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Abstract8

Materials are the building blocks of our surroundings. Material perception enables us to create a vivid mental representation of9

our environment, fostering the appreciation of the qualities and aesthetics of things around us and shaping our decisions on how10

to interact with them. We can visually discriminate and recognize materials and infer their properties, and previous studies11

have identified diagnostic image features related to perceived material qualities. Meanwhile, language reveals our subjective12

understanding of visual input and allows us to communicate relevant information about the material. To what extent do words13

encapsulate the visual material perception remains elusive. Here, we used deep generative networks to create an expandable14

image space to systematically create and sample stimuli of familiar and unfamiliar materials. We compared the representations15

of materials from two cognitive tasks: visual material similarity judgments and verbal descriptions. We observed a moderate16

correlation between vision and language within individuals, but language alone cannot fully capture the nuances of material17

appearance. We further examined the latent code of the generative model and found that image-based representation only18

exhibited a weak correlation with human visual judgments. Joining image- and semantic-level representations substantially19

improved the prediction of human perception. Our results imply that material perception involves the semantic understanding20

of scenes to resolve the ambiguity of the visual information and beyond merely relying on image features. This work illustrates21

the need to consider the vision-language relationship in building a comprehensive model for material perception.22

Introduction23

We often describe what we see with words. Language reveals how we interpret and communicate our sensory experiences24

and provides critical information about our mental representation of the environment1. The interaction between language25

and perception has long been debated, mainly in visual cognition, such as color categorization2–4 and scene interpretation5, 6.26

Jointly modeling visual and natural language features expands the capability of artificial intelligence systems (e.g., image-27

classification7, 8, image-retrieval9, 10, and text-to-image generation11, 12) and provides valuable tools for investigating the neural28

correlates of object and scene recognition13, 14. Little is known about how and what aspects we communicate about materials,29
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which are the building blocks of objects and the environment. Material perception facilitates us to form a vivid and rich30

representation of the external world, which in turn guides our interaction with it. Although we can visually recognize and31

discriminate a broad range of materials, we might find it challenging to precisely and effectively describe their appearances32

and properties with words. To what extent do words encapsulate the richness of visual material perception? What are the33

communicable dimensions of materials?34

Based on visual input, we can often distinguish materials, and infer their diverse optical properties (e.g., surface glossi-35

ness15–18, translucency19–27 or transparency28), surface properties (e.g., roughness29), mechanical properties (e.g., softness30,36

stiffness31) and states (e.g., freshness32, wetness33). Previous works actively examined how visual estimates of material at-37

tributes are related to the statistical image features34, as well as seeking to probe the neural representation of material perception38

in cortical areas of the ventral visual pathway35–38. Along with visual discrimination, verbalizing what we see reflects, to a39

certain degree, how we process and organize visual information into semantic-level representation. Verbal description could40

serve as an interpretable representation that encodes the salient features of material qualities. While a plethora of works41

scrutinized the visual estimation of specific material properties related to physics16, 34, 39, 40, few studies shined the light on42

more subjective material perception from both visual judgment and language expression. With a large-scale image dataset of43

materials, Schmidt et al. (2023)41 used visual triplet similarity judgments from crowd-sourcing to distill a representational44

space, which was later annotated by humans to find conceptual and perceptual dimensions of materials. Cavdan et al. (2023)42
45

studied the structure of the representational space of perceptual softness triggered by material name with a cross-group analysis46

and suggested that verbally activated softness representation correlates with that derived from vision30. However, participants47

in these studies were often limited to judging materials based on predetermined categories and attributes without being given48

the opportunity to express their personal semantic interpretations. Further, previous works typically focused on the group-level49

analysis and downplayed the potential individual variances.50

To definitively assess the link between vision and language in material perception, it is crucial to measure visual judgment51

and verbal description within the individual participants, as well as allow them to freely articulate their unique visual experiences.52

Such verbal reports also serve as an accessible information channel for individuals’ understanding of materials. For example,53

when looking at the photograph of a chunk of tofu (Asian food) under a particular lighting, different participants might describe54

it differently (Figure 1): individuals identifying the object as tofu may describe it as soft, whereas those recognizing it as55

plastic may describe it as hard. How do we systematically design stimuli that couple with object-level realism and also elicit56

semantic-level ambiguity?57

Here, we developed an effective approach to create an extensive range of plausible visual appearances of familiar and58

novel materials (see Figure 2). We use an unsupervised image synthesis model, StyleGAN2-ADA43, to generate images of59

diverse materials based on the learning of real-world photos. As a result, the model parameterizes the statistical structures of60

material appearances 27 and facilitates linear interpolation between image data points, allowing us to morph between different61

material categories (e.g., morphing between a soap to a rock results in an ambiguous translucent object shown in Figure 2C).62
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Fig. 1. Given a photograph of an object, different participants might perceive its material properties differently. Those who
recognize it as tofu might expect it to be soft, while those who see it as plastic might perceive it as hard. Image features alone
might not predict individual perception.

