Abstract
How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: small prediction error leads to updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses; and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Competing interests: The authors declare that no competing interests exist.
The revised paper includes the following changes: 1. We have added two new figures to the supplementary section, Figures 8 and 9. These display the trial-by-trial data from spontaneous recovery and reinstatements tests in each experiment. The data clearly show that the between-group differences in freezing were very stable across the test sessions. 2. We have included individual data points for test results in Figures 2D, 2F, 3D, 3H, 4D and 4H. Hence, these figures now reflect both group and individual freezing levels. We have also indicated which of the individual data points represent females and males. 3. We have further referenced the Gershman et al., (2013) paper as well as the related Bouton et al., (2004) paper on the effects of gradually reducing the frequency of the US across extinction. This appears in the fifth paragraph of the Discussion: The present study adds to a growing body of evidence that manipulations applied across the shift from CS-US pairings to presentations of the CS alone can influence the effectiveness of extinction. For example, Gershman et al., (2013) and Bouton et al., (2004) showed that gradually reducing the proportion of reinforced CS presentations results in less spontaneous recovery and slower reacquisition, respectively; though both studies left open fundamental questions about the basis of their findings (see also Woods & Bouton, 2007).