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Abstract: 23 

Incomplete lineage sorting (ILS) and introgression increase genealogical discordance across 24 

the genome, which complicates phylogenetic inference. In such cases, identifying orthologs that 25 

result in gene trees with low estimation error is crucial because phylogenomic methods rely on 26 

accurate gene histories. We sequenced whole genomes for the tinamous (Aves: Tinamidae) to 27 

dissect the sources of gene and species-tree discordance and reconstruct their 28 

interrelationships. We compared results based on four ortholog sets: (1) coding genes 29 

(BUSCOs), (2) ultraconserved elements (UCEs) with short flanking regions, (3) UCEs with 30 

intermediate flanks, and (4) UCEs with long flanks. We hypothesized that orthologs with more 31 

phylogenetically informative sites would result in more accurate species trees because the 32 

resulting gene trees contain lower error. Consistent with our hypothesis, we found that long 33 

UCEs had the most informative sites and lowest rates of error. However, despite having many 34 

informative sites, BUSCO gene trees contained high error compared to long UCEs. Unlike 35 

UCEs, BUSCO gene sequences showed a positive association between the proportion of 36 

parsimony informative sites and gene tree error. Thus, BUSCO and UCE datasets have 37 

different underlying properties of molecular evolution, and these differences should be 38 

considered when selecting loci for phylogenomic analysis. Still, species trees from different 39 

datasets were mostly congruent. Only one clade, with a history of ILS and introgression, 40 

exhibited substantial species-tree discordance across the different data sets. Overall, we 41 

present the most complete phylogeny for tinamous to date, identify a new species, and provide 42 

a case study for species-level phylogenomic analysis using whole-genomes. 43 

 44 

Introduction 45 

 46 

Although the growth of high-throughput sequencing approaches over the past decade 47 

has greatly improved our understanding of evolutionary relationships, reconstructing the tree of 48 

life remains an enduring challenge. Analyses that utilize alternative datasets, methodological 49 

frameworks, or substitution models to answer the same phylogenetic questions often yield 50 

conflicting results, which is surprising given that phylogenomic datasets often contain hundreds 51 

of thousands or even millions of phylogenetically informative characters (Dunn et al. 2008; 52 

Jarvis et al. 2014; Prum et al. 2015; Reddy et al. 2017; Simion et al. 2017; Franz et al. 2019; 53 

Schultz et al. 2023). In many cases, alternative phylogenomic topologies resulting from different 54 

methods or data are equally well-supported. Thus, two key questions for molecular biologists 55 

are, (1) why do phylogenomic datasets yield discordant topologies? and (2) how should one 56 

choose among conflicting well-supported topologies? 57 

One way in which discordant phylogenies can result from the same or similar datasets is 58 

from the use of different methods for reconstructing species trees. One frequently employed 59 

method is to concatenate all alignments into a single supermatrix and treat the resulting 60 

phylogeny as a genome-wide average (henceforth, concatenation). Another common approach 61 

is to estimate a gene tree for each molecular marker independently and summarize their 62 

histories to estimate the species tree based on expectations from a multi-species coalescent 63 

(MSC) model (Zhang and Mirarab 2022). Unlike the concatenation approach, MSC methods are 64 

designed to account for expected variation in gene histories due to incomplete lineage sorting 65 

(ILS). ILS causes some gene trees to differ from the species tree due to retained ancestral 66 
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variation during speciation, resulting in alleles coalescing prior to speciation events in ways that 67 

result in incongruence between gene and species trees (Maddison 1997).  68 

Each of these two methods, concatenation and MSC, has theoretical advantages, but 69 

can result in erroneous species trees under certain conditions. For example, there is an 70 

expectation that concatenation may be the best method when ILS is weak but is likely to be 71 

statistically inconsistent when ILS is strong (Mendes and Hahn 2018; Bryant and Hahn 2020). 72 

This is because when ILS is strong, gene genealogies are expected to differ more from the 73 

species tree (i.e., there is increased heterogeneity) compared to situations when ILS is weak, 74 

thus reducing the probability that concatenation will find the true tree. ILS is more likely to occur 75 

when successive divergence times are short and effective population sizes are large, such as 76 

during rapid or adaptive radiations (Maddison 1997; Mclean et al. 2019; Lescroart et al. 2023; 77 

Tan et al. 2023). Thus, discordance among concatenation and MSC methods may be in part 78 

driven by the presence of rapid diversification that leads to ILS and high gene tree heterogeneity 79 

that biases concatenation results. 80 

When applying MSC methods, identifying orthologous markers that lead to accurate, 81 

unbiased gene tree estimation is crucial to properly infer phylogeny (Meiklejohn et al. 2016; 82 

Springer and Gatesy 2016; Tea et al. 2021). MSC methods that utilize gene trees as input (gene 83 

tree summarization methods) may fail if gene tree heterogeneity is driven by estimation error 84 

rather than coalescence events. In other words, the MSC model is intended to incorporate gene 85 

tree heterogeneity due to ILS, but erroneous gene trees resulting from low quality, biased, or 86 

inconsistent sequence data will increase species tree estimation error (Xi et al. 2015). Thus, 87 

dissecting biological and artifactual sources of gene tree discordance to more accurately infer 88 

species trees is a major challenge in the age of phylogenomics, where more data does not 89 

automatically translate to improved inferences (Meiklejohn et al. 2016; Blom et al. 2017; Smith 90 

et al. 2023). Because MSC methods assume that all gene tree discordance is driven by ILS, 91 

eliminating erroneous gene trees becomes important (Roch and Warnow 2015; Springer and 92 

Gatesy 2016). This point has led to a variety of methods for filtering genomic datasets for 93 

phylogenetic efficacy (Doyle et al. 2015; Kuang et al. 2018; B.T. Smith et al. 2018; S.A. Smith et 94 

al. 2018; Zhao et al. 2023) but has generally lacked consensus on the types of data that contain 95 

low error to begin with. 96 

Given the complexities associated with phylogenetic inference, identifying datasets of 97 

gene orthologs containing minimal bias is a principal goal of systematics research and has 98 

implications across diverse fields in molecular biology. One widely employed data type for 99 

phylogenomics includes coding sequences obtained via anchored hybrid enrichment, 100 

transcriptomics, or low coverage whole-genome sequencing (Lemmon et al. 2012; Prum et al. 101 