This approach enables us to continuously vary the multidimensional structural features of materials (e.g., the combination of63

shape and color variation) and build an expanded Space of Morphable Material Appearance. The morphed materials resemble64

the visual characteristics of both original materials (e.g., soap and rock), potentially resulting in the ambiguity of perceived65

material identity. This offers an opportunity to investigate the influence of semantic-level interpretation on material perception.66

Furthermore, our models’ learned multi-scale latent space allows us to construct image-feature-based representations and67

compare them to human visual judgments.68

We measured material perception with two behavior tasks involving vision and language within individuals: Multiple69

Arrangement and Verbal Description (Figure 3). Stimuli were systematically sampled from the Space of Morphable Material70

Appearance (Figure 2D and E). In the Multiple Arrangement task, participants arranged materials based on visual similarities44.71

For the verbal description task, the participants described the same images with texts. With the recent advancements in Large72

Language Models (LLMs), it is now possible to create a representation based on verbal reports provided by the participants.73

We discovered a moderate vision-language correlation within individual participants by quantitatively comparing the behavioral74

representations derived from two tasks. We observed that material naming, colorfulness, and softness could be critical in75

explaining the participants’ visual similarity judgments. We also analyzed how the representations based on image features76

expressed through the model’s latent code relate to human visual judgments. Our findings imply that material perception77

extends beyond the analysis of image features in a feed-forward manner, encompassing also the semantic interpretation of78

visual scenes, likely shaped by the individual’s prior experience and knowledge.79

Results80

Space of Morphable Material Appearance81

Employing the unsupervised learning model, StyleGAN2-ADA, we generated images of diverse materials with perpetually82

convincing quality by training on real-world photos (Figure 2). With its multi-scale generative network (G) and scale-dependent83

latent space (W ), the model learns the statistical regularity of the images at multiple spatial scales, spontaneously disentangling84

3/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2024. ; https://doi.org/10.1101/2024.01.25.577219doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577219
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Overview of the synthesis pipeline for morphable material appearances. (A) Training datasets. (B) Transfer learning
pipeline. Upon training, we obtained models to generate images from three material classes. We can generate images of a
desired material (e.g., soaps) by injecting the latent codes (e.g., wsoap ∈Wsoap) into the corresponding material generator (e.g.,
Gsoap). (C) Illustration of cross-category material morphing. By linearly interpolating between a soap and a rock, we obtain a
morphed material, “soap-to-rock,” produced from its latent code wsoap−to−rock and generator Gsoap−to−rock. (D) Illustration of
the Space of Morphable Material Appearance. (E) Examples of generated images from the Space of Morphable Material
Appearance. These images are a subset of stimuli used in our psychophysical experiments, covering two major lighting
conditions (i.e., strong and weak lighting).
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semantically meaningful visual attributes, such as the object’s shape, texture, and body color27. Here, we built our own image85

datasets that include three materials: soaps (Dsoap), rocks (Drock), and squishy toys (Dtoy) (Figure 2A). We fine-tuned the86

StyleGAN pre-trained on the large soap dataset Dsoap on the smaller datasets Drock and Dtoy (Figure 2B). With a short training87

time, the Soap Model (Wsoap, Gsoap) turned into Rock (Wrock, Grock) and Toy Models (Wtoy, Gtoy) and can synthesize images88

of realistic and diverse rocks/crystals and squishy toys, under the broad variation of three-dimensional (3D) shapes, colors,89

textures, and lighting environments (Figure 2E Top Row). The effectiveness of transfer learning also suggests that the different90

categories of materials have common visual characteristics, such as color variation, specular highlight, and surface geometry;91

thus, learning features from one material benefits learning new materials.92

We can produce novel material appearances without additional training, by morphing between existing learned materials.93

Given the images of a pair of source and target materials, we can linearly interpolate between their layer-wise latent codes (e.g.,94

wsoap and wrock) while interpolating all convolution layers’ weight parameters of the corresponding material generators (e.g.,95

Gsoap and Grock) (see Method). At a given step size, we can synthesize the image of a morphed material with the interpolated96

latent code (e.g., wsoap−to−rock) and generator (e.g., Gsoap−to−rock). Figure 2C illustrates the method of creating a morphed97

material between soap and rock.98

Combining transfer learning and model morphing, we constructed an expandable Space of Morphable Material Appearance,99

from which we can systematically sample and create existing and novel material appearances with object-level realism (Figure100

