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Abstract 40 

Magnesium (Mg) deficiency is associated with increased risk and malignancy of colorectal cancer 41 

(CRC), yet the underlying mechanisms remain elusive. Here we used genomic, proteomic, and 42 

phosphoproteomic data to elucidate the impact of Mg deficiency on CRC. Genomic analysis 43 

identified 160 genes with higher mutation frequencies in Low-Mg tumors, including key driver 44 

genes such as KMT2C and ERBB3. Unexpectedly, initiation driver genes of CRC, such as TP53 45 

and APC, displayed higher mutation frequencies in High-Mg tumors. Additionally, proteomics 46 

and phosphoproteomics indicated that low tumorous Mg content may activate epithelial-47 

mesenchymal transition (EMT) by modulating inflammation or remodeling the phosphoproteome 48 

of cancer cells. Notably, we observed a negative correlation between the phosphorylation of DBN1 49 

at S142 (DBN1S142p) and Mg content. A mutation in S142 to D (DBN1S142D) mimicking DBN1S142p 50 

upregulated MMP2 and enhanced cell migration, while treatment with MgCl2 reduced DBN1S142p, 51 

thereby reversing this phenotype. Mechanistically, Mg2+ attenuated the DBN1-ACTN4 interaction 52 

by decreasing DBN1S142p, which, in turn, enhanced the binding of ACTN4 to F-actin and promoted 53 

F-actin polymerization, ultimately reducing MMP2 expression. These findings shed new light on 54 

the crucial role of Mg deficiency in CRC progression and suggest that Mg supplementation may 55 

offer a promising preventive and therapeutic strategy for CRC. 56 

 57 
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Introduction 61 

Metal ions are crucial in both physiological and pathological processes within living organisms[1, 62 

2]. Magnesium (Mg), a predominant intracellular divalent cation, is crucial for maintaining cellular 63 

homeostasis and participates in nearly all cellular processes[3, 4]. The intracellular Mg content is 64 

up to 10−30 mM, however, the concentration of free Mg2+ in cells is only 0.5−1.2 mM[5]. Mg2+ 65 

can bind to ATP, ribosomes or nucleotides as a cofactor and serves as an activator of numerous 66 

enzymes involved in glycolysis, phosphorylation events, DNA repair, DNA stabilization, and 67 

protein synthesis[6−8]. Many proteins, such as MRS2, TRPM6/7, MAGT1, SCL41A1, and 68 

CNNMs, are well-established Mg2+ transporters[9]. Dysregulation of these transporters may lead 69 

to Mg2+ imbalance and diseases. 70 

Mg is crucial in controlling cancer initiation and progression[5, 10]. Disruptions in Mg 71 

homeostasis contribute to cancer progression by promoting proliferation, angiogenesis, and 72 

invasion of cancer cells into surrounding tissues[11−13]. Additionally, changes in Mg levels can 73 

impair immune function, compromising the body's ability to detect and eliminate cancerous 74 

cells[14, 15]. Furthermore, Mg’s dysregulation affects chemoresistance, rendering cancer cells less 75 

susceptible to chemotherapy[16, 17]. Colorectal cancer (CRC) ranks as the third most common 76 

cause of cancer-related deaths globally. A meta-analysis of 29 studies demonstrated that increased 77 

Mg intake is linked to a reduced risk of CRC[18−21]. Previous investigations showed that Mg's 78 

anti-inflammatory properties may help reduce inflammation in the colon[22, 23], which is a risk 79 

factor for CRC[24]. Moreover, Mg functions as an antioxidant, protecting colon cells against 80 

oxidative stress and preventing DNA damage[25−27]. In CRC treatment, Mg can enhance the 81 

effectiveness of chemotherapy by improving drug uptake by cancer cells and protecting healthy 82 

cells from damage[28]. 83 

Despite some progress, many questions about the role of Mg in CRC remain unanswered. 84 

First, there is a lack of systematic investigation on how Mg affects tumor progression at the 85 

molecular level. Second, it is unclear whether Mg has a differential effect on left- and right-sided 86 

CRC at the molecular level[29]. Third, tumor metastasis is a leading cause of mortality in CRC 87 

patients. Mg deficiency not only reduces intracellular ATP[30] but also affects kinase and 88 

phosphatase activities[31],[32]. Dysregulated protein phosphorylation is common in CRC and 89 

linked to unfavorable outcomes[33−36]. However, the direct link between Mg deficiency and 90 

tumor metastasis through affecting protein phosphorylation still lacks direct evidence. 91 
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With the rapid development of omics technologies, the functional interpretation of metal ions 92 

in aging using omics data has been achieved[37]. In this study, we utilized an integrative genomic, 93 

proteomic, and phosphoproteomic approach to uncover the roles of Mg in CRC and found that low 94 

Mg content in tumors affected both genomic stability and metastasis. Genomics revealed that low 95 

Mg content in tumors increased the gene mutations associated with tumor progression rather than 96 

initiation. Proteomics and phosphoproteomics analyses indicated that low Mg content in tumors 97 

could activate epithelial-mesenchymal transition (EMT) by activating the complement pathway 98 

and inducing inflammation or by directly remodeling protein phosphorylation in cancer cells. 99 

Furthermore, we demonstrated that Mg2+ weakened the interaction between DBN1 and ACTN4 100 

by reducing the phosphorylation of DBN1 at S142 (DBN1S142p), which enhanced the interaction 101 

of ACTN4 to F-actin and promoted F-actin polymerization, ultimately leading to downregulated 102 

MMP2 and reduced cancer cell migration. 103 

Results 104 

Low Mg content in tumors predicts unfavorable prognosis of CRC patients 105 

To uncover the clinical significance of low Mg content in tumors and its impact on tumor 106 

progression, omics data of 230 paired tissue samples collected from 115 treatment-naive CRC 107 

patients were used (Figure 1A; Table S1). Proteomics and phosphoproteomics employed a TMT-108 

based quantitative approach (Figure S1A). Correlation analysis of quality control (QC) samples, 109 

internal standard (IS) samples in proteomics and phosphoproteomics, and replicate samples in 110 

proteomics demonstrated the stability of the instrument as well as the reliability and reproducibility 111 

of mass spectrometry (MS) data (Figure S1B−H). A total of 9652 proteins and 12,988 phosphosites 112 

were identified. Of them, 5322 proteins (with > 1 unique peptide) and 2162 phosphosites detected 113 

in > 50% of samples were utilized for further data analysis (Figure S1E, F, and S1I−L). 114 

Additionally, an inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Mg content 115 

was conducted on 115 paired samples, and correlation analysis of QC samples indicated the 116 

reliability of the measurements (Figure S1M). Whole-exome sequencing (WES) data were 117 

obtained from a previous work[38], in which 16,234 mutated genes with less than 5000 amino 118 

acids in 76 paired samples were reported. 119 

Our findings showed that the intra-tumoral Mg content ranged from 162−920 μg per gram of 120 

extracted protein (Figure 1B). The Wilcoxon rank-sum test identified higher levels of Mg content 121 

in tumors than in distant normal tissues (DNTs) (Figure 1C), and the levels of Mg between the 122 
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left- and right-sided tumors were significantly different (Figure 1D and E). Our Kaplan−Meier 123 

survival analysis of 115 CRC patients revealed that lower levels of Mg in tumors were associated 124 

with poor overall survival (OS) (Figure 1F). Multivariable Cox regression models demonstrated 125 

that Mg content remains significantly associated with CRC survival even after adjusting for 126 

prognostic factors, such as renal function and liver function (Figure S2A−J), indicating that Mg 127 

content serves as an independent predictor of survival. Moreover, we conducted an independent 128 

analysis to investigate the relationship between Mg levels and prognosis in left-sided and right-129 

sided CRC cases. Interestingly, we observed a notable connection between Mg levels and the 130 

prognosis of CRC patients specifically in the right-sided cases, while a less significant association 131 

was found in the left-sided cases (Figure 1G and H). Additionally, we also did not observe any 132 

significant variation in Mg content between tumors in female and male patients (Figure 1I). 133 

Therefore, the following correlation analysis between Mg and omics data did not take into account 134 

the influence of gender. 135 

Low Mg content in tumors is linked to genome instability 136 

Mg is important for DNA stabilization, DNA replication and DNA repair[39, 40]. To investigate 137 

the impact of low Mg content on CRC at the genomic level, we analyzed Mg-associated genomic 138 

data. Of the 76 colon cancer cases analyzed by WES, 20 showed hypermutation in tumors (> 10 139 

Mut/Mb) (Table S2)[38]. To exclude hypermutations caused by mutated mismatch repair (MMR) 140 

genes and major replicase genes, including MSH2, MSH6, MLH1, PSM2, POLD, and POLE, we 141 

removed 14 hypermutated samples with mutations in the above genes[38, 41]. Statistics showed 142 

that TP53 had the highest frequency of mutations (48%), followed by APC (40%) and KRAS (39%), 143 

in the remaining 62 colon cancer cases (Figure 2A). The total percentage of single nucleotide 144 

variants (SNVs) differed between the High-Mg (39 cases) and Low-Mg (23 cases) groups, with 145 

the most frequent thymine to cytosine (T > C) transition in the Low-Mg group (Figure 2B). 146 

Additionally, the classes of mutations were different between the two groups, and more types of 147 

mutations were observed in the High-Mg group (Figure 2C). Association analysis of mutated genes 148 

in the two groups using the somatic interactions algorithm showed that mutations in the High-Mg 149 

group were mutually exclusive, while mutations in the Low-Mg group mainly co-occurred (Figure 150 

2D and E), suggesting that low Mg content may cause simultaneous mutations in many genes, 151 

possibly due to increased genome instability and the dysregulation of DNA replication and repair 152 

processes[39, 40, 42−44]. In addition, somatic copy number alteration (SCNA) analysis revealed 153 
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distinct patterns in the cytobands at the locations of the variant sites. In the High-Mg group, 154 

amplified regions were observed at 5p15.33 and 8p23.1, while in the Low-Mg group, amplified 155 

regions were found at 4p16.1, 15q11.1, and 15q11.2. Conversely, deleted regions were identified 156 

at 1p36.21, 1p36.33, and 9p11.2 in the High-Mg group and at 17q12 and 17q21.31 in the Low-Mg 157 

group (Figure 2F). Among the identified 7,173 mutated genes with less than 5000 amino acids in 158 