2015; Allen et al. 2017; Waterhouse et al. 2017; Johnson 2019; Zhang et al. 2019; Burbrink et 102 

al. 2020; Boyd et al. 2022; Van Damme et al. 2022). Another data type includes ultraconserved 103 

elements (UCEs), which target conserved genomic regions to identify orthology, but also yield 104 

sequences of their more variable flanking regions for phylogenetic reconstruction across a 105 

range of timescales (Faircloth et al. 2012; McCormack et al. 2012; Faircloth et al. 2013; Musher 106 

and Cracraft 2018; Gueuning et al. 2020; Catanach et al. 2021; Ostrow et al. 2023). Both data 107 

types are widely applied in phylogenomics but can sometimes result in different phylogenetic 108 

topologies. For instance, coding and non-coding markers have resulted in conflicting topologies 109 

for the backbone of Neoaves (McCormack et al. 2013; Jarvis et al. 2014; Prum et al. 2015), and 110 
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some authors have suggested that this discordance can be attributed to data biases associated 111 

with coding genes (e.g., elevated GC content and model misspecification) that also bias 112 

downstream species tree inferences (Reddy et al. 2017). Nevertheless, there have been few 113 

studies comparing the efficacy of these marker types to one another. Thus, the ability of coding 114 

versus primarily non-coding markers to resolve phylogenomic trees remains an open question. 115 

One method for evaluating ortholog quality and gene tree error is through quantification 116 

of alignment information content, such as the number of parsimony informative sites 117 

(henceforth, PIS), or by comparing levels of gene tree heterogeneity among data types (Fong 118 

and Fujita 2011; Harris et al. 2014; Burbrink et al. 2020; Leite et al. 2021; Smith et al. 2023). For 119 

example, alignments with few PIS often result in erroneous or poorly resolved gene trees 120 

because of a lack of phylogenetic signal in the data (Xi et al. 2015; Meiklejohn et al. 2016). In 121 

such cases, we expect datasets with fewer PIS to result in increased gene tree heterogeneity 122 

that is driven by gene tree estimation error. For example, alignments of coding genes, or UCEs 123 

that include long flanking regions, should contain many PIS, and therefore should result in lower 124 

rates of gene tree error than UCEs with short flanking regions that contain relatively few variable 125 

sites. Some studies have found that loci with more PIS result in more “clock-like” gene trees, 126 

suggesting that more informative loci result in gene trees with branch lengths that represent real 127 

biological signal rather than data-driven artifacts (Musher et al. 2019). Other studies have 128 

shown a negative correlation between the number of PIS and Robinson-Foulds distance (a 129 

measure of phylogenetic dissimilarity; henceforth, RF distance) between gene and species trees 130 

(Burbrink et al. 2020). This relationship implies that more informative alignments result in 131 

reduced gene tree estimation error. Alternatively, one might also expect that phylogenetic 132 

markers that are too variable can result in erroneous gene trees, if phylogenetic signal becomes 133 

lost due to sequence saturation (Felsenstein 1978; Brinkmann et al. 2005). Thus, documenting 134 

the relationship between alignment information content and RF distance, as well as the variation 135 

in overall RF distances among different datasets, should inform future phylogenomic study 136 

design and illuminate data-type efficacy. 137 

Whole-genome sequencing offers a way to test the robustness of a phylogenetic 138 

topology given multiple types of phylogenetic markers, including both coding and non-coding 139 

sequences, from the same underlying data. For example, whole genomes are often used to 140 

harvest large numbers of single-copy orthologous protein-coding markers called BUSCO 141 

(Benchmarking Universal Single Copy Orthologs) genes (Waterhouse et al. 2017; Alaei Kakhki 142 

et al. 2023). Given their conservation of function, BUSCO genes can theoretically tackle both 143 

relatively deep and shallow phylogenetic problems (Timilsena et al. 2022; Van Damme et al. 144 

2022; Alaei Kakhki et al. 2023). Similarly, there are multiple pipelines that can easily be used to 145 

obtain UCEs and other conserved elements for phylogenomics from whole-genome datasets 146 

(Faircloth 2016; Edwards et al. 2017). Thus, sequencing whole genomes enables a robust test 147 

of the efficacy of different data types for phylogenomics. 148 

 In this study, we apply whole-genome sequencing to reconstruct a species-level 149 

phylogeny of the tinamous (Aves: Tinamidae). There has been limited work on tinamou 150 

phylogenomics to date. Most past phylogenetic studies utilized either morphological data with 151 

relatively few genetic markers (Bertelli et al. 2002; Bertelli and Porzecanski 2004; Valqui 2008; 152 

Bertelli 2017; Almeida et al. 2022), or phylogenomic data with large-scale molecular sampling 153 

but minimal taxonomic sampling (Cloutier et al. 2019). Thus, the species-level phylogenetic 154 
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relationships of the tinamous remain uncertain. Here, we build on past studies by sampling 155 

thousands of orthologous markers across 45 out of 46 described species and a total of 65 156 

named taxa (monotypic species plus subspecies). Specifically, we compare levels of PIS and 157 

gene tree estimation error in two types of orthologous markers: complete single-copy protein-158 

coding genes (BUSCO’s) and UCE’s. In doing so, our objectives are to (1) examine the effect of 159 

alignment information content on gene tree estimation error, (2) use this information to identify 160 

high quality (low error) orthologs, (3) identify the drivers of phylogenetic discordance among 161 

data types and methods, and (4) use these inferences to robustly reconstruct the evolutionary 162 

history of the tinamous. 163 

 164 

Results 165 

 166 

Assembly metrics, completeness, and ortholog metrics 167 

 168 

 We successfully assembled 61 of 62 newly sequenced genomes and extracted BUSCO 169 

and UCE targets from these assemblies plus 10 publicly available tinamou and 2 publicly 170 

available outgroup whole genome assemblies (Table S1). Genome wide sequence coverage 171 

varied within and among samples but was generally high; the mean of average coverage across 172 

samples was 40.41x (standard deviation = 13.55x). Most genomes were also relatively 173 

complete, containing an average of 89.69% (standard deviation = 10.88%) of 8,338 complete 174 

single-copy BUSCO genes.  175 

From these whole genomes, we extracted and aligned two types of orthologous 176 

markers, BUSCO genes and UCEs. Specifically, we compiled four different ortholog sets, which 177 

after filtering for complete occupancy (all 72 samples represented in each alignment) included 178 

(1) 2,507 BUSCOs (6,368,028 bp in concatenated alignment), (2) 2,887 UCEs with 100 bp 179 

flanking regions (969,279 bp in concatenated alignment), (3) 2,879 UCEs with 300 bp flanking 180 

regions (2,227,921 bp in the concatenated alignment), and (4) 2,803 UCEs with 1000 bp flanks 181 

(6,902,014 bp in the concatenated alignment). Henceforth, we refer to these datasets as 182 

BUSCO, UCE100Flank, UCE300Flank, and UCE1000Flank datasets, respectively. 183 

 184 

Phylogenomics of Tinamous 185 

 186 

 Each of the four ortholog datasets was analyzed twice: first we reconstructed the 187 

phylogenetic history of tinamous using all loci concatenated into a single alignment (henceforth, 188 

concatenated phylogeny) and then using a gene tree summarization approach implemented in 189 

ASTRAL (Mirarab et al. 2014; Zhang et al. 2018) (henceforth, MSC phylogeny). The 190 

reconstructed concatenated and MSC phylogenies for tinamous were well-supported and 191 

broadly congruent across data types (Figures 1, 2, S1–S6). The phylogenies recovered from all 192 

four datasets were entirely congruent except for relationships within a single clade (henceforth, 193 

