fig. 5c). Furthermore, consistent correlations were observed for AUC values across 

these HSP90 inhibitors in the GDSC (Supplementary Fig. 5a-h), thus highlighting the robustness of 

the association between EMT and responses to HSP90 inhibition regardless of the drug response 

readout. 
 

To gain further evidence across independent datasets, we calculated the MAK EMT score based on 

gene expression data obtained from the Cancer Cell Line Encyclopaedia (CCLE) 42 and analysed the 

HTS of the Cancer Therapeutics Response Portal (CTRP) 43 (Supplementary Data 6; Supplementary 
Fig 5i-m). The AUC values of the screened HSP90 inhibitors SNX 2112 (r = -0.44, p = 0.002, correlation 

test; Supplementary Fig. 5j) and tanespimycin (r = -0.47, p = 0.001, correlation test; Supplementary 
Fig. 5l) were significantly associated with the EMT score in this independent HTS, and AT13387 
(onalespib) displayed consistent trends (r = -0.24, p = 0.221, correlation test; Supplementary Fig. 5m).  

 

In essence, EMT scores were consistently associated with drug sensitivity to HSP90 inhibition in SKCM 

cell lines across independent drug HTS and transcriptomic profiles (Fig. 3e; Supplementary Fig. 5i-
m). For the next section, luminespib was selected as the lead compound for further experimental 

validation of our method, since it showed significant performance gains with the highest estimated EMT 

effects (Table 1). 
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Figure 3: EMT is associated with transcription factors and susceptibility to HSP90 inhibitors. (a) Boxplots 

of binarised drug response (i.e. discretisation by median IC50 values) of CHIR-99021, luminespib and staurosporine 

show associations with MITF expression levels quantified by a two-sided t-test and its derived p-value. The centre 
on the boxplot represents the median, while the box illustrates the interquartile range (IQR). The whiskers show a 

range that is 1.5 times the size of the IQR. (b) A heatmap shows differentially expressed genes of luminespib drug 

response quantified by log(IC50) values in SKCM cell lines (FDR < 0.1) for the subset of MITF targets. Scatter plots 
show drug susceptibility of SKCM cell lines to other HSP90 inhibitors such as (c) tanespimycin, (d) elesclomol and 

(e) AT13387 (onalespib) in an independent dataset. The solid line depicts a fitted ordinary least squares regression 

model with its 95% confidence interval. The Pearson’s correlation coefficient (r) and the associated p-value of the 
correlation test (p) are displayed. 

 

TGF-β modulates the response to HSP90 inhibition with luminespib in epithelial-like melanoma 
cell lines  
We conducted experiments on whether drug response to luminespib could be modulated by EMT 

induction. TGF-β is a known inducer of EMT 17, which was also suggested by the upregulation of TGFB1 

expression in many mesenchymal-like SKCM cell lines (Supplementary Fig. 6a-d). Thus, we chose 

two epithelial-like cell lines (IGR-37, SK-MEL-5; Fig. 4a) and two mesenchymal-like cell lines (RPMI-

7951, A375; Fig. 4a), which showed different levels of sensitivity to our lead compound luminespib in 

the GDSC, respectively. Following a 7-day pretreatment with TGF-β1, we treated the cells with different 

concentrations of luminespib (Supplementary Fig. 6e; Methods) and fitted dose-response curves for 

each experiment to obtain IC50 and AUC values (Supplementary Data 7; Methods). 
 