62 paired samples, the mutation frequencies of 162 genes were associated with Mg content, of 159 

which 160 genes exhibited a higher frequency of mutations in the Low-Mg group (Figure 2G and 160 

H; Table S2), including 6 known CRC driver genes such as KMT2C, BCL9, ERBB3, EP300, FAT3, 161 

and CARD11 (Table S2)[45]. To our surprise, the mutation frequencies of TP53 and APC were 162 

notably higher in the High-Mg group (Figure 2I). 163 

Next, after excluding 4 tumors with unknown locations, we analyzed the impact of low Mg 164 

content on the genomic landscape of left-sided and right-sided colon cancer using the remaining 165 

58 cases. Initially, we investigated the frequency of gene mutations in colon cancer and observed 166 

that the mutation frequencies of TP53 and APC were higher on the left side, whereas KRAS 167 

exhibited a higher mutation frequency on the right side (Figure 2J), aligning with previous 168 

findings[29]. Subsequently, we explored the influence of Mg levels on gene mutations in left-sided 169 

and right-sided colon cancer separately. The results revealed that the majority of genes displayed 170 

higher mutation frequencies in the Low-Mg group on both sides. Notably, TP53 demonstrated a 171 

higher mutation frequency in the High-Mg group for both left- and right-sided colon cancer, 172 

whereas APC exhibited a higher mutation frequency exclusively in the High-Mg group of left-173 

sided tumors (72% cases in High-Mg group vs 20% cases in Low-Mg group) but not right-sided 174 

tumors (5 cases in High-Mg group vs 4 cases in Low-Mg group) (Figure 2K). Collectively, these 175 

results indicate that low Mg content in tumors probably increases the mutations of genes associated 176 

with CRC progression rather than initiation. 177 

Low Mg content in tumors is associated with EMT activation 178 

To further explore the potential roles of Mg in CRC, we conducted a screening of the Mg-179 

associated proteome in tumors according to a previously described strategy[37]. The correlation 180 

analysis of the levels of 5322 proteins and Mg content in the tumors revealed 1347 proteins that 181 

were positively correlated with Mg content and 1252 proteins that were negatively correlated with 182 

Mg content (Figure 3A; Table S3). Pathway enrichment analysis revealed that the 1252 proteins 183 

negatively correlated with Mg primarily belonged to cell adhesion-related pathways. Conversely, 184 
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the 1347 proteins positively correlated with Mg were found to be associated with mRNA 185 

processing and translation pathways (Figure S3A−D). Further GSEA using 5322 proteins revealed 186 

that pathways negatively correlated with Mg content mainly included immune- and metastasis-187 

related pathways (Figure 3B−D), such as the coagulation cascade, complement system, IL6-JAK-188 

STAT3 signaling, TNFα signaling via NF-κB, EMT and angiogenesis (Figure 3B and D). On the 189 

other hand, pathways positively correlated with Mg content were predominantly related to cell 190 

proliferation and the cell cycle (Figure 3C). 191 

Additionally, we conducted separate screenings of Mg-associated proteins in left-sided and 192 

right-sided CRC (Figure 3E and F), and performed pathway enrichment analysis on these proteins 193 

(Figure 3G). The results indicated that proteins negatively correlated with Mg levels in either left-194 

sided or right-sided CRC, or in both sides, were primarily associated with cell adhesion-associated 195 

pathways, such as regulation of actin cytoskeleton, actin cytoskeleton organization, focal adhesion, 196 

actin filament-based process, and extracellular matrix organization (Figure 3G). It is noteworthy 197 

that the complement and coagulation cascades were enriched exclusively in right-sided colon 198 

cancer, suggesting a more prominent influence of Mg on the inflammatory response in the right 199 

side (Figure 3G). As Mg have demonstrated variations between left-sided and right-sided CRC, 200 

we next asked whether Mg has impacts on different subtypes of CRC patients. To achieve this 201 

goal, we classified these patients into three subtypes utilizing the top 25% most variable proteins 202 

(Figure S4A−C). While the OS did not exhibit a significant difference among the three subtypes, 203 

further analysis indicated that subtype II displayed a comparatively lower OS rate and notably 204 

lower Mg content in comparison to subtypes I and III (Figure S4D and E). Proteins upregulated in 205 

subtype II (subtype II vs non-subtype II) were predominantly enriched in migration-related 206 

pathways (Figure S4F). Consistent with prior findings, Mg content closely correlates with the cell 207 

adhesion of CRC tumors. 208 

Considering the findings from GSEA (Figure 3B and C), it can be inferred that low Mg content 209 

in tumors potentially affects tumor metastasis through the regulation of cell adhesion-related 210 

pathways. Consistent with our assumption, many proteins linked to cell-cell adhesion, such as tight 211 

junction proteins CLDN3, TJP2, and CGN, adherens junction proteins CDH1, CTNNB1, and 212 

CTNND1, and desmosome proteins DSC2, DSG2, and JUP, showed a significant positive 213 

correlation with Mg content. These proteins were crucial to maintain of the epithelial phenotype 214 

(Figure 4A; Table S4). In contrast, many cell-matrix adhesion proteins that were critical for 215 
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maintaining the mesenchymal phenotype exhibited a significant negative correlation with Mg 216 

content, such as VCL, ITGA1, ITGB3, FN1, and FGA (Figure 4A). Further immunoblots 217 

confirmed increased N-cadherin, vimentin, vinculin, MMP2, and reduced E-cadherin, cingulin in 218 

Low-Mg tumors (Figure 4B), indicating the possible role of Mg in the EMT process. 219 

To validate the role of Mg in the regulation of tumor metastasis, transwell and wound healing 220 

assays were conducted using HCT116 and DLD-1 cell lines. ICP-MS analysis confirmed the 221 

successful uptake of Mg2+ into colon cancer cell lines (Figure 4C). Immunoblot analysis revealed 222 

that treatment with magnesium chloride (MgCl2) increased E-cadherin, and reduced the vimentin, 223 

MMP2, and N-cadherin expression in HCT116 and DLD-1 cells (Figure 4D). In line with the 224 

changes observed in EMT markers, both the transwell and wound healing assays demonstrated 225 

that treatment with MgCl2 significantly decreased the migratory ability of colon cancer cells 226 

(Figure 4E−G). Taken together, our findings suggest that low Mg content in tumors may activate 227 

EMT by disturbing the homeostasis of cell adhesion molecules. 228 

Potential mechanisms of EMT-related cell adhesion molecule alteration induced by low Mg 229 

content 230 

Numerous studies have provided evidence indicating that inflammation is a key factor contributing 231 

to the loss of cell adhesion molecules[46−48]. Our proteomics analysis of Mg-associated proteins 232 

indicated that the expression of 44 complement and coagulation components, such as C1R, C1Q, 233 

C2, C3, and C5, was negatively correlated with Mg content and significantly increased in Low-234 

Mg tumors and DNTs (Figure S3C)[49], suggesting the activation of the complement pathway in 235 

these tumors and paired DNTs[50], which is known to induce inflammation[51] and affect the 236 

expression of cell adhesion molecules (Figure S3D)[52−54]. 237 

Additionally, previous studies have shown that changes in protein phosphorylation are also 238 

important for the regulation of cell adhesion molecules[55, 56]. Mg2+ is an important regulator of 239 

protein phosphorylation. When Mg is deficient, it not only reduces intracellular ATP[30], but also 240 

impacts kinase and phosphatase activities[31],[32], leading to alterations in phosphorylation 241 

signaling in cancer cells. Therefore, in addition to its impact on maintaining the homeostasis of 242 

cell adhesion molecules by regulating inflammation, it is conceivable that low Mg content may 243 

also modulate the levels of cell adhesion molecules through the modulation of phosphorylation in 244 

cancer cells. To investigate the impact of Mg on tumors through phosphorylation mechanisms, we 245 

analyzed the Mg-associated phosphoproteome of colon cancer, leading to the identification of 332 246 
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and 465 phosphosites that were positively and negatively correlated with the Mg content in tumors, 247 

respectively (Figure 5A; Table S5). Enrichment analysis showed that proteins, such as ACTN4, 248 

DBN1, and VIM, corresponding to the 465 negatively correlated phosphosites were implicated in 249 

actin cytoskeleton organization, signaling by Rho GTPases, regulation of actin filament-based 250 

process, focal adhesion and cell-matrix adhesion (Figure 5B), while proteins, such as CDK11B, 251 

CDK12, and THRAP3, related to the 332 positively correlated phosphosites exhibited significant 252 

enrichment in tight junction and signaling by Rho GTPases pathways (Figure 5C), indicating that 253 

the Mg-associated phosphoproteome in colon cancer is closely linked to EMT-associated pathways 254 

(Figure 5D). 255 

Furthermore, we separately screened Mg-associated phosphosites in left-sided and right-sided 256 

colon cancer. The results revealed that 18 phosphosites were significantly correlated with Mg 257 

content in both left-sided and right-sided colon cancer, while 45 phosphosites were only associated 258 

with Mg content in the left-sided colon cancer, and 734 phosphosites were specifically related to 259 