Clade A) of Crypturellus containing 13 named taxa across nine recognized species (Figure 3). 194 

One genome, downloaded from NCBI (GCA 013389825) was labeled as C. undulatus, but did 195 

not cluster with other members of that species, instead clustering with either C. strigulosus 196 

(MSC trees) or C. erythropus (concatenated trees). We could not confirm the species identity of 197 

this sample because the voucher was unavailable, and metadata indicated it was missing its 198 
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head. Moreover, another downloaded genome, GCA 013398335, was listed as Nothoprocta 199 

ornata on NCBI but after including newly sequenced material, this N. ornata clustered with N. 200 

pentlandii samples from Peru. After examining the voucher specimen (CORBIDI 168605), the 201 

sample was indeed confirmed as N. pentlandii oustaleti and not N. ornata as indicated in NCBI. 202 

 Our results were broadly consistent with recognized taxonomic classifications. For 203 

example, we recovered monophyletic subfamilies Nothurinae and Tinaminae and most genera 204 

and species were also monophyletic. However, we recovered two genera as non-monophyletic: 205 

the monotypic genus Taoniscus was embedded within Nothura and Rhynchotus was embedded 206 

within Nothoprocta, rendering Nothura and Nothoprocta paraphyletic. We also recovered 207 

Nothoprocta pentlandii as polyphyletic; one specimen from Bolivia (voucher LSUMZ 123403) 208 

was sister to N. perdicaria, whereas the remaining samples from Peru formed a clade that was 209 

sister to all remaining Nothoprocta (consistent with mitochondrial results in Valqui 2008). All 210 

other species that were represented by multiple samples were recovered as monophyletic. 211 

 212 

Assessment of ortholog information content and gene tree estimation error 213 

 214 

 We recovered significant differences in the number and proportion of PIS per alignment 215 

as well as levels of gene tree estimation error among the four datasets. First, smilograms 216 

revealed key differences in patterns of within-locus variability, wherein BUSCOs showed a 217 

bimodal distribution of variable sites (likely reflecting increased variability at third codon 218 

positions) but UCE datasets showed an expected pattern of gradually increasing variability 219 

moving away from conserved UCE cores (Figure 4). As expected, the UCE100Flank dataset 220 

had the fewest PIS, averaging just 45 PIS per alignment (standard deviation = 28.84), the 221 

UCE300Flank dataset averaged an intermediate number of PIS with a mean of 207 per 222 

alignment (standard deviation = 88.37), and the UCE1000Flank dataset contained the most PIS 223 

with a mean of 1,036 per alignment (standard deviation = 250.57). The BUSCO alignments also 224 

contained a high number of PIS, though with very high variance, indicating a range of 225 

informative and uninformative loci (mean = 923, standard deviation = 690.08 PIS per locus) 226 

(Table 1; Figure 5). Kruskall-Wallis tests confirmed that differences in both the number (X2 = 227 

578, df = 3, P < 0.00001) and proportion (X2 = 6408.9, df = 3, P < 0.00001) of PIS significantly 228 

differed among datasets. Wilcoxon rank sum tests also indicated that differences between 229 

pairwise comparisons of these datasets were all significantly different (P < 0.00001 for all). 230 

To measure gene tree estimation error, we examined gene tree heterogeneity across 231 

datasets using Robinson-Foulds (RF) distances between gene and species trees. Although 232 

some heterogeneity is expected due to the stochastic nature of the coalescent process, we 233 

assumed that increases in the mean and variance of RF distances between datasets were 234 

attributable to increased gene tree estimation error. The UCE100Flank dataset had the highest 235 

RF distances between gene and species trees, whereas the UCE1000Flank dataset had the 236 

lowest mean and variance in RF distances (Figure 5; Table 1). The BUSCOs and UCE300Flank 237 

datasets had intermediate RF distances, with similar means and variances (Table 1). 238 

Interestingly, RF distances from the BUSCO dataset were highly variable, with estimated gene 239 

trees from some loci showing relatively low (akin to the UCE1000Flank dataset) and some 240 

showing exceptionally high (akin to the UCE100Flank dataset) RF distances relative to both 241 

MSC and concatenated species trees. A Kruskall-Wallis test confirmed that RF-distances (X2 = 242 
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2740.1, df = 3, P < 0.00001) differed significantly among datasets, and a Wilcoxon rank sum 243 

test also revealed that differences between pairwise comparisons of these datasets were 244 

significantly different (P < 0.00001) except that RF-distances did not significantly differ between 245 

the UCE300Flank and BUSCO datasets (P = 0.25). 246 

 To quantify the relationship between alignment information content and gene tree 247 

estimation error and test the hypothesis that increased information content led to reduced gene 248 

tree estimation error, we modeled RF distances as a function of the number of parsimony 249 

informative sites (PIS) per locus using generalized linear models. These models were overall 250 

consistent with our hypothesized pattern of a negative association between both the number 251 

and proportion of PIS and RF distance, with lower RF distances in gene trees built from more 252 

informative alignments (Figure 6; Table S2). However, there was notable variation in the slope 253 

and tightness of fit of these models among datasets. For example, the UCE300Flank dataset, 254 

with intermediate numbers of PIS overall, had a tight negative association between RF distance 255 

and both the number of PIS and percentage of PIS per locus (Table S2). The same negative 256 

associations were revealed for UCE100Flank and UCE1000Flank datasets, but these 257 

relationships were much noisier. These differences were better visualized when the three UCE 258 

datasets were combined, revealing a strong and tightly fitting negative logarithmic relationship 259 

between the number of PIS per alignment and RF distance. Although this relationship was 260 

similar for the BUSCO dataset using the number of PIS as the predictor variable, we found the 261 

opposite pattern when using the percentage of PIS. Thus, based on multiple assessments, 262 

BUSCOs and UCEs behave differently with regards to gene tree to species tree discordance 263 

and patterns of nucleotide site variation. 264 

 265 

Tests of incomplete lineage sorting and introgression 266 

 267 

 Finally, because we found conflicting phylogenetic relationships between datasets for a 268 

clade of species in the genus Crypturellus (Figure 3), we assessed the extent to which this 269 

conflict could be explained by ILS due to rapid divergences or introgression between non-sister 270 

taxa. To do so, we looked at the relative frequencies of alternative quartets for five short internal 271 

branches within Clade A (Figure 7A). The MSC model assumes that all gene tree heterogeneity 272 

arises via ILS (i.e., no introgression, no gene tree error, no recombination, etc.), and it makes 273 

explicit predictions about the relative frequencies of alternative quartet topologies (unrooted four 274 

taxon statements) for all internal branches in a phylogeny. Specifically, the MSC model predicts 275 

one majority topology that is consistent with the species tree at a relative frequency >⅓ and two 276 

minority topologies of equal relative frequencies <⅓ (Pamilo and Nei 1988). As ILS increases, 277 

the relative frequencies of all three alternative quartets approach the ⅓ threshold. Deviations 278 

from these expectations (i.e., minority topologies are not equivalent in frequency) suggests that 279 

processes such as introgression may be influencing gene tree heterogeneity. All five branches 280 

that we examined showed evidence of either ILS or deviations from the MSC model. For 281 

branches 1 and 2 (two of the three shortest branches within Clade A) we recovered frequencies 282 

for three alternative quartets that closely approached the ⅓ threshold, implying ILS has 283 

promoted phylogenetic conflict at these branches. For branches 3–5, we found possible 284 

deviations from the MSC model, though this could be an artifact of sample size. 285 
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To test whether the deviations from the MSC model observed in Clade A could be 286 

attributed to introgression, we applied a phylogenomic network analysis, which revealed multiple 287 

nodes involved in reticulation that may explain gene tree discordance in Crypturellus Clade A 288 

