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1 Abstract15

All published methods for learning about demographic history make the simplifying assumption that the16

genome evolves neutrally, and do not seek to account for the effects of natural selection on patterns of17

variation. This is a major concern, as ample work has demonstrated the pervasive effects of natural selection18

and in particular background selection (BGS) on patterns of genetic variation in diverse species. Simulations19

and theoretical work have shown that methods to infer changes in effective population size over time (Ne(t))20

become increasingly inaccurate as the strength of linked selection increases. Here, we introduce an extension21

to the Pairwise Sequentially Markovian Coalescent (PSMC) algorithm, PSMC+, which explicitly co-models22

demographic history and natural selection. We benchmark our method using forward-in-time simulations23

with BGS and find that our approach improves the accuracy of effective population size inference. Leveraging24

a high resolution map of BGS in humans, we infer considerable changes in the magnitude of inferred effective25

population size relative to previous reports. Finally, we separately infer Ne(t) on the X chromosome and26

on the autosomes in diverse great apes without making a correction for selection, and find that the inferred27

ratio fluctuates substantially through time in a way that differs across species, showing that uncorrected28

selection may be an important driver of signals of genetic difference on the X chromosome and autosomes.29
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2 Introduction30

Understanding how effective population size has changed in the past – that is, reconstructing the popu-31

lation size trajectory Ne(t) – is crucial in order to understand the evolutionary history of any species [1].32

Coalescence-based approaches to inferring Ne(t) are attractive due to their low sample size requirements (as33

few as two chromosomes) [2, 3, 4, 5]. These methods leverage the density of local heterozygosity to estimate34

the time since the most recent common ancestor (TMRCA) at each location along the genome, which is used35

to infer Ne(t). However, these methods assume erroneously that loci across the genome evolve neutrally,36

despite the evidence of profound effects of linked natural selection on patterns of genetic variation in many37

species, including humans [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].38

39

Simulation and theoretical studies have provided compelling evidence that selection biases inferences of40

Ne(t) [17, 18, 19, 20]. Using simulations, Schrider et al. [18] demonstrated that in the presence of a selective41

sweep, the PSMC underestimates true Ne(t) in times more recent than the onset of selection. This effect42

becomes greater as the frequency or intensity of sweeps increases. Johri et al. [19] simulated a model of43

widespread linked selection, and showed increasingly inaccurate estimates of Ne(t) at all time scales whether44

PSMC [2], MSMC [3], or fastsimcoal [21] was used for inferences. Using an analytical approach that models45

the effects of linked selection as a rescaling of Ne(t) by a locus-specific constant, Boitard et al. [20] confirmed46

a spurious decrease in inferred Ne(t) that comes from not accounting for these effects Ne(t). However, the47

impact of BGS on inferring Ne(t) on real data remains unknown, and it is unclear how to obtain accurate48

estimates of this quantity in the presence of BGS.49

50

Hudson and Kaplan [22] and Nordborg et al. [23] introduced a model to approximate the effects of51

BGS, by scaling local genomic Ne to account for loss of diversity due to linkage with deleterious alleles.52

Motivated by this approximation, McVicker et al. [6] explicitly estimated bi, the fraction of expected neutral53

diversity at site i, across the human genome. They estimate that linked selection results in a genome-wide54

average reduction in diversity of 19–26% on the autosomes, and 12-40% on the X chromosome. Primarily,55

they attributed this reduction to background selection (BGS) – the loss of genetic diversity due to linkage56

with alleles under purifying selection – but could not rule out a contribution from selective sweeps. Later57

work provided evidence that selective sweeps had little effect on diversity levels in humans [7], supporting58

the interpretation of these patterns as largely driven by BGS - though this has been contested [24]. By59

leveraging whole-genome sequencing data from the 1000 Genomes project [25] and more detailed functional60

annotations, Murphy et al. [26] re-estimated the contribution of linked selection in shaping human genetic61

diversity. They generated a much-improved B-map relative to the earlier map of McVicker et al. [6], produc-62

ing a set of genome wide bi values describing the strength of BGS. They showed that this map is sufficient63

to explain ∼60% of the variance in autosomal diversity levels at the megabase scale. They also concluded64

that selective sweeps have little or no effect on linked neutral diversity.65

66

The demonstrated large effect of BGS on inferring Ne(t) [18, 19, 20], combined with the empirically large67

demonstrated impact of BGS in diverse species including humans [6, 26], raises questions about whether in-68

ference of population size changes from genetic variation data under the assumption of neutrality is reliable.69