Mg content in the right-sided colon cancer (Figure 5E and F). Pathway enrichment analysis of the 260 

corresponding phosphorylated proteins unique to the left-sided and right-sided colon cancer 261 

demonstrated that the Mg-associated phosphorylated proteins on both sides were associated with 262 

cell adhesion pathways, including cell-cell adhesion, tight junction, cell junction organization, and 263 

actin cytoskeleton organization pathways (Figure 5G). Furthermore, through an integrative 264 

analysis of both the proteome and phosphorylome data, we identified 128 phosphosites positively 265 

correlated and 118 phosphosites negatively correlated with Mg content. These correlations were 266 

observed independently of protein levels (Figure S5A−C). Furthermore, enrichment analysis of 267 

phosphoproteins exhibiting significant correlations with Mg content highlighted their association 268 

with cell adhesion pathways, including actin cytoskeleton organization and cytoskeleton 269 

organization pathways (Figure S5D and E).  270 

To validate the direct impacts of Mg on cancer cells via phosphorylation, we analyzed the 271 

phosphoproteome of colon cancer cells treated with and without MgCl2. As a result, of the 15,235 272 

identified phosphosites, 564 sites were increased in the MgCl2-treated group, and 516 sites were 273 

reduced (Figure 6A and Table S6). Notably, cell adhesion pathways such as actin filament-based 274 

processes, regulation of actin cytoskeleton organization and signaling by Rho GTPases were 275 

enriched using proteins with differentially changed phosphosites (Figure 6B and C), consistent 276 

with the above phosphoproteomic data in CRC tissues (Figure 5B and C). Overlapping analysis 277 
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indicated that the expression of 28 phosphosites were significantly changed with Mg content in 278 

both HCT116 and CRC tissues (Figure 6D and E). Among them, 4 phosphosites, including 279 

DBN1S142p, ARHGAP1S51p, TNS1S1177p, and FLNAS1459, were involved in cell adhesion (Figure 280 

6E). Additionally, a high degree of phosphorylation at these four sites was found to be a predictor 281 

of unfavorable prognosis among CRC patients (Figure 6E and F, Figure S6A). Taken together, our 282 

results indicate that low Mg content in tumors can reshape the protein phosphorylation network of 283 

proteins associated with EMT and may ultimately affect tumor cell migration. 284 

Mg-regulated DBN1S142p reduces the interaction between DBN1 and ACTN4 and contributes 285 

to EMT 286 

DBN1 is a protein that binds to F-actin, which is essential for maintaining the levels of cell 287 

adhesion molecules[57, 58]. However, the functions of DBN1S142p in CRC and the mechanism by 288 

which Mg-regulated DBN1S142p contributes to the EMT process are completely unknown. The 289 

confident identification of DBN1S142p was verified through the MS/MS spectrum (Figure 6G). 290 

Statistical analysis revealed a significant decrease in DBN1S142p in the MgCl2-treated group (Figure 291 

6H). Moreover, a remarkable negative correlation was observed between DBN1S142p and Mg 292 

content in CRC, irrespective of its sidedness (Figure 6I). To explore the role of DBN1S142p in the 293 

regulation of EMT, we transfected wild-type DBN1 or DBN1 mutants in DBN1-knockdown 294 

HCT116 cells that mimic the phosphorylation (S142D) or de-phosphorylation (S142A) states 295 

(Figure 6J). Given that DBN1 is an F-actin-binding protein and that the assembly of F-actin can 296 

promote MMP2 expression[57, 58], we assumed that the Mg-regulated decrease in DBN1S142p 297 

might serve as a signal triggering F-actin disassembly and promoting MMP2 degradation. 298 

Immunoblotting results showed that DBN1S142D remarkably upregulated MMP2 compared with 299 

DBN1S142A (Figure 6K). Consistently, both transwell and wound healing assays demonstrated that 300 

the DBN1S142A mutation significantly inhibited cell migration (Figure 6L and M). Further studies 301 

showed that MgCl2 treatment, which was able to reduce the level of DBN1S142p (Figure 6H), 302 

obviously enhanced the formation of F-actin (Figure 7A, Figure S6B). Consistent with these 303 

findings, DBN1S142A, which mimics the de-phosphorylation state, increased the formation of F-304 

actin compared with DBN1S142D (Figure 7B). In addition, we further explored the function of 305 

ARHGAP1S51A. While the ARHGAP1S51A mutation also notably inhibited cell migration, it did 306 

not impact F-actin formation in contrast to ARHGAP1S51D. This suggests that ARHGAP1S51p 307 

inhibits cell migration through mechanisms other than F-actin formation (Figure S6C−E).  308 
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To elucidate the impact of Mg-regulated DBN1S142p on F-actin polymerization, we employed 309 

immunoprecipitation coupled MS analysis. This approach allowed us to identify proteins binding 310 

to DBN1, the interactions of which were influenced by DBN1S142p and Mg2+ (Figure 7C). As a 311 

result, we identified 376 proteins that bind to DBN1, with 30 and 46 proteins being enriched in the 312 

DBN1S142D and DBN1S142A groups, respectively (Figure S7A and B; Table S7). Notably, some of 313 

these proteins are involved in actin assembly and disassembly, suggesting that the level of 314 

DBN1S142p may affect its binding to cytoskeleton-related proteins. Upon comparing the differential 315 

binding proteins between the DBN1WT and DBN1WT+Mg2+ groups, we noted that 27 proteins 316 

exhibited increased interactions with DBN1, while interactions with 56 proteins were diminished 317 

in response to MgCl2 treatment (Figure S7C). Of the 83 differential proteins, 73 proteins 318 

demonstrated no notable changes between the DBN1S142A and DBN1S142A+Mg2+ groups (Figure 319 

S7C), indicating that Mg2+ might modulate the interactions of these 73 proteins with DBN1 by 320 

altering DBN1S142p. Among these 73 proteins, 53 whose interactions were weakened by Mg2+ were 321 

primarily associated with the actin cytoskeleton (Figure S7D), indicating that Mg2+ could affect 322 

the interaction between DBN1 and these cytoskeletal proteins, which may further impact the 323 

depolymerization of F-actin. Additional comparisons were performed to identify the proteins that 324 

bind to DBN1 in both the phosphorylated and dephosphorylated states at the S142 residue. (Figure 325 

S7E and F). The results indicated that Mg suppressed DBN1S142p to inhibit the interaction of three 326 

proteins, namely, ACTN4, CDC42, and PARK7 (Figure 7D and E, Figure S7E), while it enhanced 327 

the interaction of six proteins, namely, ALDH1B1, DCAF7, PLOD1, PGM3, NDUFV2, and PISD 328 

(Figure 7D, Figure S7 F and G). Among these proteins, ACTN4 and CDC42 are well known for 329 

their close association with the cell cytoskeleton[59]. 330 

Previous studies have indicated that ACTN4 participates in the formation of F-actin and that 331 

F-actin stability is compromised when ACTN4 is detached from F-actin[59]. Thus, we propose 332 

that the interaction of DBN1 to ACTN4 results in the detachment of ACTN4 from F-actin. The 333 

de-phosphorylation of DBN1 at S142 could weaken the interaction between DBN1 and ACTN4, 334 

thereby promoting the interaction of ACTN4 to F-actin and enhancing F-actin stability. To 335 

investigate this assumption, we overexpressed Flag-tagged vector, DBN1WT, DBN1S142A, and 336 

DBN1S142D in DBN1-knockdown HCT116 cells and performed immunoprecipitation under 337 

identical experimental conditions. Immunoblotting results confirmed ACTN4’s ability to interact 338 
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with DBN1 (Figure 7E). Moreover, the interaction between the mutant DBN1S142A and ACTN4 339 

was weakened, indicating that DBN1S142p may affect the DBN1-ACTN4 interaction (Figure 7F). 340 

To confirm that Mg2+ reduces the interaction between DBN1 and ACTN4 by decreasing the 341 

level of DBN1S142p, we constructed stable cell lines overexpressing Flag-tagged vector, DBN1WT, 342 

and DBN1S142A. These cell lines were treated with and without MgCl2, followed by Flag-targeted 343 

immunoprecipitation assays. The immunoblotting results showed that MgCl2 treatment weakened 344 

the interaction between DBN1WT and ACTN4, while DBN1S142A-ACTN4 remained consistent 345 

after MgCl2 treatment (Figure 7G). These findings imply that Mg2+ may decrease the interaction 346 

between DBN1 and ACTN4 by reducing DBN1S142p. Then, we generated stable HCT116 cell lines 347 

with ACTN4 knockdown and examined the effect of ACTN4 on F-actin polymerization (Figure 348 

S7H). The results showed that ACTN4 knockdown inhibited F-actin formation (Figure 7H). In 349 

contrast, knockdown of DBN1 resulted in a significant increase in colocalization between ACTN4 350 

and F-actin (Figure 7I), suggesting that the interaction between DBN1 and ACTN4 inhibits the 351 

formation of F-actin. 352 

Collectively, these findings suggest that Mg2+ diminishes the interaction between DBN1 and 353 

ACTN4 by decreasing the level of DBN1S142p. This, in turn, enhances the binding of ACTN4 to F-354 

actin and stabilizes F-actin, ultimately resulting in reduced MMP2 expression and decreased 355 

migratory ability of colon cancer cells (Figure 7J). 356 

Discussion 357 

In summary, for the first time, we presented an atlas of the Mg-associated genome, proteome and 358 

phosphoproteome in CRC and demonstrated that low Mg content in tumors promoted genome 359 

instability and tumor metastasis. This work has yielded some novel findings. First, our study 360 

revealed that a large number of genes in Low-Mg tumors exhibited higher mutation frequencies 361 

and co-occurred, including several driver genes associated with tumor progression. Conversely, 362 

High-Mg tumors displayed high mutation frequencies in well-known initiation driver genes of 363 

CRC, such as TP53 and APC, indicating that the lack of Mg content may primarily impact tumor 364 

progression rather than initiation at the genomic level. Second, our study showed that Low-Mg 365 

tumors activated EMT by disrupting the homeostasis of adhesion molecules in cancer cells. This 366 

disruption was attributed not only to complement pathway activation and elevated inflammation 367 

in Low-Mg tumors but also to changes in the phosphorylation signaling of proteins associated with 368 

cell adhesion. Third, we discovered a novel phosphosite, DBN1S142p, that is regulated by Mg2+. 369 
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Our results showed that Mg2+ reduced the interaction between DBN1 and ACTN4 by decreasing 370 