(Figure 7B; electronic supplementary material). Specifically, we found two reticulate nodes. In 289 

the first, C. cinnamomeus was recovered as reticulate between C. transfasciatus (inheritance 290 

probability = 0.44) and C. erythropus (inheritance probability = 0.56). In the second, C. 291 

undulatus was reticulate between the basal node of the clade (inheritance probability = 0.76) 292 

and C. erythropus (inheritance probability = 0.24). Thus, some gene tree heterogeneity within 293 

the low-error UCE1000Flank dataset may be attributable to historical introgression between 294 

non-sister taxa. 295 

 296 

Discussion 297 

 298 

Here we used whole-genome sequencing to explore the biological and artifactual 299 

sources of phylogenomic conflict and reconstruct the species-level history of a relatively old 300 

Neotropical avian group of broad interest in evolutionary biology (Bertelli and Porzecanski 2004; 301 

Prum et al. 2015; Altimiras et al. 2017; Sackton et al. 2019; Li et al. 2023), the tinamous. 302 

Although we found that alignment information content and gene tree error varied considerably 303 

within and among datasets, our results based on different analytical approaches (concatenated 304 

and MSC methods) and datasets (UCEs and BUSCOs) were largely congruent. The topology of 305 

only a single clade (Clade A) varied among methods and datasets (Figures 1, 2, and 3), 306 

indicating that species tree estimation is, in general, robust to gene tree estimation error when 307 

biological sources of gene tree heterogeneity are limited. Nevertheless, the concatenated tree 308 

shows that Clade A contained multiple successive short internodal branch lengths (Figure 1), 309 

which suggests ILS may be a key driver of gene tree heterogeneity in this clade, and thus an 310 

important factor driving phylogenetic conflict. Indeed, quartet analysis revealed multiple internal 311 

branches with relative quartet frequencies approaching the ⅓ threshold predicted by high ILS 312 

(Figures 7A and S7). Cases such as this, where ILS is strong, necessitate the use of datasets 313 

without significant gene tree estimation error to accurately infer the species tree because 314 

concatenation is expected to fail when ILS is strong (Roch and Warnow 2015; Xi et al. 2015; 315 

Springer and Gatesy 2016). To complicate matters, we found evidence of historical 316 

introgression in this clade that may have further elevated levels of gene tree discordance 317 

(Figure 7B). For this reason, we suggest the MSC tree based on the UCE1000Flank dataset, 318 

which had the lowest rates of gene tree estimation error (lowest median and variance in RF 319 

distances between gene and species trees) is likely the most reliable (Xi et al. 2015). 320 

Nevertheless, in addition to ILS, rapid divergence events can be difficult to reconstruct because 321 

the short timeframe also means there is limited phylogenetic signal for those divergence events 322 

within individual gene trees (Leaché et al. 2015; Springer and Gatesy 2016; Mclean et al. 2019). 323 

Thus, given the lack of agreement across datasets and methods, we would argue that more 324 

analysis is needed to confirm the relationships of this clade that diversified rapidly with 325 

introgression between non-sister taxa. 326 

 327 

The relationship between alignment information content and gene tree error 328 

 329 
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 We examined the effects of data type (coding versus primarily non-coding datasets) and 330 

information content (number and proportion of PIS) on gene tree estimation error and found that 331 

coding sequences and genes with relatively few PIS contained high rates of gene tree 332 

estimation error. Although UCEs conformed to the expected negative association between PIS 333 

and gene tree estimation error as measured using RF distance (Figure 6), BUSCOs did not. 334 

Instead, we recovered a positive association between the proportion of PIS per alignment and 335 

RF distance, possibly because coding genes with more variable sites are evolving faster and 336 

thus are more prone to multiple substitutions (i.e., saturation effects), especially at third codon 337 

positions which are less constrained. This is also consistent with the bimodal distribution of 338 

variable sites in this dataset (Figure 4). Overall, these results show that data type and alignment 339 

information content have the potential to compromise phylogenomic inference from gene tree 340 

summarization methods that rely on the MSC model, even for datasets that contain relatively 341 

large amounts of data (Roch and Warnow 2015; Springer and Gatesy 2016). 342 

 We measured rates of gene tree estimation error using RF distances between gene 343 

trees and the inferred species tree, under the assumption that increases in RF distance were 344 

indicative of higher rates of phylogenetic error. Although gene histories are not expected to be 345 

congruent with the species tree in many cases (Tajima 1983; Pamilo and Nei 1988; Maddison 346 

1997), the assumption that RF distances are good indicators of error rates is valid because 347 

different datasets contained different means and variances in RF distances among gene trees. 348 

This was evident when the three UCE datasets were combined into a single analysis, which 349 

showed asymptotic convergence on relatively low mean and variance RF distances after 350 

reaching about 500 PIS (Figure 6). The asymptotic shape of this relationship implies that as PIS 351 

are added to an alignment, the resulting gene trees converge on a level of heterogeneity that is 352 

representative of or approaching real biological signal (i.e., ILS and/or introgression) rather than 353 

methodological or data-driven artifacts. Moreover, if all gene tree heterogeneity was due to 354 

biological processes such as ILS, one would expect the mean and variance in RF distances to 355 

be constant among datasets because these are derived from the same underlying samples. 356 

Although some level of gene tree heterogeneity is expected in all phylogenomic datasets, even 357 

if one assumes the impossible, where empirical gene tree estimation error is absent (Maddison 358 

1997; Gatesy and Springer 2014; Edwards et al. 2016), it is reasonable to assume that 359 

differences in the mean and variance in RF distances among datasets are good proxies for 360 

differences in gene tree estimation error.  361 

  362 

Comparisons of estimation error between data types and the benefits of whole genome 363 

phylogenomics 364 

 365 

We scrutinized orthologous data harvested from whole genome assemblies to identify 366 

the characteristics of phylogenomic datasets that might lead to lower bias. We found that short 367 

alignments with relatively few PIS had increased error (measured as difference between gene 368 

tree and species tree), a finding consistent with other studies (Meiklejohn et al. 2016; Burbrink 369 

et al. 2020). Likewise, we found that long UCEs tend to have low rates of gene tree estimation 370 

error and are efficacious markers to use in phylogenomic studies. We also found that the gene 371 

trees from the protein-coding dataset derived from BUSCO harvesting and splicing of exons 372 

from the tinamou genomes were very noisy. Despite containing large numbers and proportions 373 
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of PIS (Figure 5) available across many genes, we found high variance in RF distances for 374 

these genes and thus conclude that such datasets might be more prone to error than datasets 375 

of long UCEs, which had lower gene tree estimation error and behaved more predictably 376 