While the mesenchymal RPMI-7951 and A375 showed no distinguishable change in luminespib 

response upon TGF-β1 treatment (Fig. 4b,c), the epithelial cell lines IGR-37 and SK-MEL-5 displayed 

increased luminespib sensitivity (Fig. 4d,e). To quantify this effect, we calculated the difference in 

log(IC50) values, i.e. Δlog(IC50), for the screened cell lines and compared it to the 95% CI of the predicted 

causal effect upon change in the EMT score (Methods). Accordingly, the epithelial cell lines IGR-37 

and SK-MEL-5 showed decreased IC50 within this CI (Fig. 4f). Analogously, we compared differences 

in AUC values (ΔAUC), which showed consistency within the CI of the predicted causal effect 
(Supplementary Fig. 6f). In summary, this highlights that EMT can modulate HSP90 inhibitor response 

in epithelial-like SKCM cell lines. 
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Figure 4: TGF-β sensitises melanoma cell lines to luminespib. (a) The scatter plot shows luminespib drug 
response stratified by EMT scores in SKCM cell lines and highlighted selected cell lines. The mesenchymal cell 

lines (b) RPMI-7951 and (c) A375 showed indistinguishable luminespib response upon TGF-β pretreatment. In 

contrast, the two epithelial cell lines (d) IGR-37 and (e) SK-MEL-5 responded stronger after pretreatment with TGF-
β. Shown are the derived cell viabilities averaged across replicates and the fitted dose-response curves (Methods). 

(f) TGF-β treated epithelial cell lines demonstrate higher responses (decreased IC50) to luminespib within the 

predicted causal effect 95% CI. 
 

Discussion 
We presented a drug response analysis encompassing the causal exploration of EMT in the context of 

mutational backgrounds and their upstream regulators and processes. We quantified EMT based on 

molecular biomarkers from gene expression profiles, thus offering a continuous score that accounts for 

the spectrum of intermediate and hybrid EMT states. By combining predictive and causal modelling, we 

identified five compounds across three cancer types with robust associations across different EMT 
scoring methods and drug response readouts (Table 1). Exemplifying our approach, we found that 

mesenchymal-like cell lines showed increased sensitivity to HSP90 inhibitors, particularly luminespib, 

which we experimentally validated. 

 

Our pharmacogenomic modelling approaches corrected for confounders from the mutational 

background. Therefore, the estimated EMT effects from the causal modelling approach assumed no 

hidden confounders in the gene expression data. In order to address this, we performed post hoc 

differential gene expression analyses considering all genes to identify transcription factors as upstream 
regulators and GO biological processes. Furthermore, we mined drug transcriptional signatures to 

identify transcriptional confounders. Our analysis pursued the contribution of EMT on drug responses, 

however our systematic and causal modelling framework is generalisable to any putative drug response 

biomarker and its mechanisms. 

 
We showed that epithelial-like cell lines can become more responsive to luminespib upon TGF-β 

treatment, whereas mesenchymal-like cell lines displayed no distinguishable change in their response. 
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In addition, drug responses to luminespib quantified by IC50 values in non-TGF-β treated cells were 

comparable to values observed in the GDSC. Therefore, the sensitivity of some melanoma cell lines to 

luminespib may indeed be induced by a phenotypic conversion of cell lines. Although molecular markers 

do not fully capture all intricacies of the EMT program, the sensitisation of epithelial-like cell lines upon 
TGF-β treatment to luminespib suggests that EMT markers with their regulator MITF in melanoma may 

constitute a promising biomarker for selectively targeting epithelial-mesenchymal transitioning cells. 

 

HSP90 is an ATP-dependent molecular chaperone necessary for protein folding and stabilisation of 

oncogenic proteins including BRAF and TGF-β receptors 44,45. In melanoma, HSP90 levels have been 

found to correlate with melanoma progression metrics such as Breslow’s depth and Clark level 46. The 

effect of HSP90 inhibition on cell viability seems to depend on MITF, which is a master regulator in 

melanoma cells that allow phenotype switching between distinct states ranging from arrested to highly 
invasive or highly proliferative phenotypes 34,37,38. TGF-β induces EMT across many cancer entities 47, 

and has inhibitory downstream effects on MITF expression 48,49. The sensitisation of epithelial cells via 

pretreatment with TGF-β suggests that TGF-β might regulate MITF in epithelial cells to allow switching 

to an invasive state, thereby rendering them more vulnerable to luminespib. 