Here, we extend the PSMC algorithm to handle local changes in the mutation or expected coalescent rate in70

a software package we call PSMC+. We adopt a first-order approximation to the effects of BGS as a rescaling71

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.576291doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576291
http://creativecommons.org/licenses/by-nc-nd/4.0/


of population size with a locus-specific constant [22, 23]. Using forward-in-time simulations which explicitly72

incorporate selection, we demonstrate our approach is largely accurate even if BGS is widespread. We also73

test applications of the method when there is incomplete information about the strength of background74

selection across the genome, as is the case for most species. We test the accuracy of coalescent time inference75

in the presence of background selection and find that PSMC+ is accurate even in its presence. PSMC+ can76

also be used to obtain unbiased inferences even in the presence of variation in the mutation rate over the77

genome.78

79

3 New Approaches80

PSMC [2] models the density of heterozygous positions between two haploid genomes or within a single81

diploid genome, which reflects mutations that have accumulated since the two haploid genomes shared a82

common ancestor, to infer the time since the most recent common ancestor (TMRCA). Then, it uses this83

distribution to infer a piecewise constant effective population size trajectory through time, Ne(t), integrat-84

ing information over all loci in the genome. To model the probability of observing a heterozygous position,85

PSMC uses the population mutation rate θ = 4Neµ – where Ne is the local genomic effective population86

size, and µ is the mutation rate per base pair per generation, which PSMC assumes is constant across the87

genome. However, µ is known to vary across the genome [27, 28], and the effects of BGS are frequently88

modeled as variations in Ne [23, 22]. Both of these effects violate PSMC’s assumption of constant θ, raising89

the potential of bias in inference of Ne(t), which we confirm in this work.90

91

Here, we explore three approaches to overcoming bias in inferring Ne(t) in the presence of background92

selection. First, we use a high resolution map of BGS to adjust the emissions model of PSMC. Second, we93

use a low resolution map of BGS based on distance to exon to adjust the emissions model of PSMC. Third,94

we use post-hoc scaling to adjust the output of PSMC based on the heterozygosity at the top 1% of sites95

furthest from exons. The last two approaches are useful for species where high resolution maps of BGS do96

not exist.97

98

In detail, at a locus i, PSMC models mi, the number of segregating sites at locus i, which given a

coalescent time, ti, can be written as

Pr(M = mi|T = ti) =
(θti)

mie−θti

mi!

We modified the PSMC framework to condition on local variations in θ using a factor fi, which eliminates

the bias in inferring Ne(t) if the true factor is known

Pr(M = mi|T = ti, F = fi) =
(θtifi)

mie−θtifi

mi!

Further details are provided in the Methods section. We refer to our modified framework as PSMC+ and99

have released open-source software implementing the method (see Code Availability).100
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Figure 1: PSMC+ performance in forward-in-time simulations with widespread linked selection. a) Constant
population size. b) Realistic demography, based on previous estimates of inferred Ne(t) in West Africans
[2, 30]. We simulated a demography (black line) and performed inference with regular PSMC (blue line), then
PSMC+ (green line). The PSMC estimates of Ne(t) are biased with a relative error of ∼ 15% throughout all
time. Using a B-map allows PSMC+ to be approximately unbiased. We used the known map of simulated
functional elements to create the B-map used given to PSMC+. 10 simulation replicates are shown for each
evolutionary history.

4 Results101

4.1 Simulations102

We performed forward-in-time simulations using SLiM v3 [29] with a realistic exon map, distribution of fit-103

ness effects, and recombination rates (see Methods) (Supplementary Figure 1). To correct for BGS in these104

simulations, we used a B-map based on genetic distance to simulated exons, which while not as optimized105

as the one developed by Murphy and colleagues for real data, allowed us to explore the behavior of PSMC+106

(see Methods). We simulated both a constant population size demographic and a demographic history of107

population size changes similar to that as inferred in humans. We then compared Ne(t) as inferred from108