DBN1S142p. This reduction in DBN1S142p resulted in increased binding of ACTN4 to F-actin, 371 

thereby stabilizing F-actin and ultimately leading to reduced MMP2 expression and inhibition of 372 

colon cancer cell migration. Overall, this work uncovers the roles of Mg in CRC and demonstrates 373 

that low Mg content in tumors could be a potential driver factor of CRC. 374 

Cancer cells require a large amount of Mg to support their glycolytic metabolism, ATP 375 

production and protein synthesis, which are essential for sustaining rapid proliferation[60]. 376 

Insufficient Mg uptake not only slows cancer cell proliferation but also leads to genome 377 

instability[61], as we demonstrated in this work. Mg deficiency is known to induce low-grade 378 

systemic inflammation and cause increased production of ROS and proinflammatory cytokines 379 

such as IL-6, TNF-α, and IL-1β[8, 62], leading to genome instability. Moreover, Mg also plays a 380 

crucial role in regulating DNA replication and repair processes[39, 40, 42−44], which may 381 

partially explain why a significant number of CRC driver genes, such as KMT2C and ERBB3, are 382 

mutated in tumors with low Mg content. Tumor initiation and progression are determined by the 383 

inactivation of the tumor suppressors APC and TP53 and the activation of the oncogene KRAS[63]. 384 

Surprisingly, the mutation frequencies of these genes were much higher in tumors with high Mg 385 

content (High-Mg/Low-Mg frequencies: APC, 51%/22%, P = 0.032; TP53, 62%/26%, P = 0.0091; 386 

KRAS, 44%/30%, P = 0.42). However, the mechanism by which high levels of Mg induce 387 

mutations in the APC and TP53 genes remains to be investigated. In addition, the screening of Mg-388 

related gene mutations in left- or right-sided colon cancer, or on both sides, requires validation in 389 

larger CRC cohorts. 390 

EMT, characterized by loss of cell-cell junctions, disruption of cell-matrix attachments and 391 

cytoskeleton remodeling, can increase the mobility of cells. Many signaling pathways, such as 392 

TGFβ, Wnt and Hippo, are associated with the regulation of EMT[64]. Mg deficiency is well 393 

known to cause inflammation by disturbing the coordination of the innate immune system and the 394 

adaptive immune response[14], leading to rapid loss of cell adhesion molecules[46−48]. 395 

Alternatively, phospho-signals, serving as the first wave of response to intracellular and 396 

extracellular changes, extensively exist during the EMT process[65, 66]. For example, 397 

phosphorylation of SNAIL[67], GSK3β[68], and EGFR[69] contributes to the regulation of EMT. 398 

Our findings, for the first time, systematically highlight the significance of Mg's direct regulation 399 

of phosphorylation in cancer cells, which is critical to maintain the homeostasis of cell adhesion 400 
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molecules and is closely linked to the EMT process. Specifically, our experiments revealed that 401 

Mg2+ played a crucial role in reducing the interaction between DBN1 and ACTN4 by lowering the 402 

level of DBN1S142p. This, in turn, had a significant impact on F-actin stability and the homeostasis 403 

of cell adhesion molecules. However, the exact mechanism by which Mg affects DBN1S142p is not 404 

yet fully understood, although it may impact the activity of phosphatases, thereby influencing 405 

DBN1S142p. Additionally, the precise binding mode between DBN1 and ACNT4 remains elusive, 406 

and further biochemical experiments are necessary to determine how DBN1S142p affects the 407 

interaction between DBN1 and ACNT4. 408 

Adults typically consume a daily Mg intake of approximately 330−350 mg. Previous studies 409 

have showed that cirrhotic patients with hepatocellular carcinoma (HCC) exhibit reduced serum 410 

Mg levels compared to those without HCC, independent of confounding factors such as dietary 411 

Mg intake and medications affecting Mg levels[70]. Moreover, mouse experiments have validated 412 

that the growth of primary tumors sequesters Mg from the extracellular environment, leading to 413 

hypomagnesemia[60]. Additionally, both our work and other studies have described the higher 414 

preference of Mg absorption in tumors than normal tissues, which may raise the possibility of 415 

reducing serum Mg levels[60, 70]. However, this speculation requires further evidence. 416 

Previous clinical studies have demonstrated the potential benefits of Mg in the prevention and 417 

treatment of CRC. A population-based prospective study suggests that a high Mg intake may 418 

reduce the risk of CRC in women[21]. Moreover, Mg supplementation can enhance the effect of 419 

drug treatment and minimize serious side effects in CRC patients. For example, a combination of 420 

25(OH)D3 and Mg is essential in reducing the risk of mortality in CRC patients[71]. Peripheral 421 

neuropathy is a common side effect caused by chemotherapy in CRC patients, but a high dietary 422 

Mg intake can reduce its prevalence and severity[28]. Notably, in late-stage CRC patients treated 423 

with cetuximab[72] or bevacizumab[73], EGFR inhibition can result in Mg wasting due to 424 

decreased renal reabsorption, and circulating Mg2+ reduction may act as a predictive factor of 425 

treatment efficacy and outcome[74, 75]. The extracellular matrix (ECM) is a complex network of 426 

proteins and other molecules that surround cells and play important roles in cell signaling, 427 

migration, and proliferation[76]. Abnormalities in ECM composition and organization are often 428 

associated with cancer progression and metastasis. ECM proteins themselves and ECM protein-429 

interacting proteins such as integrins are known targets of cancer treatment[77, 78]. Interestingly, 430 

by referring to known drug targets with FDA-approved drugs or candidate drugs in clinical trials, 431 
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we identified 24 clinically actionable cell-matrix proteins, such as COL3A1, FGA, and ITGA5, 432 

whose expression was negatively correlated with Mg content in tumors (Spearman's rank 433 

correlation test, P < 0.05, Figure S8; Table S8), suggesting that Mg might serve as an adjuvant 434 

drug for precise CRC treatment by affecting the levels of these potential drug targets. Our research 435 

revealing the functions of Mg is expected to promote the application of Mg reagents in the 436 

prevention and treatment of CRC. 437 

Materials and methods 438 

Sample collection and preparation 439 

A total of 115 paired tumors and corresponding DNTs wereobtained from treatment-naive CRC 440 

patients at West China Hospital of Sichuan University. The samples were rapidly snap-frozen in 441 

liquid nitrogen and then stored at -80 °C for long-term preservation. This study was carried out 442 

with the approval of the Research Ethics Committee (Approval No. 2020 (374)). Informed consent 443 

and approvals were obtained from each patient and reviewed accordingly. Detailed clinical 444 

information, such as age, gender, tumor region, OS status, OS (months) and TNM stage, is 445 

systematically recorded in Table S1. Patient follow-up was conducted over a median period of 446 

67.25 months. OS was the duration from surgery to either the patient's demise or the last follow-447 

up visit. We used genomic, proteomic, and phosphoproteomic data of these CRC patients to 448 

elucidate the impact of Mg deficiency on CRC. Notably, the genome, proteome, and 449 

phosphoproteome data for each patient were generated using a same sample. 450 

Proteomic and phosphoproteomic analyses 451 

Protein extraction and digestion procedures were as follows: Tissues were homogenized and lysed 452 

using gentleMACS Dissociators (Catalog No. 130-093-235, Miltenyi Biotec, Nordrhein-453 

Westfalen, Germany) with RIPA buffer (Catalog No. P0013C, Beyotime, Shanghai, China). Cell 454 

samples, on the other hand, were directly lysed in RIPA buffer. Subsequently, the prepared lysates 455 

were sonicated for 5 min at 227.5 W, with a 3-second on and 10-second off cycle. After 456 

centrifugation at 20,000 g for 20 min at 4 °C, the supernatant was transferred to a new tube, and 457 

the Bradford protein assay was taken to measure protein concentration. For each sample, 100 μg 458 

of protein lysates were first reduced using 10 mM tris (2-carboxyethyl) phosphine (TCEP) at 56 °C 459 

for 60 min. Subsequently, alkylated with 20 mM iodoacetamide for 30 min in the dark at 25 °C. 460 

The protein samples were subsequently precipitated using CH3OH, CHCl3, and H2O (CH3OH: 461 
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CHCl3: H2O = 4:1:3, v/v). Finally, the proteins were digested with trypsin at a 1:50 (trypsin/protein, 462 

w/w) for 12 hours. 463 

Tandem Mass Tag (TMT)-10 labeling of peptides was conducted as follows: The TMT-10 464 

plex Isobaric Label Reagent (Catalog No. 90110, Thermo Fisher Scientific, Waltham, MA) was 465 

dissolved in anhydrous acetonitrile (ACN) after reaching room temperature. 10 μg and 40 μg 466 

digested peptides of each sample for proteome and phosphoproteome analysis were labeled with 467 

TMT reagents following the manufacturer's instructions, respectively. Subsequently, the TMT-468 

labeled peptides were combined and dried. 469 

TMT-labeled peptide fractionation was performed as follows: Reversed-phase high-470 

performance liquid chromatography (RP-HPLC) was used to fractionate peptides with a basic 471 

mobile phase in proteomics. The separation was carried out with a flow rate of 1 mL/min using a 472 

mixture of buffer A (98% H2O, 2% ACN, pH = 10) and buffer B (90% ACN, 10% H2O, pH = 10). 473 

The LC gradient run spanned 120 min and followed this pattern: 3%−35% buffer B in 95 min, 474 

35%−60% buffer B in 10 min, 60%−100% buffer B in 15 min. The eluates were collected in 120 475 

fractions, which were subsequently merged into 15 fractions for each batch of CRC samples. These 476 

fractions were then dried using a vacuum centrifuge. Following desalting with C18 ZipTips, the 477 

TMT-labeled peptides were subjected to LC-MS/MS analysis. For phosphoproteomics, the TMT-478 

labeled peptides from tissue samples were initially fractionated into 15 fractions using a C18 solid-479 

phase extraction (SPE) columns (100 mg/1 mL). Later, these fractions were further combined into 480 