 
The exact mechanisms through which mesenchymal-like melanoma cell lines respond better to HSP90 

inhibition remain elusive. They may be revealed by considering common mechanisms between the two 

compounds that were identified by our framework in conjunction with luminespib, namely the GSK3β 
inhibitor CHIR-99021 and secondly, the non-selective multi-kinase inhibitor staurosporine. Potentially, 

the downregulation of TGF-β signalling might be the common link between these inhibitors.  
 
In conclusion, we demonstrated that the pharmacogenomic assessment of EMT markers with predictive 

and causal modelling can predict drug susceptibilities and reveal relevant tumour biology in cancer cell 

lines. We anticipate that considering additional parameters of EMT-like phenotype transitions, such as 

cell morphology and proteomics, will increase mechanistic insights to EMT and its impact on drug 
responses. These and other types of follow-up studies may ultimately enable the selective targeting of 

transitioned cancer cells from the primary tumour or circulating tumour cells to prevent dissemination 

and metastasis. 

 

Methods 
Drug response data  
The drug response data from the Genomics of Drug Sensitivity in Cancer (GDSC) was obtained from 

its release 8.4 under https://ftp.sanger.ac.uk/project/cancerrxgene/releases/. Both GDSC1 and GDSC2 

datasets were used in this analysis, using the half maximal inhibitory concentration log(IC50) and area 
under the curve (AUC) as metrics for quantifying drug responses. This resulted in 700 drug response 

profiles from 544 unique compounds. The Cancer Therapeutic Response Portal (CTRP) drug response 

data was downloaded from DepMap (https://depmap.org/portal/) contained in the file 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.16.575190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

‘CTRPv2.0_2015_ctd2_ExpandedDataset.zip’, which included 545 drug response profiles from 496 

unique screened compounds. 

 

Somatic mutations and copy number alterations 
The GDSC project has previously compiled a selection of high-confidence cancer driver genes, 

including somatic mutations and copy number alterations, available under 

http://www.cancerrxgene.org/downloads/bulk_download. These binary matrices comprised the somatic 

mutational status for each identified genetic event for all cancer cell lines, thus characterising their 

genetic landscape. They contained the status of somatic mutations from 218 cancer genes and 802 

copy number segments of 775 cancer cell lines across 31 cancer types. 

 

Gene expression profiling and cancer subtypes 
The GDSC RMA-processed Affymetrix array gene expression data was downloaded from 

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/preprocessed/Cell_line_R

MA_proc_basalExp.txt.zip, containing 781 cell lines for our investigated cancer types. The CCLE log2 

transformed RNA-seq gene expression data was downloaded from DepMap 

(https://depmap.org/portal/) contained in the file ‘OmicsExpressionProteinCodingGenesTPMLogp1.csv’ 

(22Q4). The BRCA (PAM50) 29 and SKCM 39 subtype annotations were obtained from the 

supplementary material of Jaaks et al. (Table S2) 50 and Warren et al. 51, respectively. 

 
EMT scores 
We quantified EMT in 27 cancer types that had > 5 cancer lines available using four established 

methods, i.e. Mak et al. 8 (MAK), gene set variation analysis 21 (GSVA), Tan et al. 7 (TAN) and 

Tagliazucchi and Wiecek et al. 10 (TW). For the MAK EMT score, we ranked genes based on their 

Pearson’s correlation to four EMT marker genes, i.e. CDH1, CDH2, VIM and FN1. The genes were then 

ordered by their respective correlation coefficients and the top 25 genes highly correlated to CDH1 

expression were selected as ‘epithelial’ marker genes, whereas the top 25 genes that were highly 
correlated to each respective mesenchymal gene were grouped as ‘mesenchymal’ markers, resulting 

in EMT gene signatures comprised of all unique genes from the 25 epithelial and 75 mesenchymal 

markers for each cancer type. For each cell line, the EMT score was then calculated by the difference 

in mean expression levels of mesenchymal and epithelial markers. 