PSMC+ or PSMC. In what follows, we only use PSMC+ where we are inputting into the model a map of109

heterogeneous rates; we use “PSMC” to refer to our implementation of the original algorithm that assumes110

homogeneous rates across the genome.111

112

We find that PSMC+ is unbiased for simulations of a constant effective population size (Figure 1a),113

as expected based on the approximation of [22, 23] that describe the effects of BGS as well approximated114

by reductions in local genomic Ne. Encouragingly, this is true even in spite of the imperfections of the115

B-map we used. PSMC, in contrast, produced biased estimates of effective population size (15% relative116

bias; Figure 1a), consistent with previous simulation studies [18, 19]. We next evaluated the bias of PSMC+117

and PSMC under a simulation with BGS and changing effective population sizes. We simulated an Ne(t)118

mirroring previous PSMC inferences on data from the YRI in 1KGP [25, 31]. PSMC+ was unbiased and119

PSMC underestimated the effective population size across the entire time range (Figure 1b).120

121

PSMC+ leverages a model of local scaling of the effective population size to overcome the effect of linked122
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selection on inferring Ne(t). But even though the inferred Ne(t) from PSMC is an underestimate, we find123

empirically that the general shape is accurate (Figure 1). This suggested to us the possibility that we can124

adjust for effects of BGS on PSMC’s inference of Ne(t) by scaling the output according to the ratio of125

heterozygosity in exonic regions to the top 1% of regions most distant from an exon (Supplementary Figure126

2). More concretely, PSMC works in units of θ and scales to absolute Ne and time in generations by using127

µ. If we scale the output with the ratio between θ calculated genome-wide and θ calculated in the top 1%128

of regions most distant from an exon, we can reduce the bias induced by BGS.129

130

We evaluated the accuracy of PSMC’s inference of TMRCA in a simulation with and without BGS131

(Supplementary Figure 3). Both are biased, with loci that have true TMRCAs that are unusually ancient132

being consistently underestimated, and loci with true TRMCAs that are unusually recent being consistently133

overestimated – this is a simple regression-to-the-mean effect, which is expected when there is limited infor-134

mation at any locus [32, 33]. The level of bias in the simulation with BGS is slightly greater, though this135

effect is minimal. This indicates that even with pervasive BGS across the genome, the ability of PSMC to136

reconstruct the TMRCA is not strongly affected.137

138

Finally, we evaluated the relative performances of PSMC+ and PSMC in the presence of mutation rate139

variation. If the mutation rate is not constant over the genome, this induces bias in PSMC inferred Ne(t)140

which assumes rate homogeneity (Supplementary Figure 4a). If we feed PSMC+ the true mutation map,141

we are able to overcome these biases. While the true mutation map is unknown, it can be inferred from142

orthogonal measurements such as divergence per base pair between two distantly related species [34], the143

density of very rare mutations [35], or the nucleotide context [36, 37]. We note that the original PSMC144

paper suggested that the algorithm was robust to variation in mutation rate based on phylogenetic measures145

of mutation rate variation, but our results show that if the mutation rate variation is sufficiently large this146

is not the case. For example, drawing the mutation rate from a normal distribution with mean 1e-07 and147

variance 5e-08 produces significant bias in the inferred Ne(t) (Supplementary Figure 4b). The advantage of148

feeding a mutation map into PSMC+ rather than simply relying on the PSMC algorithm is even greater for149

the ability to infer local TMRCAs. PSMC is not able to infer accurately the TMRCA across the genome150

in the presence of large variation in the mutation rate, but PSMC+ can recover this much more accurately151

given a mutation map (Supplementary Figure 4b).152

153

4.2 Effect of background selection on autosome effective population size and154

coalescence time estimates155

We studied the effect of background selection on the autosomes in humans. We binned the genome into 1MB156

segments and assigned those segments into five quantiles based on their average B-value in a high-resolution157

map of BGS in humans [26]. We then ran PSMC on each quantile separately (Figure 2; Methods). For the158

lowest B-quantile, we observe a reduction in effective population size of as much as 50% compared to the159

highest quantile. More generally, we confirm that the magnitude of effective population sizes scales with the160

strength of B-value, consistent with previously published findings. This is not an artifact of there being less161

heterozygosity in low B-value bins because the effect persists even when this parameter is fixed to the same162

value across bins (Supplementary Figure 5).163

164
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Figure 2: Inference of autosomal Ne(t) in 80 YRI samples, in bins of b value. We binned the autosome
into 5 equally sized bins based on the mean b value, and ran PSMC separately on each. We see substantial
differences in the Ne(t) curves across bins of B value, with the most neutral bin (B=0.90-0.99) showing the
largest Ne(t) across all time points.