5 fractions and dried. In the case of cell phosphoproteomics, each sample was divided into 9 481 

fractions using a C18 SPE columns, which were then merged into 3 fractions prior to drying. 482 

The enrichment of phosphorylated peptides was performed as follows: Phosphopeptides were 483 

enriched using PureCube Fe-NTA Agarose Beads (Catalog No. 31403-Fe, Cube Biotech, 484 

Monheim, Germany) according to the manufacturer's instructions. The peptides, dissolved in 300 485 

µL of loading buffer (85% ACN, 0.1% TFA), were then incubated with the prepared beads for 486 

about 60 min on a 3D shaker at room temperature. Subsequently, the agarose beads were washed 487 

4 times with washing buffer (80% ACN, 0.1% TFA) and then eluted with 150 µL of elution buffer 488 

(composed of 40% ACN and 15% ammonium hydroxide). To neutralize the eluate, 8 µL of 20% 489 

TFA was added. The elution buffer were subsequently dried by vacuum, and subjected to LC-490 

MS/MS analysis after desalting using C18 ZipTips. 491 
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For proteomics, LC-MS/MS analysis was conducted using a Nano EASY-nLC 1200 liquid 492 

chromatography system LC instrument coupled with an Orbitrap Exploris 480 mass spectrometer 493 

(Catalog No. BRE725539, Thermo Fisher Scientific). After desalting with a Ziptip columns, the 494 

samples were dried and reconstituted in buffer A (98% H2O, 2% ACN, 0.1% formic acid (FA)). 495 

They were then loaded onto an in-house pulled and packed analytical column (75 μm × 30 cm) 496 

packed with C18 particles. Samples were analyzed using a 65-minute gradient of 4% to 100% 497 

buffer B (0.1% FA in 80% ACN) at a flow rate of 300 nL/min in positive ion mode. The MS1 full 498 

scans (m/z 350−1800) were acquired with a resolution of 60,000. The automatic gain control (AGC) 499 

value was set to 300%, and the maximum injection time (MIT) was 50 ms. For MS/MS scans, the 500 

top 20 most abundant parent ions were selected under an isolation window of 0.7 m/z, and 501 

fragmentation was performed using a normalized collision energy (NCE) of 36%. The normalized 502 

AGC value for MS/MS was set to 75%, and the MIT was 80 ms. Precursor ions with charge states 503 

of z = 1, 8, or unassigned charge states were excluded from further fragmentation. 504 

For phosphoproteomics, LC-MS/MS analysis was conducted using a Nano EASY-nLC 1200 505 

liquid chromatography system LC instrument coupled with a Q Exactive HF-X high-resolution 506 

mass spectrometer (Catalog No. BR64966, Thermo Fisher Scientific). After desalting with Ziptip 507 

columns, the samples were dried and reconstituted in buffer A, consisting of 2% ACN and 0.1% 508 

FA. They were then separated by a homemade trap column (2.5 cm × 75 μm) packed with Spursil 509 

C18 particles and an analytic column (25 cm × 75 μm) packed with Reprosil-Pur C18-AQ particles. 510 

Samples were analyzed using a 65-min gradient of 6% to 100% buffer B (0.1% FA in 80% ACN) 511 

at a flow rate of 330 nL/min in positive ion mode. The MS1 full scans (m/z 350−1600) were 512 

acquired with a resolution of 60,000. The AGC value was set to 3e6, and the MIT was 20 ms. For 513 

MS/MS scans, the top 20 most abundant parent ions were selected under an isolation window of 514 

0.6 m/z, and fragmentation was performed using stepped NCE of 25% and 31%. Precursor ions 515 

with charge states of z = 1, 8, or unassigned charge states were excluded from further fragmentation. 516 

For label-free cell phosphoproteomics, samples were analyzed using a 90-min gradient of 12% to 517 

100% buffer B (0.1% FA in 80% ACN) at a flow rate of 330 nL/min in positive ion mode. The 518 

MS1 full scans (m/z 350−1800) were acquired with a resolution of 60,000. The AGC value was 519 

set to 3e6, and the MIT was 20 ms. For MS/MS scans, the top 20 most abundant parent ions were 520 

selected under an isolation window of 1.6 m/z, and fragmentation was performed using stepped 521 
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NCE of 25% and 27%. Precursor ions with charge states of z = 1, 8, or unassigned charge states 522 

were excluded from further fragmentation. 523 

MS database searching 524 

All mass spectrometry raw data files of proteomics and phosphoproteomics were analyzed by 525 

using MaxQuant (version 1.6), aligned against the Swiss-Prot human protein sequence database 526 

comprising 20,413 entries (updated 04/2019). For MS2 reporter ion quantification, the reporter 527 

mass tolerance was set at 0.02 Da. Peptide mass tolerance was set at 10 ppm, and only peptides 528 

and proteins with a false discovery rate (FDR) lower than 1% were kept for further data processing. 529 

Up to 2 trypsin-missing cleavage sites were allowed. Cysteine carbamidomethylation was 530 

specified as a fixed modification, while oxidation of methionine and protein N-terminal acetylation 531 

were considered variable modifications. For phosphoproteomics analysis, phosphorylation 532 

(+79.9663 Da) of serine, threonine, and tyrosine residues were also added to the above variable 533 

modifications. 534 

Data cleaning of proteome data 535 

R (version 4.2.1) was used to process proteome data to minimize systematic errors based on the 536 

“peptides.txt” from MaxQuant output. Several preprocessing steps were performed to refine the 537 

data. First, potential contaminants and reverse proteins were excluded. Subsequently, only proteins 538 

with ≥ 2 unique peptides were selected for further analysis. To ensure comparability across 539 

samples within the same batch, the total protein abundance of each sample was adjusted to an 540 

equal level. To reduce the impact of noise, the protein intensity values of the tumor or DNT 541 

samples were divided by the protein intensity of an IS sample, yielding protein sample-to-standard 542 

(S/S) values. This step helped normalize the data and mitigate potential confounding factors. All 543 

data from the 27 batches were combined into a matrix, with samples represented as columns and 544 

proteins as rows. Additionally, the normalized values underwent an additional log2-transformation 545 

to facilitate subsequent analyses. The values in the matrix were transformed to column z-scores 546 

and row z-scores to normalize the data distribution across samples and proteins, respectively. Any 547 

values that were originally zero were considered missing and replaced with "NA". To ensure data 548 

quality, proteins with > 50% missing values were excluded from the dataset, resulting in a refined 549 

and reliable set of proteins for further analysis. 550 

Data cleaning of phosphoproteome data. 551 
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R (version 4.2.1) was used to process phosphoproteome data to minimize systematic errors based 552 

on the “Phospho (STY) Sites.txt”. Several preprocessing steps were performed to refine the data. 553 

First, potential contaminants and reverse peptides were excluded. In addition, phosphopeptides 554 

with localization probability > 0.75 were kept. To ensure comparability across samples within the 555 

same batch, the total intensities of phosphopeptides in each sample was adjusted to an equal level. 556 

To reduce the impact of noise, the phosphopeptide intensities of the tumors or DNT samples were 557 

divided by the phosphopeptide intensity of an IS sample, resulting in sample-to-standard (S/S) 558 

values. This step helped normalize the data and mitigate potential confounding factors. All data 559 

from the 20 batches were combined into a matrix, with samples represented as columns and 560 

phosphopeptides as rows. Additionally, the normalized values underwent an additional log2-561 

transformation to facilitate subsequent analyses. The values in the matrix were transformed to 562 

column z-scores and row z-scores to normalize the data distribution across samples and 563 

phosphopeptides, respectively. Any values that were originally zero were considered missing and 564 

replaced with “NA”. To ensure data quality, phosphopeptides with > 50% missing values were 565 

excluded from the dataset. 566 

Measurement of magnesium content in tissues 567 

Tissues samples were homogenized and lysed using gentleMACS Dissociators (Catalog No. 130-568 

093-235, Miltenyi Biotec) with RIPA buffer. Subsequently, the tissue lysates were sonicated for 5 569 

min at 227.5 W, with a 3-second on and 10-second off cycle. Bradford protein assay was taken to 570 

measure protein concentration, and 350 μL of each sample were taken and used for the 571 

measurement of Mg content. Mg content in each tissue was quantified by normalizing to protein 572 

concentration. The lyophilized samples were then treated with a suitable amount of 65% nitric acid 573 

(HNO3) overnight at room temperature. This process was continued by heating the samples in a 574 

heating block at 90 °C for about 20 min. Subsequently, an equivalent volume of 30% H2O2 was 575 

added to each sample. The reaction was stopped after an additional 30 min, followed with a further 576 

heating step at 70 °C for 15 min. The mean reduced volume was established, and subsequently, 577 

the samples were diluted with 1% HNO3. Measurements were conducted using an Agilent 7700 578 

series ICP-MS instrument under standard multi-element operating conditions, employing a helium 579 

reaction gas cell. Calibration of the instrument was performed using certified multi-element ICP-580 

MS standard calibration solutions with concentrations spanning 0, 5, 10, 50, 100, and 500 ppb for 581 
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various elements. Moreover, a certified IS solution containing 200 ppb yttrium was employed for 582 

an internal control. 583 

Whole-exome sequencing and data processing 584 

In our previous study, we have utilized a total of 76 paired tumors and corresponding DNTs from 585 

CRC patients for WES analysis[35]. The detailed methods have been illustrated in the previous 586 

publication. Briefly, genomic DNA was quantified by a Qubit® DNA Assay Kit in Qubit® 2.0 587 

Fluorometer (Catalog No. Q32866, Thermo Fisher Scientific). A total amount of 0.6 µg genomic 588 

DNA per sample was used as input material for the DNA sample preparation. Subsequently, WES 589 

libraries were prepared and captured using an Agilent SureSelect Human All Exon kit (Catalog 590 