 

For the GSVA EMT score, the ‘msigdbr’ R package was used to queue gene sets for the subsequent 

gene set variation analysis using the ‘GSVA’ R package, which yielded gene set enrichment scores 

from the EMT gene set for each cell line 9. For the TAN EMT score, we downloaded the provided tables 
in their supplementary material (Table S4C 7) and extracted the scores from their set of cancer cell 

lines. Similarly, for the TW EMT scores, we used the provided supplementary tables in their 

supplementary material to extract scores (Source data 10). All EMT scores are supplied in 

Supplementary Data 1 and Supplementary Data 6. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.16.575190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Predictive modelling and ablation study 
Drug responses denoted by 𝑦 and quantified by log(IC50) and AUC values were modelled by the EMT 

score 𝑠 and somatic alterations 𝒙 = {𝑥!, . . . , 𝑥"}, consisting of 𝑚 binary encoded genetic alterations. The 

model was specified by 

𝑦 = 𝛼 + 𝜷𝒙 + 𝛾𝑠 + 𝑒, (1) 

with intercept 𝛼, confounder coefficients 𝜷, EMT coefficient 𝛾 and the error term 𝑒. The python package 

‘sklearn’ was used to fit the regression model with lasso penalty and cross-validation for choosing the 

optimal penalty hyperparameter for each compound, cancer type and EMT score separately. For 

benchmarking the model performance, we performed 5-fold cross-validation with 5 repetitions. The 
Pearson’s correlation (r) between predicted and ground truth response was calculated on the test set 

to quantify model performance for each of the five folds and five initialisations.  

 

An ablation study was conducted to prioritise drugs and cancer types for which EMT is suggested to 

contribute to the drug response phenotype. It was performed by refitting the models with removed EMT 

score 𝑠 and recording its performance with the same splits. To compare the model performances of the 

full versus the model with ablation of	 𝑠, a t-test for resampled performance metrics was used for 

assessing significant decreases of Pearson’s r across all the performances from the 25 models 52. The 

resulting p-values were corrected for multiplicity using the Benjamini-Hochberg false discovery rate 

(FDR) method 53 for each cancer type and EMT score separately. We found 32 compounds with FDR 

< 0.2 across six cancer types. In the main manuscript, we focused on five compounds that showed 

robustly significant performance differences in at least three out of eight possible models (4 EMT scores 

× 2 response readouts). 

 

We only performed modelling if at least 25 cell lines for a given cancer type and drug were observed in 

the screening experiment. Furthermore, for modelling IC50 values, we did not consider models for which 

> 70% of IC50 values for a given drug and cancer type were extrapolated considerably beyond the 
maximum tested concentration cmax, i.e. IC50 > 2cmax. The full results are supplied in Supplementary 
Data 2. 

 

Causal modelling 
Double machine learning (DML) is often used for estimating treatment effects on observed outcomes. 

It consists of two stages, (1) learning the propensity and outcome models as nuisance functions to 

extract their residuals, and (2) regressing outcome residuals on treatment residuals to obtain valid 

treatment effects and confidence intervals (CI) 25,26. Accordingly, we estimated the causal component 
of EMT by fitting a causal forest 27 in conjunction with DML for each drug, cancer type and EMT score, 

implemented in the CausalForestDML method within the python package ‘econml’ 28. The two nuisance 

functions were fitted using the same lasso regression model as used above. Thereby, we modelled the 

drug responses as outcome 𝑦 to estimate the effect of the EMT score 𝑠 as a continuous variable in the 

presence of the mutational background as confounders	 𝒙. The estimated effect (EMT effect) then 

assesses the impact of undergoing EMT via non-mutational tumour plasticity on drug response. Since 
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the EMT scores are continuous, the effect was given per unit of EMT change, i.e. for the interval of one 

standard deviation from the distribution of EMT scores for each cancer type. This effect and its 95% CI 

was compared with the validation experiments. The full results are supplied in Supplementary Data 2. 