We investigated the impact of BGS on inferred coalescent times. We examined the posterior decoding of165

the PSMC HMM, based on the inferred coalescent parameters for each YRI individual on the autosomes.166

At each position, we computed the posterior mean TMRCA for each YRI individual, and then took the167

maximum over all individuals. We computed the correlation between the maximum TMRCA and the B-168

map inferred by Murphy et al. and found a statistically significant Spearman correlation coefficient of 0.35169

(p-value < 1e − 16). To check that this was not specific to method of PSMC, we used RELATE [38] and170

ARGweaver [39] to construct an ancestral recombination graph (see Methods), from which we extracted the171

maximum TMRCA across all YRI. The Spearman correlation between the maximum TMRCA and b-value172

was 0.34 (p-value < 1e−16) and 0.19 (p-value < 1e−16) in ARGweaver and Relate, respectively. We looked173

at PSMC’s inferred TMRCAs (for a diploid sample) and stratified these by quintiles of b-value. We observe174

that as the strength of BGS increases, the distribution of TMRCA gets younger (Supplementary Figure 6)175

(Kolmogorov-Smirnov test P-value < 1e− 16 for all pairwise comparisons). These observations are expected176

under the standard model that regions the genome that experience stronger BGS coalesce faster than neutral177

regions [22, 23].178

179

We were curious whether we could leverage differences in how BGS would be expected to influence180

coalescence rates in a scenarios of panmictic size changes versus population structure, a well known identi-181

fiability problem in PSMC [40, 41]. We performed two sets of simulations with background selection: one182

with ancestral population structure and one with changes in the Ne(t), where the size changes are set such183

that each simulation has the same coalescence rate (Supplementary Figure 7). We stratified the simulated184

genomes according to the amount of background selection they experienced, ran PSMC, and found that the185

profiles were very similar (Supplementary Figure 7). This suggests that stratifying by intensity of expected186
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Figure 3: Inference of Ne(t) on 80 YRI samples. Inference from natural PSMC is shown in blue, PSMC+
with Murphy’s B-map in green, PSMC+ with a simple B-map constructed based on distance to exon in
pink, and PSMC inference scaled by the ratio of exonic to non-exonic heterozygosity in gold.

background selection may not be useful for distinguishing ancestral population structure from changes in187

effective population size.188

189

4.3 Application of PSMC+ to human demographic history190

We next applied PSMC+ to high-coverage whole genome sequencing data from YRI sequenced by the 1000191

Genomes Consortium (total n = 80 diploid individuals; Methods). We used the B-map inferred by Murphy192

et al. and observe that the inferred Ne(t) by PSMC+ is elevated with respect to the PSMC inference (Figure193

3, green and blue lines respectively), consistent with the results on simulations (Figure 1). Using a simple194

B-map calculated based on distance to exon or simply scaling the PSMC inference achieves a similar result195

to the PSMC inference (Figure 3, pink and yellow lines respectively), verifying the utility of these approaches.196

197

4.4 Effect of background selection on X to autosome effective population size198

ratio estimation across primate species199

We studied the ratio of X chromosome to autosome Ne(t) through time (R(t)) on numerous great ape species,200

without applying any correction for background selection since we did not have B-maps constructed in the201

same way on both the autosomes and the X chromosome, and since we did not have B-maps in non-humans.202

We hypothesized R(t) would deviate from 3/4 due to the more extreme effects of linked selection on chro-203

mosome X compared to the autosomes [6]. We ran PSMC on the X chromosome and autosomes separately204

for humans, chimpanzees, gorillas, and orangutans (Supplementary Figure 8).205

206
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Figure 4: The ratio of Ne(t) inferred on the X chromosome to the autosomes, for humans, chimpanzees,
gorillas, and orangutans. The mean is shown in the darker line, which is calculated across all individuals
and bootstraps as shown in the lighter line. Under neutrality we would expect this value to be 0.75 (thick,
gray, dashed line), but we observe strong deviations from this in each species, often exceeding the theoretical
bounds (thin, gray, dashed lines).