No. 5191-5735, Agilent Technologies, Santa Clara, CA). The DNA library, featuring 150 bp 591 

paired-end reads, underwent sequencing using an Illumina NovaSeq 6000 System. The initial 592 

fluorescence image files acquired from the HiSeq platform were conversed to raw data through 593 

base calling and subsequently transformed into FASTQ format. This format includes both 594 

sequence information and corresponding sequencing quality details.  595 

Somatic copy number alteration analysis 596 

The exome sequencing data were initially aligned to the human genome hg19. Following the 597 

alignment, copy number variations (CNVs) were detected from the BAM files derived from WES. 598 

These CNVs were then utilized for SCNA analysis. To integrate the results obtained from 599 

individual patients and identify recurrently amplified or deleted focal genomic regions in our 600 

samples, we employed the GISTIC 2.0 software (https://cloud.genepattern.org)[79]. Additionally, 601 

the R package "maftools" was used to display Q values less than 0.1. Moreover, to minimize false 602 

positives, the related parameters were set as follows: refgene file = Human_Hg19.mat, focal length 603 

cutoff = 0.50, gene gistic = yes, confidence level = 0.99. All other parameters were maintained at 604 

their default settings. 605 

Differential abundance analysis 606 

The cleaned proteome and phosphoproteome data underwent a differential abundance analysis 607 

between tumors and DNTs through the Wilcoxon rank-sum test. Variables that contain > 50% 608 

missing values are excluded. Significance was considered when P < 0.05, and fold change (FC) 609 

was calculated as the median log2(FC). Differential proteins and phosphosites in cell lines were 610 

detected through the Student’s t-test. Significance was considered when P < 0.05, and FC was 611 

calculated as the median log2(FC). Pathway enrichment analysis was performed based on the 612 
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DAVID Bioinformatics Resources (https://david.ncifcrf.gov/)[80, 81] and Metascape database 613 

(http://metascape.org)[82]. 614 

Correlation analysis 615 

Pearson’s correlation analysis was performed between IS samples or QC samples to assess the 616 

quality of the proteome and phosphoproteome data. Mg content and the levels of proteins or 617 

phosphosites were calculated by the Spearman’s rank correlation analysis. 618 

Univariate survival analysis 619 

The optimal cutoff point for the selected samples was calculated by the R package “survminer”. 620 

To assess differences between the categorical variables, the log-rank test was applied, and two-621 

tailed tests and P values < 0.05 were used for significance evaluation. In the R package 622 

"survminer," survival curves were created through the Kaplan−Meier method for specific variables 623 

of interest. The estimation of hazard ratios (HRs) and their 95% confidence intervals (CIs) was 624 

performed using the "coxph" function from the R package "Survival." 625 

Western blotting analysis 626 

Proteins were extracted from tissues and cells with RIPA buffer and then quantified by the 627 

Bradford assay. SDS-PAGE (10%) was used to separate the protein samples, which were then 628 

transferred to PVDF membranes (Catalog No. ISEQ00010, Darmstadt, Germany). Following that, 629 

PVDF membranes were blocked using 5% milk in PBST and then incubated with an E-cadherin 630 

antibody (1:1000; Catalog No. 20874-1-AP, Proteintech, Wuhan, China), N-cadherin antibody 631 

(1:1000; Catalog No. 22018-1-AP, Proteintech), Vimentin antibody (1:1000; Catalog No. 10366-632 

1-AP, Proteintech), Vinculin antibody (1:1000; Catalog No. 66305-1-Ig, Proteintech), MMP2 633 

antibody (1:1000; Catalog No. 10373-2-AP, Proteintech), Cingulin antibody (1:1000; Catalog No. 634 

21369-1-AP, Proteintech), DBN1 antibody (1:1000; Catalog No. 10260-1-AP, Proteintech), 635 

ACTN4 antibody (1:1000; Catalog No. 19096-1-AP, Proteintech) or GAPDH antibody (1:5000; 636 

Catalog No. 60004-1-Ig, Proteintech) overnight at 4 °C. Following overnight incubation, 637 

underwent three washes with PBST, followed by incubation with the appropriate secondary 638 

antibody at room temperature for 1 hour. Finally, the membrane was subjected to 639 

chemiluminescent detection using the Immobilon Western HRP Substrate (Catalog No. 640 

WBKLS0500, Sigma). 641 

Cell culture and generation of stable cell lines 642 
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The HCT116 and DLD-1 human CRC cell lines were obtained from the Cell Bank/Stem Cell Bank, 643 

Chinese Academy of Sciences. Additionally, HCT116 and DLD-1 cells were cultured in DMEM 644 

(Catalog No. C11995-065, Gibco, Grand Island, NY) and RPMI 1640 (Catalog No. 10270-106, 645 

Gibco) with 10% FBS (Catalog No. FCS500, ExCell, Shanghai, China), 100 units of penicillin, 646 

and 100 μg/mL streptomycin (Catalog No. 15140-122, Gibco), respectively.  647 

To construct DBN1-GFP-tagged and DBN1-Flag-tagged cells, the cDNA of DBN1 was 648 

inserted into the pCDH-LGFP and pCDH-3 × Flag vectors, respectively. The PLKO.1 vector was 649 

used for DBN1 and ACTN4 knockdown. To generate cells overexpressing DBN1 or cells with 650 

silenced DBN1 and ACTN4, a co-transfection approach was employed using HEK293T cells. The 651 

pSPAX2, pMD2. G, pCDH-LGFP-DBN1, pCDH-3 × Flag-DBN1, shDBN1, shACTN4, and their 652 

respective control plasmids were co-transfected into HEK293T cells. 48 hours later, the medium 653 

containing the virus was collected and filtered. To enhance transfection efficiency, 10 mg/mL 654 

Polybrene (Catalog No. S2667, Sigma) was added. Subsequently, cells underwent infection and 655 

selection with 1 μg/mL puromycin (Catalog No. ST551, Beyotime) for 48 hours. The primer 656 

sequences for DBN1 and ACTN4 are listed as follows: 657 

shDBN1 # 1: 5’-CCGGCTGTGGAAATGAAGCGGATTACTCGAGTAATCCGCTTCAT658 

TTCCACAGTTTTTG-3’ 659 

shACTN4 # 1: 5’-CCGGCATCGCTTCCTTCAAGGTCTTCTCGAGAAGACCTTGAAG660 

GAAGCGATGTTTTTG-3’ 661 

shACTN4 # 2: 5’-CCGGCCTGTCACCAACCTGAACAATCTCGAGATTGTTCAGGTT662 

GGTGACAGGTTTTTG-3’ 663 

The primer sequences for DBN1-overexpressing were as follows: 664 

DBN1-PCDH-GFP: 5’-GATTCTAGAGCTAGCGAATTCATGGCCGGCGTCAGCTTCA665 

GC-3’ 666 

DBN1-PCDH-Flag: 5’-GATGACAAGTCTAGAGAATTCATGGCCGGCGTCAGCTTCA667 

GC-3’ 668 

The primer sequences for DBN1 mutants were as follows: 669 

DBN1S142A: 5’-CGCGACTCTCCGCCCCTGTGCTGCA-3’ 670 

DBN1S142D: 5’-CGCGACTCTCCGACCCTGTGCTGCA-3’ 671 

Cell migration assay 672 

 673 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.22.576593doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576593


24 
 

In the cell migration assay, 8.0 mm, 24-well plate chamber inserts were used (Catalog No. 354578, 674 

Corning Life Sciences, Corning, NY). In the upper chamber of the inserts, a total of 3 × 105 cells 675 

suspended in 200 μL of serum-free medium were added, and 800 μL of 10% FBS medium was 676 

added to the bottom chamber. 24 hours later, the cells were fixed with 4% PFA for 15 min and 677 

then stained with 0.5% crystal violet for another 15 min. Cells on the upper surface of the inserts 678 

were retained, while cells on the underside were gently removed using a cotton swab. The captured 679 

images were analyzed using ImageJ software to quantify the number of cells. 680 

Wound healing assay 681 

HCT116 and DLD-1 cells were plated in a 6-well plate, and a 10 μL pipette tip was used to generate 682 

a straight-line wound. The wells were washed with PBS and replenished with serum-free medium. 683 

Subsequently, the wounds were photographed at 0 hours and 48 hours after the injury. ImageJ 684 

software was utilized to measure the width of the gap.  685 

Immunofluorescence 686 

Immunofluorescence assays were performed in 96-well plates (Catalog No. 6055300, PerkinElmer, 687 

Waltham, MA), and 1 × 104 cells were plated and incubated for 24 hours. Subsequently, the cells 688 

were fixed with 4% PFA for 15 min, three washes with PBS, and then permeabilized and blocked 689 

with 0.5% Triton X-100 (Catalog No. T8200, Solarbio, Beijing, China) for 5 min. Next, the cells 690 

were incubated with Actin-Tracker Red-594 (Catalog No. C2205S, Beyotime) for about 30 min, 691 

followed by 4’,6-diamidino-2-phenylindole (Catalog No. C0060, Solarbio) for about 5 min. 692 

Images were photographed by Opera Phenix Plus (Catalog No. HH14001000, PerkinElmer), and 693 

then quantified by using Harmony software. 694 

Coimmunoprecipitation 695 

Cells were lysed using RIPA buffer on ice for 30 min, then centrifuged at 20,000 g for 10 min. To 696 

pull down DBN1-Flag, anti-Flag magnetic beads (Catalog No. HYK0207, MedChemExpress, 697 

Monmouth Junction, NJ) were utilized. The elution of interacting proteins was carried out using 1 698 

× SDS loading buffer (Catalog No. P0015A, Beyotime) and subjected to heating at 95 °C for 5 699 

min. The eluted products were subsequently analyzed either through Western blotting or LC-700 

MS/MS. 701 

Ethical statement 702 

Written informed consents and approvals for all tissue specimens were obtained from the Research 703 

Ethics Committee (Permission number: 2020 (374)). 704 
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Data availability 705 

The MS proteomics data of CRC have been deposited to the ProteomeXchange Consortium via 706 

the iProX partner repository with the dataset identifier PXD039360. The mass spectrometry 707 

phosphoproteomics data of CRC and cells have been deposited in the ProteomeXchange 708 