 
Transcription factor and gene ontology enrichments 
We sought to identify enrichments of genes correlated to drug responses in transcription factor (TF) 

targets and Gene Ontology (GO) biological processes from the transcriptional background of cancer 

cell lines. For a given drug response and transcriptomic profile within a given cancer type, we performed 

differential gene expression between continuous drug responses using linear models implemented in 

the ‘limma’ R package. The differentially expressed genes (FDR < 0.1) were then used as query genes 

for a gene set enrichment analysis with the ‘enrichR’ R package, for which we tested gene sets 

consisting of curated TF target genes 54 as potential upstream regulators of EMT and biological 
processes in the GO knowledge base 55. We only considered the gene set positively correlated with 

drug response and its top enriched TF and the top two enriched GO terms by their adjusted p-values 

including ties in Table 1, while the full results are supplied in Supplementary Data 3 for TFs and 

Supplementary Data 4 for GO terms. 

 

LINCS transcriptional signatures 
The transcriptional signatures of the Library of Integrated Network-Based Cellular Signatures (LINCS) 

program contain sets of genes with up- and down-regulated gene expression levels upon chemical or 
genetic perturbations 40. Using the CLUE knowledge base (https://clue.io/lincs) and its provided API, 

we retrieved the signatures of luminespib for two SKCM cell lines, i.e. mesenchymal-like A375 and 

epithelial-like SK-MEL-28. We aggregated the 100 up- and down-regulated genes from all available 

signatures for cell lines. Then, we used these genes as a query for a gene set enrichment analysis with 

the ‘enrichR’ R package for each cell line to test for enrichments of GO biological processes. For 

staurosporine and CHIR-99021, only mesenchymal-like A375 cells were available. We used the 

overlapping signature genes of the transcriptional signatures of luminespib in A375 cells as a query for 
the same enrichment analysis in order to check for common mechanisms between the three 

compounds. We only considered the top two enriched GO terms by their adjusted p-values including 

ties in Table 1, while the full results are supplied in Supplementary Data 5. 

 

Cell culture 
SK-MEL-5 (source: ATCC), A375 (source: ATCC), RPMI-7951 (source: DSMZ) were cultured in Gibco 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and 

1% Penicillin-Streptomycin (Pen-strep) (10000 U/mL). IGR-37 (source: DSMZ) was cultured in Gibco 
DMEM supplemented with 15% FBS 1% Pen-strep. To induce EMT based on previous literature 17, the 

media were supplemented with 5 ng/mL TGF-β1 (R&D Systems 7754-BH/CF) for 7 days. 
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Luminespib treatment 
10,000 cells in 100 µL medium per well were seeded in 96-well opaque, white, flat-bottom plates. After 

the cells were allowed to attach at 37 ℃, luminespib (Selleck-Chem: S1069) dissolved in DMSO was 

added into the wells at the indicated concentrations and 0.5% DMSO. The negative control wells were 

treated with 0.5% DMSO alone, whereas the blank wells contained only the media. The plates were 

incubated for 72h before the CellTiter-Glo® 2.0 Cell Viability Assay (Promega: G924A) was performed 

following the manufacturer’s protocol. Luminescence was measured using the Perkin Elmer EnVision 
2104 Multilabel Plate Reader.  

 

Dose-response analysis 
Cell viability (𝑣) (capped between 0 and 1) was calculated with intensities from blank (𝐼#), negative 

control (𝐼$%) and luminespib treatment (𝐼&) wells with 

𝑣 =
𝐼& −	𝐼#
𝐼$% −	𝐼#

. (2) 

Dose-response curves were fitted and IC50 values were calculated using the four-parameter log-

logistic (LL.4) model in the R package ‘drc’ 56 and AUC values were calculated using the R package 

‘PharmacoGx’ 57. The results are supplied in Supplementary Data 7.  

 
Code accessibility 
The source code for the presented analysis is available at https://github.com/mendenlab/emtpb. 
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