We observe strong deviations from the expected 3/4 ratio for all species (Figure 4). A basic coalescent207

model with no selection and constant size suggests an upper and lower bound for R(t) of 9/8 and 9/16,208

respectively (see Methods), although it has been demonstrated that extremely strong founder events can209

generate R(t) < 0.3 [42]. In chimpanzees, gorillas, and orangutans, more recently than 100ky we observe210

that R(t) is below 9/16. In humans we observe a similar effect, though between 100ky to 300ky. More211

recently than ∼100ky we observe R(t) is elevated above 9/8. Interestingly, R(t) is around 3/4 in all species212

at 1My, which is the expectation under neutrality.213

214

In each species, PSMC does not detect a founder event as severe as required by Pool and Nielsen [42]215

to give R(t) < 0.3, so variations in R(t) are likely not attributable to changes in Ne(t) alone. A possible216

explanation for the extreme values of R(t) is uncorrected background selection, although we cannot rule217

out additional contributions to the signals such as changes in life history traits or mutation rate variation218

[43, 44]. To test the hypothesis that background selection drives changes in the ratio over time, we computed219

the ratio of effective population sizes of the lowest B-value bin to the highest B-value bin as computed on220

the human autosomes (Supplementary Figure 9). Similar to the X:A ratio, we observe changes in the ratio221

over time, suggesting that uncorrected effects even here may be driving the signal. As discussed above, it is222

not clear how to run PSMC+ on chromosome X because Murphy et al. did not release a map of background223

selection on chromosome X, and even if it was constructed, it would be impossible to be confident it had the224

same resolution as the autosomal one. We also did not run PSMC+ on the other great ape species because225

high-resolution maps of background selection do not yet exist for those species.226

227
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5 Discussion228

We developed a new method, PSMC+, for estimating effective population size trajectories (Ne(t)), that229

can incorporate local variation in coalescent or mutation rates along the genome. Simulations indicate our230

method is unbiased in the presence of background selection (BGS). By applying PSMC+ to data from the231

1000 Genomes project, we identify as much as a ∼30% increase in the effective population size around 300kya232

relative to previous estimates. We also study how autosomal Ne(t) changes on the autosomes as a function233

of BGS, and find that at ∼400ky in the strongest b-value bin Ne(t) is 50% the size of Ne(t) in the weakest234

b-value bin. This qualitatively matches comparisons of the X chromosome to the autosomes where a similar235

maximum is achieved at this time point, suggesting background selection may be an important factor in236

shaping the coalescent trajectory of the X chromosome. We also test our method on a low-resolution map of237

BGS, the construction of which does not require high quality annotations of fitness effects. This approach238

seems to work well and we anticipate it will be useful in a wide variety of non-model organisms. Finally, we239

test the accuracy of coalescence time inference in the presence of BGS and find that the PSMC posterior240

decoding is robust.241

242

Our study has several implications for future analyses. First, while comparisons of X chromosome to243

autosome effective population sizes can be informative of life history traits [45], our results indicate that244

differences in the strength of background selection is an important factor in shaping effective population245

size, which complicates interpretations of X to autosome comparisons. Second, our results indicate that246

background selection can have a substantial impact on demographic inference. Most current methods do not247

explicitly handle background selection, which leads to bias in the parameter estimates. Because of differences248

in background selection across species, this is expected to affect some species more than others [8]. Third,249

simulations suggest that background selection does not reduce the accuracy in PSMC’s inferred coalescence250

times, even though this is ignored in the underlying model. This is important for other ARG inference251

methods [39, 38, 46, 47, 48, 49] which also ignore the effects of selection on genealogies. Our claims that252

background selection affects inference of Ne(t) but does not affect inference of coalescence times may seem253

contradictory. We argue that, from a simulation-based perspective, the true effective population size (defined254

as the inverse of the coalescence rate) really is smaller than the effective population size as specified in the255

simulation, because deleterious mutations have purged haplotypes from the population. Thus the quantity256

we are reconstructing with PSMC+ can be thought of as the ”neutral effective population size”, which we257

define as the what the effective population size would be in the absence of deleterious mutations.258