(Figures 4 and 5). As a comparison, the UCE300Flank dataset also had high variance in RF 377 

distances (i.e., it contained a mix of low and high error trees), but this variance was well 378 

explained by information content. Thus, coding and UCE datasets have different underlying 379 

properties of molecular evolution, and these differences should be considered when selecting 380 

loci for study and in data analysis. Despite these differences, BUSCO and UCE300Flank 381 

datasets converged on the same phylogenetic topology for Clade A, perhaps related to their 382 

similar levels of gene tree heterogeneity (Wilcoxon rank sum tests accepted the null hypothesis 383 

that RF distances for both datasets did not differ). 384 

Although we derived datasets from whole genome sequences, the UCE100Flank and 385 

UCE300Flank datasets are likely to most closely match datasets obtained from typical target 386 

capture approaches (Smith et al. 2014; Musher and Cracraft 2018; Tea et al. 2021) and are 387 

therefore indicative of rates of error in datasets derived from those protocols. For example, 388 

many studies utilize sequences from degraded DNA such as historical museum specimens, 389 

which may result in many relatively short UCE alignments. Still, even datasets sequenced from 390 

fresh tissues typically only capture about 100-300 bp of flanking region around the conserved 391 

UCE core. Thus, we offer multiple recommendations for future phylogenomic studies. First, if 392 

available, WGS data are highly preferred to sequence capture datasets because they allow for 393 

analysis of a much wider array of data types that can be compared as done herein (Jarvis et al. 394 

2014; Zhang et al. 2019). Such data also allow studies to achieve longer flanking regions 395 

around conserved UCE cores that significantly reduce bias during gene tree estimation (Figures 396 

5 and 6), and enable analyses of many other processes of interest, such as evolution of gene 397 

families. Moreover, we did not include intron data in the current study, but these data would also 398 

be available from WGS and may behave more like UCE data rather than like the nearby exons 399 

themselves.  400 

Second, if a very large genome size is cost prohibitive for WGS, then target capture 401 

datasets such as UCEs will likely contain high variance in RF distances (i.e., a mix of “good” 402 

and “bad” loci), but this variance is likely to be well explained by the number of PIS in each 403 

alignment (Figure 6). We therefore suggest that these datasets should be scrutinized and 404 

filtered, especially if a rapid radiation is involved (Doyle et al. 2015; S.A. Smith et al. 2018; 405 

Mclean et al. 2019; Smith et al. 2023). As the number and proportion of PIS were strongly 406 

predictive of gene tree estimation error, we suggest that simply removing alignments with too 407 

few PIS may be useful in many cases, as has been suggested elsewhere (Harris et al. 2014; 408 

Hosner et al. 2016; Blom et al. 2017; Leite et al. 2021). Given these findings, common 409 

phylogenomic approaches that sequence loci with intermediate or low levels of information 410 

content such as sequence capture of UCEs may be insufficient to resolve the relationships of 411 

taxa that evolved rapidly, such as adaptive radiations, where rates of ILS and short internodal 412 

distances caused by rapid diversification are expected to be extreme (Gatesy and Springer 413 

2014; Mclean et al. 2019). In these situations, the number of variable sites may also be too few 414 

to resolve gene trees involving short branches. 415 

Finally, although our BUSCO dataset was noisy and included a range of high- and low-416 

error gene trees, we do not suggest that datasets of coding genes are inherently poor quality. 417 
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Indeed, protein-coding datasets such as BUSCOs, transcriptomes, and others are likely to 418 

remain useful for a range of phylogenomic problems. For example, given their conservation of 419 

function, datasets of protein-coding genes will be important for reconstructing phylogenetic 420 

relationships at deeper timescales using either nucleotide or amino acid sequences (Dunn et al. 421 

2008; Allen et al. 2017; Zhang et al. 2019; Boyd et al. 2022). Still, given that our BUSCO 422 

dataset was noisy compared with our UCE datasets, we suggest exercising caution when 423 

applying protein-coding genes to difficult phylogenomic problems (Reddy et al. 2017). Careful 424 

fitting of substitution models, data filtering, and perhaps even manual inspection of alignments 425 

may reduce bias in these and other datasets of protein-coding sequence (Anisimova and Kosiol 426 

2009; Springer and Gatesy 2016).  427 

However, our results do not suggest that BUSCOs, or protein-coding genes in general, 428 

should be filtered by information content or RF distances. Information content was a weak and 429 

inconsistent predictor of gene tree estimation error for BUSCOs. Alignments with a fewer 430 

number of PIS or a higher proportion of PIS were both associated with increased gene tree 431 

error. Likewise, some amount of gene tree heterogeneity is expected due to the coalescent 432 

process. Thus, assuming that all high RF gene trees are erroneous and removing them from a 433 

dataset could mislead MSC analyses. Thus, more research is needed to understand how best 434 

to filter BUSCO datasets, and perhaps protein-coding datasets in general, for phylogenomics 435 

using gene tree summarization methods.  436 

  437 

Phylogeny and taxonomy of the Tinamous 438 

 439 

Our phylogenies based on multiple datasets with varying amounts of gene tree 440 

estimation error and information content all resulted in highly similar and well-supported 441 

relationships among tinamou species (Figures 1–3, S1–S6). Moreover, concatenation and MSC 442 

approaches largely agreed on the overarching relationships at both shallow and deeper 443 

timescales. However, for one clade, Crypturellus Clade A, we recovered phylogenetic conflict 444 

among datasets and species tree approaches. Topologies based on analysis of concatenated 445 

data tended to be less supported and less consistent than those estimated from gene trees in 446 

ASTRAL, and the UCE100Flank trees showed the lowest support overall. However, MSC trees 447 

based on longer UCEs and BUSCOs mostly agreed on the topology of Clade A, only varying in 448 

the placement of C. atrocapillus and a misidentified downloaded genome (GCA 013389825). 449 

The concatenated UCE1000Flank species tree was also most similar to these MSC results, 450 

though the placement of C. kerriae differed. Therefore, for this subclade, the concatenation 451 

results were statistically inconsistent, but the MSC results converged on a nearly identical 452 

topology across datasets (other than UCE100Flank, which contained high error) (Bryant and 453 

Hahn 2020). 454 

Importantly, our phylogenetic results imply that multiple taxonomic changes are 455 

necessary to appropriately classify taxa within Tinamidae. First, Nothoprocta cinerascens was 456 

recovered as sister to the genus Rhynchotus. Rhynchotus (Spix 1825) has nomenclatural 457 

priority over Nothoprocta (Sclater and Salvin 1873), and therefore we suggest moving N. 458 

cinerascens to the genus Rhynchotus (Bertelli and Porzecanski 2004; Valqui 2008). Second, 459 