Consortium and are available using the iProX accession number PXD042746. The raw GSE 709 

sequence data reported in this paper have been deposited in the Genome Sequence Archive[83] in 710 

the National Genomics Data Center, China National Center for Bioinformation/Beijing Institute 711 

of Genomics, Chinese Academy of Sciences (GSA-Human: HRA003386), which are publicly 712 

accessible at https://ngdc.cncb.ac.cn/gsa-human.  713 
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The source code is freely available at the National Genomics Data Center (NGDC) BioCode 715 

(https://ngdc.cncb.ac.cn/biocode/tools/BT007400). 716 
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 964 

Figure legends 965 

Figure 1 Low Mg content in tumors predicts unfavorable prognosis of CRC 966 

A. The Study's concept and workflow. B. Intra-tumorous Mg content of CRCs. C. Statistics of Mg 967 

content in the tumors and paired DNTs of 115 CRCs. *, P < 0.05. Wilcoxon rank-sum test. D. 968 

Comparisons of Mg content between left- and right-sided tumors or between left- and right-sided 969 

DNTs. ***, P < 0.001; **, P < 0.01. Wilcoxon rank-sum test. E. Comparisons of Mg content 970 

between tumors and paired DNTs located on the left or right side. *, P < 0.05; ns, means no 971 

significance. Wilcoxon rank-sum test. F. Survival analysis of 115 CRC patients with different Mg 972 

contents in tumors. Log-rank test. G. Survival analysis of 53 left-sided CRC patients with different 973 

Mg contents in tumors. Log-rank test. H. Survival analysis of 49 right-sided CRC patients with 974 

different Mg contents in tumors. Log-rank test. I. Comparisons of Mg content between females 975 

and males in tumors or DNTs. ns, means no significance. Wilcoxon rank-sum test. 976 

 977 

Figure 2 Low Mg content in tumors is linked to genome instability 978 

A. Genetic profile of the top 20 mutated genes in High-Mg and Low-Mg tumors. Somatic 979 
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mutations in the 20 genes were observed in 49 of 62 tumors. The top bar plot illustrates the overall 980 

count of somatic mutations in each patient, while the right bar plot depicts the distribution and 981 

composition of mutation types in each gene. B. Percentages of SNVs in High-Mg and Low-Mg 982 

groups. C. Percentages of the classes of mutations in High-Mg and Low-Mg groups. D. and E. 983 

The interactions among the top 20 mutated genes in the High-Mg (D) and Low-Mg (E) groups. *, 984 

P < 0.01; ▲, P < 0.05. Fisher’s exact test. F. Focal peaks exhibiting significant somatic copy-985 

number amplification (red) and deletion (blue) (GISTIC2 Q-values < 0.1) are displayed in both 986 

High-Mg and Low-Mg groups. The top 5 amplified and deleted cytobands are labeled. G. Statistics 987 

of genes with significant variations in mutation frequencies between the High-Mg and Low-Mg 988 

groups. P < 0.05. Fisher’s exact test. H. Density plot displaying the mutation frequencies of genes 989 

in the High-Mg and Low-Mg groups. I. Genetic profile of the CRC driver genes with significant 990 

mutation frequencies between the High-Mg and Low-Mg groups. P < 0.05. Fisher’s exact test. J. 991 

Comparisons of gene mutation frequencies between left- and right-sided tumors. Genes with 992 

mutations in more than 7 out of 62 patients are displayed. K. Comparisons of gene mutation 993 

frequencies between High-Mg and Low-Mg tumors on the left (lower) or right (upper) side. Genes 994 

with mutations in more than 5 out of 62 patients are displayed. 995 

 996 

Figure 3 Low Mg content in tumors is associated with EMT activation 997 

A. Spearman’s rank correlation analysis of protein levels and Mg content. GSEA pre-ranked 998 

hallmark analysis of the 5322 proteins. P < 0.05. Spearman's rank correlation test. B. and C. Blue 999 

and red represent the pathways negatively (B) or positively (C) associated with Mg content, 1000 

respectively. NES represents normalized enrichment score. D. Hallmark pathways related to 1001 

immunity and metastasis. ES means enrichment score. E. and F. Venn diagrams displaying the 1002 

overlapping proteins negatively (E) or positively (F) associated with Mg content between the left- 1003 

and right-sided tumors. Spearman’s rank correlation analysis, P < 0.05. G. Heatmap showing the 1004 

levels of Mg-related proteins in the left- and right-sided tumors. The correlation patterns of the 1005 

proteins with Mg content in distinct modules are shown. Z-score of protein levels were mapped 1006 

along Mg content in the left- and right-sided tumors. The top 5 pathways enriched by Metascape 1007 

database using Mg-related proteins are shown. The gender, age, TNM stage, OS status and Mg 1008 

content are annotated above the heatmap. 1009 

 1010 
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Figure 4 Functional validation of Mg in EMT activation in tumor cells 1011 

A. The diagram illustrates the schematic of the EMT and cell adhesion pathway. Spearman’s 1012 

coefficients between Mg content and the levels of core components involved in cell-cell adhesion 1013 

and cell-matrix adhesion are shown. The correlations were analyzed using all 104 tumor samples 1014 

(A), 54 left-sided tumor samples (L), and 48 right-sided tumor samples (R). B. Immunoblots 1015 

showing the expression of N-cadherin, vimentin, vinculin, MMP2, E-cadherin and cingulin in 1016 

High-Mg and Low-Mg tumors. C. The measurements of Mg content in HCT116 and DLD-1 cells 1017 

with or without MgCl2 treatment by ICP-MS. ***, P < 0.001; **, P < 0.01. Student’s t test. D. 1018 

Western blotting analysis of vimentin, E-cadherin, N-cadherin and MMP2 in colon cancer cell 1019 

lines with (10 mM) or without MgCl2 treatment. E. Representative images (left) and quantification 1020 

results (right) of the migration assays using colon cancer cells treated with increasing 1021 

concentrations of MgCl2. Scale bars, 500 μm. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, 1022 

P < 0.05. Student’s t test. F. and G. Representative images (left) and quantification results (right) 1023 

of the wound healing assays using HCT116 (F) and DLD-1 (G) cells treated with (10 mM) or 1024 

without MgCl2. Scale bars, 200 μm. ****, P < 0.0001; **, P < 0.01. Student’s t test. 1025 

 1026 

Figure 5 Impacts of Mg on the phosphoproteome of CRCs 1027 

A. Spearman’s rank correlation analysis of the levels of phosphosites and Mg content. P < 0.05. 1028 

Spearman's rank correlation test. B. and C. Pathway enrichment analysis of the proteins containing 1029 

Mg negatively associated phosphosites (B) and positively associated phosphosites (C) by 1030 

Metascape. D. Mg-correlated pathways related to cell adhesion are shown with Spearman’s 1031 

coefficients obtained from (A). E. Venn diagrams displaying the overlapping phosphosites 1032 

significantly correlated with Mg content between the left- and right-sided tumors. Spearman’s rank 1033 

correlation analysis, P < 0.05. F. Heatmap displaying the levels of 18 common Mg-related 1034 

phosphosites in left- and right-sided tumors. G. Heatmap showing the levels of phosphosites 1035 

specifically correlated with Mg content in tumors on the left and right sides. The top 5 enriched 1036 

pathways by Metascape using the proteins with Mg significantly correlated phosphosites are 1037 

shown. Annotations above the heatmap include information such as gender, age, TNM stage, OS 1038 

status, and Mg content. The heatmap illustrates the relative expression of phosphosites, utilizing 1039 

the z-score for representation. 1040 

 1041 
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Figure 6 Mg-regulated DBN1S142p reduction inhibits cell migration in CRC cells 1042 

A. The statistics of the number of phosphosites occurring in the +Mg2+ group or in the control 1043 

group (left). The phosphosites mainly identified in the Mg2+ and control groups were directly 1044 

considered upregulated (484) and downregulated (150), respectively. Additionally, Volcano plot 1045 

showing 80 upregulated and 366 downregulated phosphosites in the +Mg2+ group and control 1046 

group (right), respectively, using phosphosites identified in at least two replicates of each group. 1047 

P < 0.05. Cutoff, ratio(+Mg2+/Control) > 1.2 or < 0.83. Student’s t test. Blue and red dots represent 1048 

significantly increased phosphosites in the control and +Mg2+ groups, respectively. B. and C. 1049 

Pathway enrichment analysis of the corresponding proteins of downregulated (516) (B) and 1050 

upregulated (564) (C) phosphosites in the +Mg2+ group using Metascape. D. Venn diagram 1051 

showing the number of overlapping phosphosites quantified in HCT116 and CRC. E. Venn 1052 

diagram showing the number of overlapping phosphosites with significant changes in Mg2+-treated 1053 

HCT116 cells and significant correlations with Mg content in CRC. F. Survival analysis of 79 1054 

CRC patients with different DBN1S142p levels in tumors. P < 0.05. Log-rank test. G. MS/MS 1055 

spectrum of the identified phosphopeptide containing DBN1S142p. H. The statistics of the levels of 1056 

DBN1S142p in the control and +Mg2+ groups. *, P < 0.05. Student’s t test. I. Spearman’s rank 1057 

correlation analysis of DBN1S142p and Mg content in all (72), left (25)- and right (46)-sided tumors. 1058 

J. Mutation information of the DBN1WT, DBN1S142A and DBN1S142D genes and sequencing results. 1059 

K. Immunoblotting assays determined the effects of DBN1 mutations on MMP2 expression. *, P 1060 

< 0.05. Student’s t test. L. and M. Transwell migration (L) and wound healing assays (M) were 1061 

performed in cells transfected with vector, DBN1WT, DBN1S142A and DBN1S142D. Scale bars, 500 1062 