259

We highlight several areas of future work. First, it may be possible to adjust the transition probabilities260

of PSMC’s HMM rather than the emission model as we do here, which would more faithfully model the261

perturbations in genealogy due to purifying selection [50]. Second, future work will illuminate the effects262

of BGS on the human X chromosome, as well as the autosomes for other species. This will allow greater263

resolution in how BGS affects R(t). Third, numerous maps of the de-novo mutation rate across the genome264

exist for humans [35, 36, 37, 51, 52], and studying how these affect inference of Ne(t) in PSMC+ is a possible265

further direction.266

267

Our study has several limitations. First, we follow Nordborg et al. [23] and Hudson and Kaplan [22]268

in modeling background selection as a reduction in the local effective population size. While this has been269
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shown to capture broad-scale effects of background selection, it assumes new mutations are so deleterious270

that they cannot fix in a population. Our simulations indicate that utilising this model reduces bias in the271

inferred Ne(t), but it will not capture all the effects of BGS [53] as the model does not capture weak selection272

or the dynamics of rare variants. However, as we focus on Ne(t) more anciently than ∼10kya, we do not273

expect weak selection or rare variants to be important for the inference we perform here. A possibility for274

future work would be to study how newer models of BGS that explicitly capture weak selection [54] affect275

more recent estimates of Ne(t), which in principle could be studied by feeding PSMC+ more chromosomes276

and using a composite likelihood approach as in MSMC. Despite these limitations, our study provides an277

improved understanding of the effects of background selection on demographic history and highlights the278

need to consider the impact of non-neutral forces in demographic inference.279

6 Methods280

6.1 Data collection, processing, and annotations281

We downloaded aligned reads (BAM files) from 81 female individuals from the 1000 Genomes Phase 3 high282

coverage sequencing release from the New York Genome Center [31]. These files are aligned to the version283

hg38 of the human reference genome. We called SNPs with bcftools mpileup, and set minimum mapping284

quality 20, minimum base quality 20, and adjusted mapping quality 50. We called SNPs with bcftools call285

and then masked rejoins of the genome where the coverage was less than half or more than double the mean286

coverage from chromosome 20. We also masked regions of the genome according to a strict mappability mask287

for hg20. One individual had excessively low heterozygosity, likely reflecting sequencing or bioinformatic er-288

rors, so was not used in subsequent analysis.289

290

The procedure for processing the other great apes was very similar. We downloaded aligned reads291

(BAM files) from EBI [55], including 4 chimpanzees (2 female), 6 gorillas (4 female), and 3 orangutans (1292

female). These were aligned to their own reference genomeS: Pan tro 3.0 (UCSC: panTro5); gorilla, Gor-293

Gor4.1 (UCSC: gorGor4); orangutan WUGSC2.0.2 (UCSC: ponAbe2). We built a mappability mask for294

each reference genome using Heng Li’s SNPable.295

296

We downloaded a map of background selection released by Murphy et al. We converted their files to bed297

format and used LiftOver [56] to convert the coordinates from hg19 to hg20 (GRCh37 to GRCh38). We298

filled in missing values b values with 1, which largely overlapped with the uncallable regions from the hg20299

mappability mask.300

301

6.2 Scaling coalescent time302

In humans, we use a mutation rate per generation per base pair of 1.25e-08 [57, 58, 59, 60] and generation303

time of 29 years [61]. As suggested in [62], we use the following mutation rate, generation time parameters304

in chimpanzees 1.78e-08, 24, gorillas 1.42e-08, 19, orangutans 2.03e-08, 27.305
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6.3 Stratifying the autosome by B value and running PSMC306

We stratified the autosome into 5 equally sized bins of b value (measured by the amount of autosome in each307

bin). The cutoffs b value cutoffs we used were: [0.53-0.72), [0.72-0.8), [0.8-0.85), [0.85-0.89), [0.89-0.98]. The308

B value varies continuously along the genome. This is a problem for our analysis, because we would like to309

model local genealogies, which extend over a stretch of the genome. To solve this, we averaged the B value310

over 1Mb. Then, we treated each 1Mb segment as a separate chromosome, and ran PSMC separately for311

each B value bin. Our choice of 1Mb is motivated by the fact that the B value does not vary much across312

segments of 1Mb (average standard deviation of B value across 1Mb segment, dragged in windows of 100kb313

= 0.065). We did not analyze the X chromosome because Murphy et al., 2023 did not release a B value map314

for the X chromosome.315

316

6.4 Adjusting the PSMC model to account for heterogeneous rates317

PSMC [2] is a HMM where the hidden states are the discretised coalescence times Z = (z1, ..., ZL) and the

observations X = (x1, ..., xL) are the series of homozygotes or heterozygotes along a diploid chromosome.