Taoniscus nanus was recovered as embedded within the genus Nothura, and thus, Taoniscus 460 

(Gloger 1842) is a junior synonym of Nothura (Wagler 1827). We therefore suggest transferring 461 
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T. nanus to Nothura. Finally, we found evidence for what is likely a new species of Nothoprocta 462 

(see also Valqui 2008); specimens ascribed to N. pentlandii were polyphyletic, with a specimen 463 

of the nominate subspecies from Bolivia recovered as sister to N. perdicaria, and multiple 464 

specimens from Peru recovered as a clade sister to all other Nothoprocta. Thus, there appear to 465 

be at least two species-level taxa within N. pentlandii. 466 

 467 

Materials and methods 468 

 469 

Sampling 470 

 471 

 A total of 46 species of tinamous classified into nine genera are currently recognized 472 

(Clements et al. 2023). Of these, 22 are monotypic and the remaining species contain two or 473 

more subspecies. Altogether there are 175 named taxa (monotypic species plus subspecies) 474 

recognized in Tinamidae. We sampled 50 fresh tissues, 12 toe pads from historical museum 475 

study skins, and downloaded 10 whole-genome assemblies from the NCBI Assembly Archive, 476 

spanning a total of 66 named taxa (subspecies plus monotypic species) and 45 recognized 477 

tinamou species. Our sampling included all recognized species except one; a sample initially 478 

identified as Crypturellus boucardi turned out to be C. soui meserythrus (Voucher LSUMZ Birds 479 

180663, Tissue LSUMNS B-53413).  480 

Tinamous belong to the infraclass, Palaeognathae, which includes many extant flightless 481 

ratites such as ostriches (Struthionidae) and rheas (Rheidae) along with extinct forms such as 482 

Moas (Dinorninithiformes). Recent work has indicated that moas are the sister group to 483 

tinamous and that rheas belong to a clade that is sister to tinamous plus moas (Cloutier et al. 484 

2019). Thus, as outgroup taxa for tree rooting, we also downloaded whole genome assemblies 485 

for Rhea pennata (Greater Rhea) and Anomalopteryx didiformis (Little Bush Moa) from the 486 

NCBI Assembly Archive. Table S1 lists the 74 samples (72 tinamous plus two outgroups) 487 

included in this study. 488 

 489 

DNA extraction, library preparation, and whole genome sequencing 490 

 491 

 For fresh tissues, we extracted genomic DNA (gDNA) using the MagAttract High 492 

Molecular Weight kit from Qiagen (Valencia, California). Toe pads extraction of historical study 493 

skins was carried out in a dedicated historical DNA extraction laboratory at the Academy of 494 

Natural Sciences of Drexel University to reduce contamination risk. Toe pad samples were first 495 

washed in a brief bath of EtOH to help remove superficial contaminants, and then soaked in 496 

H2O for three hours to hydrate the desiccated flesh for DNA lysis. Samples were then digested 497 

using 180 µL ATL and 30 µL proteinase K for each sample and incubated at 56º C overnight. 498 

DNA isolation was then performed using the QiaQuick spin columns and extraction kit from 499 

Qiagen (Valencia, CA). 500 

Shotgun sequencing libraries were prepared for each extract using the Hyper library 501 

construction kit (Kapa Biosystems). These libraries were sequenced using 150 bp paired-end 502 

reads on an S4 lane of an Illumina NovaSeq 6000. These libraries were pooled and tagged with 503 

unique dual-end adaptors, and pooling consisted of between 13 and 18 samples per lane aimed 504 
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to achieve at least 30X coverage of the nuclear genome. Adapters were trimmed and 505 

demultiplexed using bcl2fastq v.2.20. We deposited raw reads in the NCBI SRA (Table S1). 506 

 507 

 508 

Whole genome assembly 509 

 510 

We cleaned and then mapped raw reads for each sample (Table S1) to a closely-related 511 

scaffold-level assembly from NCBI. Decisions about which downloaded genome to use for read 512 

mapping were made based on a previous tinamou phylogeny (Almeida et al. 2022). Specifically, 513 

we used fastp (Chen et al. 2018) to clean fastq files, trim adapters and remove low quality 514 

reads. Next, we used Burrows-Wheeler Aligner (BWA) version 0.7.17 (Li and Durbin 2009) to 515 

map the cleaned reads to reference genomes. Once reads were mapped, we used samtools 516 

version 1.6 to convert the resulting sam-files into sorted bam-files (Li et al. 2009) and Analysis 517 

of Next Generation Sequencing Data (ANGSD) version 1.2.13 (Korneliussen et al. 2014) to 518 

convert bam-files into fasta format. We used ‘-doFasta 2’ to ensure that the consensus 519 

nucleotide was written for each polymorphic site. 520 

To assess genome quality, completeness, and redundancy for each assembly, we used 521 

Benchmarking Universal Single Copy Orthologs (BUSCO) version 5.3.0 (Simão et al. 2015). 522 

BUSCO searches genome assemblies and identifies genes present in single copy using a 523 

database of known single-copy orthologs from a clade-specific database of genes. We used the 524 

‘aves_odb10’ lineage dataset, which utilizes 8,338 genes in the chicken genome. We used the ‘-525 

- augustus’ flag to obtain nucleotide sequences for genes in addition to amino acid sequences. 526 

This setting uses augustus version 3.2 (Hoff et al. 2019) to annotate each assembly, and 527 

outputs full nucleotide gene sequences for all complete single-copy orthologs in fasta format. 528 

This step was necessary to obtain our coding gene dataset for phylogenomic analysis. We also 529 

used samtools to estimate mean and standard deviation of sequence coverage for each 530 

genome. 531 

 532 

Ortholog identification and alignment 533 

 534 

We identified and extracted two types of orthologous markers from the WGS scaffolds. 535 

First, we utilized nucleotide sequences for the 8,338 single copy orthologs obtained from the 536 

BUSCO ‘aves_odb10’ dataset (henceforth, BUSCO dataset). We used custom scripts to append 537 

orthologous genes into the same text file and then used MACSE (Multiple Alignment of Coding 538 

SEquences) version 2.06 to align nucleotide sequences (Ranwez et al. 2018). MACSE is a 539 

codon-aware alignment algorithm that aligns nucleotide sequences with respect to their protein 540 

translation, but allows nucleotide sequences to contain exceptions to this underlying codon 541 

structure. This allowed us to accurately align each of the 8,338 gene sequences for all 74 542 

samples. 543 

Second, we harvested ultraconserved elements (UCEs) from each genome assembly. 544 

UCEs are highly conserved, typically single-copy, sequences in the genome that are flanked by 545 

neutral sites that increase in variability moving away from the conserved core (McCormack et al. 546 