μm (L) and 200 μm (M). **, P < 0.01; *, P < 0.05. Student’s t test. 1063 

 1064 

Figure 7 Mg-regulated DBN1S142p reduces the interaction between DBN1 and ACTN4 and 1065 

contributes to EMT 1066 

A. Effects of MgCl2 treatment on the formation of F-actin determined by immunofluorescence 1067 

assays in HCT116 cells. Scale bars, 500 μm. *, P < 0.05. Student’s t test. B. Effects of DBN1WT, 1068 

DBN1S142A and DBN1S142D on the formation of F-actin determined by immunofluorescence assays. 1069 

Scale bars, 500 μm. *, P < 0.05. Student’s t test. C. Schematic representation of the identification 1070 

of DBN1-binding proteins affected by DBN1S142p and Mg2+ through affinity purification followed 1071 

by MS analysis. D. Heatmap showing 9 DBN1-binding proteins affected by Mg2+ through 1072 
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regulating DBN1S142p. Z-score of protein levels were used. E. The relative intensity of the DBN1-1073 

binding protein ACTN4 determined by MS in immunoprecipitation assays under different 1074 

experimental conditions. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, means 1075 

no significance. Student’s t test. F. Immunoblotting assays determined the effects of DBN1S142p 1076 

on the interactions of ACTN4 and CDC42 with DBN1. G. Immunoblotting assays determined the 1077 

effects of Mg on the interaction between ACTN4 and DBN1 affected by DBN1S142p. H. Effects of 1078 

ACTN4 on the formation of F-actin determined by immunofluorescence assays. Scale bars, 500 1079 

μm. **, P < 0.01;*, P < 0.05. Student’s t test. I. Co-localization of ACTN4 and F-actin was 1080 

determined by immunofluorescence assays. Scale bars, 500 μm. ***, P < 0.001; **, P < 0.01. 1081 

Student’s t test. J. Potential mechanism of Mg-regulated cell migration via modulation of 1082 

DBN1S142p. 1083 

 1084 

Supplementary material 1085 

Supplementary Figure Legends 1086 

Figure S1 Quality control analysis of proteome and phosphoproteome data and Mg content 1087 

detection 1088 

A. Workflow of proteome and phosphoproteome experiments. B. Pearson’s correlation analysis of 1089 

15 QC samples of the proteome to evaluate machine stability. A scatterplot matrix was generated 1090 

for pairwise calculation of Pearson's correlation coefficients among the samples, with density plots 1091 

on the diagonal and correlation values displayed in the upper triangle. C. Pearson’s correlation 1092 

analysis of 27 internal standards to evaluate the robustness of TMT-based quantification in the 1093 

proteomic study. Top right: pairwise calculation of Pearson’s correlation coefficients among the 1094 

27 ISs. Bottom left: elliptic chart shows pairwise comparison of the 27 ISs. D. Pearson’s 1095 

correlation analysis of replicate samples. E. Distribution of unique peptides among 27 TMT-1096 

labeled batches. F. Protein counts of each batch (light blue), counts of common proteins (blue) and 1097 

cumulative protein counts among the 27 batches. G. Pearson’s correlation analysis of 6 QC 1098 

samples of the phosphoproteome to evaluate machine stability. A scatterplot matrix was generated 1099 

for pairwise calculation of Pearson's correlation coefficients among the samples, with density plots 1100 

on the diagonal and correlation values displayed in the upper triangle. H. Pearson’s correlation 1101 

analysis of 20 ISs to evaluate the robustness of TMT-based quantification in the phosphoproteomic 1102 

study. Top-right half: pairwise calculation of Pearson’s correlation coefficients among the 20 ISs. 1103 
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Bottom-left half: elliptic chart shows pairwise comparison of the 20 ISs. I. Identified (blue) and 1104 

quantified (orange) phosphoprotein counts of each batch and cumulative phosphoprotein counts 1105 

among 20 batches. J. Number of identified and quantified phosphosites (blue) and 1106 

phosphoproteins (red). K. Localization and distribution of phosphosites. L. Statistics of the 1107 

number of phosphosites in a protein. M. Coefficient of variation of Mg content for the QC samples. 1108 

Figure S2 Association analysis between Mg content and TNM stage (or overall survival) 1109 

A.−C. Forest plots of univariable cox models for clinical information with CRC patients in all 1110 

samples (A), or left-sided (B) or right-sided (C) colon samples. Data are presented as hazard ratio 1111 

(HR) ± 95% confidence interval. D.−F. Cox multivariable regression models designed to test for 1112 

prognostic factors. Low Mg content was an independent predictor of outcome in all CRC patients 1113 

(D) and right-sided CRC patients (E) but not left-sided CRC patients (F). Data are presented as 1114 

hazard ratio (HR) ± 95% confidence interval. G.−I. Mg content among four TNM stages in tumors 1115 

and DNTs of all samples (G) or left-sided (H) or right-sided (I) colon samples. J. Violin plots 1116 

illustrating the levels of clinical information, encompassing variables such as age, ALT, AST, etc., 1117 

for both the High-Mg and Low-Mg groups. 1118 

Figure S3 Analysis of Mg-associated proteome and phosphoproteome 1119 

A. GOBP term enrichment analysis of proteins negatively associated with Mg content using 1120 

DAVID database. B. GOBP term enrichment analysis of proteins positively associated with Mg 1121 

content using DAVID database. C. The expression of complement-associated proteins in the 1122 

tumors and paired DNTs. D. The expression of cell adhesion-associated proteins in the tumors and 1123 

paired DNTs. GOBP, Gene ontology biological process. 1124 

Figure S4 Proteomic classification of CRC tumors 1125 

A. Consensus matrix of unsupervised clustering based on the top 25 most variable proteins (k = 2, 1126 

k =3 and k = 4). B. The consensus CDF of unsupervised clustering based on the top 25 most 1127 

variable proteins. C. Delta area (change in CDF area) plots for 2-10 clusters. D. Kaplan–Meier 1128 

curves of OS for each proteomic subtype. E. Boxplot showing the difference of Mg content among 1129 

proteomic subtypes. F. GOBP enrichment analysis of proteins upregulated in subtype II (subtype 1130 

II vs subtype I and subtype III) using DAVID. 1131 

Figure S5 Integrative analysis of proteome and phosphoproteome data 1132 

A. Comparison between Mg-protein correlations and their Mg-phosphosite correlations. P < 0.05. 1133 

Spearman's rank correlation test. B. and C. Top 20 phosphosites positively (B) or negatively (C) 1134 
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associated with Mg content independent of protein level. D. GOBP enrichment analysis of 1135 

phosphoproteins with negatively Mg-associated phosphosites. E. GOBP enrichment analysis of 1136 

phosphoproteins with positively Mg-associated phosphosites.  1137 

Figure S6 Mg-regulated phosphosites related to cell adhesion  1138 

A. Survival analysis of 79 CRC patients with different ARHGAP1S51p, FLNAS1459p and TNS1S1177p 1139 

levels in tumors. Log-rank test. B. Effects of MgCl2 treatment on the formation of F-actin 1140 

determined by immunofluorescence assays in DLD-1 cells. Scale bars, 500 μm. *, P < 0.05, 1141 

Student’s t test. C. Immunoblotting assays determined the expression of ARHGAP1 mutations. *, 1142 

P < 0.05, Student’s t test. D. Transwell assays were performed in cells transfected with empty 1143 

vector, ARHGAP1WT, ARHGAP1S51A and ARHGAP1S51D, respectively. Scale bars, 500 μm. **, 1144 

P < 0.01; *, P < 0.05. Student’s t test. E. Effects of empty vector, ARHGAP1WT, ARHGAP1S51A 1145 

and ARHGAP1S51D on F-actin formation determined by immunofluorescence assays. Scale bars, 1146 

500 μm. *, P < 0.05. Student’s t test. 1147 

Figure S7 The DBN1-binding proteins affected by DBN1S142p and Mg2+ 1148 

A. and B. Venn diagram showing the number of proteins strongly and specifically bound to 1149 

DBN1S142D (A) and DBN1S142A (B), respectively. Fold changes of proteins between groups > 1.2, 1150 

P < 0.05. Student’s t test. Gene annotation enrichment analysis of the proteins obtained in protein-1151 

protein interaction network analysis. C. Schematic of screening Mg-regulated DBN1 binding 1152 

proteins affected by DBN1S142p. D. GO biological process enrichment analysis of Mg-regulated 1153 

DBN1 binding proteins. E. and F. Venn diagram showing the number of interacting proteins 1154 

affected by both DBN1S142p and Mg2+. G. The levels of the DBN1-binding protein CDC42 under 1155 

different treatment and immunoprecipitation conditions. ****, P < 0.0001; **, P < 0.01; *, P < 1156 

0.05; ns means no significance. Student’s t test. H. Immunoblots showing the expression of 1157 

ACTN4. 1158 

Figure S8 Mg-associated cell-matrix adhesion proteins as drug targets 1159 

Cell-matrix adhesion-associated proteins with clinical drugs were negatively associated with Mg 1160 

content. Spearman's rank correlation analysis, P < 0.05 indicating a significant correlation. The 1161 

gender, TNM stage, survival event, age and Mg content are annotated above the heatmap. The 1162 

heatmap depicts the intensity of proteins using the z-score. The corresponding subcellular location 1163 

(middle) and clinical drugs (right) are listed. 1164 

 1165 
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Supplementary Table Legends 1166 

Table S1. Clinical information of CRC patients and Mg content in tumors and DNTs. 1167 

Table S2. Genomic data of CRC. 1168 

Table S3. Proteomics data of CRC. 1169 

Table S4. Spearman's rank correlation analysis of the levels of the cell adhesion-related 1170 

proteins and Mg content. 1171 

Table S5. Phosphoproteomics data of CRC. 1172 

Table S6. Phosphoproteome in Mg-treated HCT116 cells. 1173 

Table S7. Proteins strongly and specifically bound to DBN1 and affected by DBN1S142p and 1174 

Mg2+. 1175 

Table S8. The subcellular location and drugs of targets. 1176 
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Figure S2
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Figure S3
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Figure S5
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Figure S6
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Figure S8
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