The transitions between the hidden states are governed by the SMC or SMC’ framework, and are a function

of the population size changes. The emission model describes the probability of a mutation arising given

a coalescence time. PSMC works in units of the population mutation rate, θ = 4Neµ, where Ne is the

long term effective population size and µ is the de-novo mutation rate per generation per base pair. In our

implementation, the genome is binned into k base pairs (typically k = 100) and thus xi takes values in

(1, ..., k). The number of mutations in a bin is then modeled as a Poisson and we write:

P (X = xi|Z = zi) =
(kθzi)

xie−kθzi

xi!
.

Given a map of variations in θ, F = (f1, ..., fL), the emission probabilities can be simply adjusted with:

P (X = xi|Z = zi, F = fi) =
(fikθzi)

xie−fikθzi

xi!
.

These can then easily be built into the PSMC model with standard HMM machinery [63] [64] [65].318

6.5 Simulations of background selection319

We performed forward in time simulations using SLiM v3.7.1 [29]. We simulated 150 megabase chromosomes,320

which are comparable in size to human chromosome 8 and X. We rescaled the population sizes and mutation321

rates by a factor of 10 to ensure our simulations did not consume an impractical amount of memory. We322

simulated exons using a realistic map. We simulated non-synonymous mutations with selection coefficients323

from from a gamma-distributed DFE with shape=0.513 and scale=5.38, based off of Kim et al. [66]. We324

simulated a burn in of 20,000-40,000 generations with a population size of 2,000 diploid individuals.325

326

We simulated 20 individuals with 10 replicates. We used a mutation rate of 1.25e-7 per base pair per327

generation, which is ∼10x higher than the human mutation rate [67], because we wanted the genome-wide328

heterozygosity to be of similar magnitude to that in humans. We used a constant recombination rate of329

1e-8 per basepair per generation. We did not scale the recombination rate as we found doing so reduced the330
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strength of BGS due to linkage being too weak. Our simulations recapitulate to a large extent the effect of331

BGS as seen in humans, when measuring diversity as a function of distance from non-synonymous mutations332

(Supplementary Figure 5).333

6.6 Theoretical bounds of R(t) under neutrality334

Here we derive the upper and lower bounds of R(t) - defined as Ne(t) inferred on the X chromosome divided

by Ne(t) inferred on the autosomes - for a panmictic population of constant size. Suppose we have m

reproducing males and f females. Then the probability that two random contemporaneous children share a

father is 1/m and 1/f for the mother. Consider two uncoalesced autosomal lineages; the probability that in

a given generation they both go through a female is 1/4 and similarly for a male. Then, the coalescent rate

on the autosomes is

cA =
1

4

(
1

2f
+

1

2m

)
=

1

8
(
1

f
+

1

m
)

Similarly, for two uncoalesced X chromosomes lineages, the probability they both go through a female is 4/9,

through a male is 1/9, so the coalescent rate is

cX =
4

9(2f)
+

1

9m
=

2

9f
+

1

9m

so
cA
cX

=
9(f +m)

8(f + 2m)

For f >> m we get 9/16, and for m >> f we get 9/8, so we obtain bounds:

9

16
<

cA
cX

< 9/8.

We note that dramatic changes in population size or population structure can create more extreme ratios of335

R(t) [68] [42].336

6.7 Constructing a simple Bmap337

Under the expectation that parts of the genome most distant from coding regions are least likely to be

affected by linked selection, we calculated a simple B-map, by first computing the normalized distance of

each base pair to its closest exon (measured in genetic distance). As the effects of BGS are better modeled

at length scales larger than one base pair, we take the mean exon distance in a window of some size w.