2012). These may overlap with coding or non-coding sequences, but the general pattern of 547 

conserved UCE core with variable flanking region should result in very different distribution of 548 
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variation within a locus than the BUSCO genes, which are purely coding and are most likely to 549 

vary at third codon positions due to the redundant nature of the genetic code. To identify and 550 

extract UCEs from the genome we followed the pipeline outlined in Phyluce version 1.7.1 551 

(Faircloth 2016) for harvesting and loci from whole genomes. We specifically harvested UCE 552 

loci using the Tetrapods-UCE-5kv1 dataset, which includes 5,060 UCEs.  553 

In this pipeline, Phyluce scripts are used to align probe sequences (corresponding to 554 

conserved UCE cores) to the genome and then extract those sequences from the genome with 555 

a user-specified length of flanking region. Because we were interested in understanding 556 

whether and how information content covaried with gene tree estimation error, we harvested 557 

UCEs three times, varying the length of the flanking region included with the UCE core each 558 

time. We harvested UCEs from each genome that included 100 bp (similar to sequence lengths 559 

obtained with target capture from degraded DNA datasets such as historical museum skins), 560 

300 bp (similar to sequence lengths obtained with target capture from standard fresh tissue; 561 

e.g., Musher and Cracraft, 2018, Tea et al. 2021), and 1,000 bp (longer than typical of target 562 

capture datasets) of flanking region. We then used MAFFT (Katoh and Standley 2013) to align 563 

orthologous UCE loci for downstream phylogenomic analysis. 564 

Because missing data can be an additional source of phylogenetic noise, we evaluated 565 

each of the four datasets (three UCE and one BUSCO) using only complete (alignments for 566 

which all samples are included) alignments. This helped to eliminate gene tree discordance and 567 

other sources of error deriving from variation in missing data content.  568 

 569 

Phylogenomic analyses 570 

 571 

For each of the four datasets, we employed both a concatenation approach using 572 

RAxML version 8.2.12 (Stamatakis 2014) and an MSC approach using ASTRAL version 5.7.7 573 

(Mirarab et al. 2014; Zhang et al. 2018). First, we concatenated all alignments using the 574 

‘phyluce_align_concatenate_alignments.py’ script available in the Phyluce software (Faircloth 575 

2016) for each of the four ortholog datasets. We then used RAxML to reconstruct the phylogeny 576 

under a GTR + CAT substitution model which approximates the GTR + GAMMA model and is 577 

expected to perform well for large datasets (Stamatakis 2006; Abadi et al. 2019) We then 578 

examined the robustness of our phylogenies using the autoMRE option to perform 579 

bootstrapping but halt replicates when they converged. Next, for our MSC approach, we 580 

estimated gene trees (phylogenies derived from presumed independently sorting loci) for each 581 

alignment within each of the four datasets using RAxML. Then, we implemented a quartet-582 

based MSC approach in ASTRAL. ASTRAL approximates the MSC model by estimating the 583 

proportions of all possible four-taxon statements (quartets) among all estimated gene trees and 584 

then summarizing across the genome. This approach assumes that all gene tree heterogeneity 585 

(discordance among estimated gene histories) is due to ILS without significant ancestral 586 

introgression or gene tree estimation error. We also pruned our resulting trees to a single clade 587 

of interest and compared topologies for this clade using Robinson-Foulds (RF) distances using 588 

the ‘RF.dist’ function in phangorn version 2.11.1 (Schliep 2011). 589 

 590 

Assessing ortholog quality and gene tree error 591 

 592 
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To evaluate general differences among dataset variability, we first estimated the average 593 

variability among sites for each alignment within each dataset. To do so, we quantified the 594 

average variability for each nucleotide site relative to the center of the alignment using the 595 

‘phyluce_align_get_smilogram_from_alignments’ script available in the Phyluce package 596 

(Faircloth 2016). Then, to assess the relationships between alignment information content, data-597 

type, and gene tree estimation error, we wrote custom scripts in R version 4.3.1 (R Core Team 598 

2023) to estimate the number and proportion (informative sites/alignment length) of parsimony 599 

informative sites at each locus, as well as the RF distances (Robinson and Foulds 1981) 600 

between each estimated gene tree and the inferred species tree. Parsimony informative sites 601 

were defined as variable sites in the alignment where each variant nucleotide is represented by 602 

at least two samples. To estimate RF distances, we compared the gene trees from each dataset 603 

inferred using RAxML to both the MSC and concatenated trees based on the UCE1000Flank 604 

dataset. To test for differences in these measures among datasets, we used Kruskall-Wallace 605 

and pairwise Wilcoxon rank sum tests with a Benjamini-Hochberg p-correction implemented in 606 

base R (R Core Team 2023). We then ran generalized linear models using information content 607 

as the independent and RF distance as the dependent variable for each of the four datasets. 608 

Because we found no differences in RF distance when using MSC and concatenated species 609 

trees, for these models, we only used RF distances relative to the MSC species tree resulting 610 

from our ASTRAL analysis. We compared AIC values for linear and logarithmic fits for each 611 

regression and chose the model with the lowest AIC for each dataset. These regression 612 

analyses were done once for each dataset, and once with all three UCE datasets combined. 613 

Although the latter analysis contains the same UCE locus multiple times, albeit with additional 614 

flanking regions, we believe this analysis helps illuminate how the information content of loci 615 

from across the spectrum (i.e., very uninformative to very informative) influences rates of gene 616 

tree error.  617 

 618 

Tests of incomplete lineage sorting and introgression 619 

 620 

To examine the effects of ILS and introgression on the phylogenetic discordance of 621 

Clade A, we first looked at the alternative quartet topologies for five short internal branches and 622 

then used a phylogenomic network approach to test for reticulation (phylogenomic non-623 

bifurcation). For the quartet method, we used the custom scripts for the R package 624 

‘MSCquartets’ to identify the relative quartet frequencies for five nodes of interest (Rhodes et al. 625 

2021; Allman et al. 2023). Quartets are unrooted four taxon statements for which only three 626 

alternative sets of relationships (topologies) exist. Because ILS is expected at relatively short 627 

internal branches, we qualitatively evaluated the relative frequencies of alternative topologies at 628 

these branches to assess whether ILS might be involved in increasing genealogical 629 

heterogeneity, and thus phylogenetic disagreement of Clade A.  630 

To test for putative introgression, we applied a Bayesian approach implemented in 631 

PhyloNet 3.8.0 (the ‘MCMC_GT’ algorithm) (Wen et al. 2016). This method employs reverse-632 

jump Markov Chain Monte Carlo (rjMCMC) to sample the posterior distribution of phylogenetic 633 

networks under a multi-species network coalescent (MSNC) model using only rooted gene trees 634 

as input data. The MSNC is similar to the MSC, but relaxes the assumption of no introgression 635 

by modeling genome evolution as a network rather than bifurcating phylogeny. In doing so, it 636 
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accounts for both incomplete lineage sorting and reticulation (multiple ancestral lineages that 637 

contribute alleles to a single daughter lineage). Such reticulation is typically attributed to 638 

historical introgression. We used the gene trees from the UCE1000Flank dataset as these 639 

contained reduced rates of gene tree estimation error. We ran the analysis three times, varying 640 

the maximum number of reticulate nodes in each run to assess variability in the results. 641 

Specifically, we ran MCMC_GT allowing for a maximum of between zero (m=0) and ten (m=10) 642 

reticulate nodes. We assigned all samples to the species level, and ran the analysis using 643 

species as tips in the network rather than samples (i.e., some species were represented by 644 

multiple taxa). We ran the rjMCMC for 5 x107 generations with a burn-in of 5x106 generations, 645 

using the pseudo-likelihood calculation to reduce computation time. Because likelihood scores 646 

tended to increase with each successive increase in m-value, and the rjMCMC typically found 647 

the maximum allowed in each run, we chose the optimal m-value using a breakpoint analysis. 648 

Specifically, using the R package ‘segmented’ (Muggeo et al. 2014), we choose the network 649 

with the optimal m-value by fitting a segmented linear model to our likelihoods for each m-650 

value(Muggeo et al. 2014). This allowed us to identify breakpoints in the slope of the regression, 651 

where increases in m-value resulted in diminishing gains in likelihood. The m-value at the 652 

breakpoint in the segmented model was chosen as the optimal m-value. 653 
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Tables and Figures: 918 

 919 

Dataset Mean #PIS StDev #PIS Mean %PIS StDev %PIS Mean RF StDev RF 

BUSCOs 922.5146 690.084 0.3717782 0.1033898 58.5241 21.11341 

UCE100Flank 45.20298 28.84223 0.1347156 0.0828647 106.501 20.10551 

UCE300Flank 206.8736 88.36566 0.2648982 0.1048726 59.1615 18.40835 

UCE1000Flank 1035.713 250.5732 0.4178852 0.08261385 29.8675 8.468606 

 920 

Table 1: Means and standard deviations of parsimony informative sites (PIS) and 921 

Robinson-Foulds Distances (RF) for each dataset analyzed for the study. 922 
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923 
Figure 1: Concatenated Phylogeny of tinamous based on UCEs with 1,000 bp of flanking 924 

sequence. All nodes have bootstrap value of 100% except where noted. Note relatively short 925 

internodal branch lengths in Clade A. Tinamou illustrations by TAC. 926 
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 927 
Figure 2: Multi-species Coalescent (ASTRAL) Phylogeny of tinamous based on UCEs 928 

with 1,000 bp of flanking sequence. All nodes have posterior probability of 1. Branches 929 

labeled B1–B5 denote rapidly diverging branches evaluated using quartet analysis (see Figure 930 

7). Tinamou illustrations by TAC. 931 
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 932 
Figure 3: Phylogenetic topologies for a difficult to resolve clade (Clade A) of Crypturellus 933 

tinamous. The phylogenetic placement of multiple taxa was discordant among datasets and 934 

species tree approaches. These include (1) C. erythropus (black short-dashed branch), (2) C. 935 

transfasciatus (black long-dashed branch), (3) C. atrocapillus (pink solid branch), and (4) a 936 

misidentified genome downloaded from NCBI that was labeled as C. undulatus, but shows 937 

phylogenetic affinities with C. strigulosus and C. erythropus (GCA 013389825; pink long-hashed 938 

branch). The top row of trees shows topologies for each dataset estimated with RAxML after 939 

concatenation, whereas the bottom row of trees shows topologies estimated with ASTRAL. 940 

Numbers on the nodes correspond to posterior probabilities (MSC trees only) or bootstrap 941 

percentage values (concatenation trees only). Nodes with PP = 1.0 or bootstrap = 100% not 942 

shown. Scale bars under each topology indicate substitutions per site for concatenated trees or 943 

coalescent units for MSC trees. Bottom right heatmap shows Robinson-Foulds distances 944 

between all pairs of trees.  945 
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 946 
Figure 4: Smilograms for each dataset showing that variation within coding genes is 947 

distributed differently than within UCEs. Each point represents a base pair position, defined 948 

by its distance from the center, across all alignments in each dataset. UCEs show increasing 949 

frequency of variant sites with increasing distance from the UCE core. BUSCOs do not differ by 950 

distance from core, but instead show a bimodal distribution of frequency of variant bases likely 951 

associated with differences in variability between first and second versus third codon positions. 952 

Points are colored by the total number of substitutions at a given site across all samples and 953 

alignments. The outer regions of each plot show relatively few total substitutions because 954 

relatively few alignments in each dataset are very long.955 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.22.576737doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576737
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 956 
Figure 5: Information content and gene tree heterogeneity for each dataset. The top row of 957 

violin plots shows information content for each dataset using either the number of parsimony 958 

informative sites (#PIS) or the percentage of parsimony informative sites (%PIS) for each 959 

dataset. The bottom row of violin plots shows the gene tree heterogeneity for each dataset 960 

measured by the Robinson-Foulds distance between each gene tree and the inferred species 961 

tree (assuming the UCE1000Flank dataset). The bottom left plot assumes the MSC tree as the 962 

species tree, whereas the bottom right plot assumes the concatenated tree as the species tree. 963 

Because there is variation in mean and variance of RF distance among datasets, higher RF 964 

distances are indicative of more erroneous gene trees.  965 

  966 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.22.576737doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576737
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 967 
Figure 6: Covariation between information content and gene tree estimation error. Linear 968 

regression models exploring the relationship between information content and gene tree 969 

heterogeneity. The negative correlation in most instances suggests that alignments with less 970 

information content result in increased gene tree estimation error.  971 
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 973 
Figure 7: Incomplete lineage sorting and genomic reticulation in the tinamou phylogeny. 974 

(A) Relative quartet frequencies for five short internal branches in Clade A based on the 975 

UCE1000Flank dataset. Bar graphs depict the relative frequencies of each of three alternative 976 

unrooted quartet topologies (for any unrooted four taxon statement there exist only three 977 

alternative sets of relationships). The stippled lines indicate the ⅓ threshold for the frequency of 978 

gene trees given a multispecies coalescent model, which predicts a single majority quartet 979 

topology consistent with the true species tree with a frequency >⅓, and two minority topologies 980 

with equivalent relative frequencies < ⅓. As quartet frequencies approach the ⅓ threshold, they 981 

indicate stronger ILS. Major deviations from the expectations of the MSC model indicate 982 

violations of the model may be present, such as gene tree estimation bias or introgression. (B) 983 

Phylogenetic network results for the network with the optimal m-value (m=2) from PhyloNet 984 

showing non-bifurcating relationships among a difficult to resolve clade of Crypturellus tinamous 985 

(Clade A). Red branches demarcate reticulation, multiple ancestors contributing to a single 986 

daughter branch. Inheritance probability, or the proportion of the discordant gene trees that can 987 

be attributed to introgression, are marked on each reticulate branch. Branches are labeled 1–5 988 

and correspond to labeled branches in Figure 2. 989 
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