Moreover, because the likelihood of a recombination event between two loci decreases exponentially as the

physical or genetic distance between them increases, we can create a new B-map by simply transforming the

normalized distance x with

K(y) = s

(
1

1 + e−cx
− 1

2

)
+ γ

where γ controls the minimum b value, c controls the rate of decay, and s is defined such that K(y) is always

between b and 1:

s = 2

(
1 + e−r

1− e−r

)
(1− γ).

In both our simulations (Figure 1) and the YRI (Figure 3), we set w=1e+06,γ = 0.6 and c = 100.338
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6.8 Software and data availability339

PSMC+ is freely available to download and use github.com/trevorcousins/PSMCplus .340
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8 Supplementary Figures510
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Supplementary Figure 1: Our forward-in-time simulations of background selection show a similar effect in
shaping genome wide diversity as seen in humans [26] We calculate the observed diversity as a function
of distance to exon, and see a strong positive association for a) the constant-sized population and b) the
changing-size population. We calculate diversity relative to the genome wide average, as indicated by the
black line.
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Supplementary Figure 2: PSMC’s inference of Ne(t) is biased in simulations with widespread linked selection
(blue lines). Scaling PSMC’s inference of Ne(t) (gold lines) is able to accurately overcome these effects.Same
simulations as in Figure 1: a) Constant population size. b) Realistic demography, based on previous
estimates of inferred Ne(t) in West Africans [2, 30].
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Supplementary Figure 3: Accuracy in the inferred coalescence times from PSMC, in a simulation with and
without BGS. The blue line shows inference in a model with BGS, and the red line without. We calculated
accuracy by taking the posterior mean at each position and comparing this to the simulated value.
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Supplementary Figure 4: The effect of mutation rate variation in inferring Ne(t) or the TMRCAs across
the genome. An arbitrary mutation rate map M that changes every d base pairs was generated, where d
is exponentially distributed with rate 100kb. The mutation rate in each interval was drawn by taking the
absolute value from a normal distribution with mean 1e-07 and standard deviation 5e-08. The recombination
rate was set as 1e-08. a) Inferring Ne(t) with PSMC or PSMC+. The simulated Ne(t) is shown in black.
PSMC inference on a simulation with mutations generated by M shown in blue, which is not able to accurately
recover Ne(t). PSMC+ inference on the same simulation, is able to overcome the effect and infer Ne(t) more
accurately. b) Inference of TMRCA across the genome (top panel). The black line represents the simulated
TMRCA. Posterior mean from the PSMC decoding is shown in blue, which is not able to capture the TMRCA
distribution. Posterior mean from the PSMC+ decoding is shown in green, which is able to overcome the
effect and infer the TMRCA more accurately. Bottom panel shows the local variations in M.
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Supplementary Figure 5: a) Inference of autosomal Ne(t) in 80 YRI samples in bins of b value, though with
fixed to the same value across each bin (similar to Figure 2 which used a calculated from the data). b) Each
b quintile uses =0.001 (circles), but rho (triangles) is inferred as part of the EM algorithm and varies per
quintile. This demonstrates that the differences in inferred Ne(t) per b are not attributable to difference in
heterozygosity per quintile.
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Supplementary Figure 6: Effect of background selection on inferred TMRCA. We plot the distribution of
TMRCA in coalescent units in quintiles of b value. In the lowest bin of b value, we see an excess of recent
pairwise TMRCA, consistent with the action of linked negative selection lowering the effective population
size and reducing the TMRCA.
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Supplementary Figure 7: Inference of Ne(t) on BGS simulations, where the evolutionary history is either
panmictic or structured. The structured simulation has constant population size and a 30% admixture
fraction; the panmictic simulation has changes in the effective size such that the coalescence rate matches
the structured simulations. a) The simulated inverse coalescence rate is shown in the black line; PSMC’s
inferred Ne(t) on the structured simulation is shown in blue, and the panmictic in red. b) We stratified the
genome into 5 quintiles based on the strength of BGS, then ran PSMC for both the structured simulation
(left) and panmictic simulation (right).
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Supplementary Figure 8: PSMC’s inferred Ne(t) on the autosomes and X chromosome humans, chimps,
gorillas, and orangutans.
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Supplementary Figure 9: The ratio of Ne(t) inferred on the strongest b value bin to the weakest b value bin,
in Figure 2 (blue and purple lines, respectively).
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