2D). In this study, we focused on the material appearances at the morphing midpoints (i.e., step λ = 0.5). With this technique,101

we generated morphed materials, soap-to-rock (midpoint from soap to rock), soap-to-toy (midpoint from soap to squishy toy),102

and rock-to-toy (midpoint from rock to squishy toy) (Figure 2E Bottom row). We sampled 72 images from the Space of103

Morphable Material Appearance as stimuli for both of our behavioral experiments (see Method).104

Visual Material Judgment and Verbal Description are Moderately Correlated within Individuals105

Using the above-mentioned stimuli, we measured material perception with Multiple Arrangement and Verbal Description106

tasks. In the Multiple Arrangement task, participants were instructed to place the images within the circled region based on107

the “similarity of material properties” (Figure 3A). The task prompted the consideration of various aspects of the materials,108

allowing for the capturing of a multidimensional representation of how visual material discrimination is processed. During the109

Verbal Description task, the same group of participants provided unrestricted descriptions of the material with texts covering110

five aspects: material name, color, optical properties, mechanical properties, and surface texture. These aspects have been found111

useful in characterizing the mental representations of materials41.112

We constructed the Representational Dissimilarity Matrices (RDM) from each participant’s behavioral results for both tasks.113

A Vision RDM is created based on the on-screen Euclidean distances of pairwise comparisons of material similarity44 from114

the Multiple Arrangement. Meanwhile, we also built a Text RDM by encoding the images’ text descriptions provided by the115

participant into an embedding space with a large pre-trained LLM (see Methods). We tested four publicly accessible LLMs,116

CLIP7, BERT45, Sentence-BERT46, and GPT-247, whose embedding spaces were shown to capture the semantic similarity of117
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Fig. 3. Illustrations of psychophysical experiment interface. (A) The Multiple Arrangement task. Participants (N =16)
arranged images within a circle based on their judgment of the visual similarity of material properties. In the first trial,
participants were presented with all 72 images of materials. In each subsequent trial, a subset of images was iteratively
presented based on an adaptive sampling algorithm 44. (B) The Verbal Description task. With free-form text input, participants
were asked to describe the material shown in the image from five aspects: material name, color, optical properties, mechanical
properties, and surface texture. The gray font texts are example responses.

textual information. The primary analysis in this paper is conducted using the CLIP embedding unless otherwise noted.118

Across individuals, we found a moderate correlation between the RDMs of the two tasks within each participant. Figure119

4A displays the RDMs of three participants. The comprehensive statistical results encompassing all participants are provided120

in Figure 6. While the participants used different numbers of unique words ( Figure 6A, mean = 128 unique words, max =121

288 words, min = 37 words), we found that all of the participants’ verbal responses exhibited a significant correlation (all122

p < 0.001, FDR-corrected) with their own multiple arrangement behavior, signifying the presence of inherent cross-task123

consistency within an individual (Figure 6B blue bars). These moderate correlations reflect that participants’ own Vision and124

Text RDMs share similarities in their overall structures, while also underpinning differences in their local patterns. We observed125

a stronger correlation when comparing the group average Vision and Text RDMs (Spearman’s correlation rs = 0.75, p < 0.001)126

(rightmost column in Figure 4A). By applying classical multidimensional scaling (MDS) on the group average RDMs, we127

found that Vision and Text embeddings exhibit similar organizations, forming three major clusters: squishy-like (squishy toys,128

top left cluster in MDS), soap-like (soap and soap-to-toy, bottom left cluster in MDS), and rock-like (rock, rock-to-toy, and129

soap-to-rock, bottom right cluster in MDS).130

Despite overall similarities in general patterns among participants’ behavioral results, the Vision RDMs across participants131

reveal substantial individual differences in finer material discrimination (Figure 4A). We assessed the inter-participant consis-132

tency of the behavioral tasks with the leave-one-out test by iteratively correlating one participant’s data with the group average133

of the rest of the participants. We found that Vision RDMs (mean Spearman’s correlation rs = 0.41) show higher variance134

than the Text RDMs (mean Spearman’s correlation rs = 0.57). Compared with the ways of articulating materials with words,135

participants tended to be more diverse in how they visually judge material similarities. The varied degree of correlation between136

vision- and language-based representations across participants underscores the complex nature of individual differences in137

material reasoning.138
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Fig. 4. Vision-based similarity judgment and verbal description of materials are moderately correlated. (A) Representational
Dissimilarity Matrices (RDMs) of vision-based material similarity judgment via Multiple Arrangement (Vision RDMs) and
Verbal Description (Text RDMs). Top: Vision RDMs. Bottom: Text RDMs. From left to right: RDMs for three participants and
the group average RDM across all participants. In each RDM, on both x- and y-axis, the images are organized by the type of
material generator, spanning from the learned original materials (i.e., soap, toy, rock) to the morphed midpoint materials (i.e.,
soap-to-rock, rock-to-toy, and soap-to-toy). The green colors indicate low dissimilarity between pairwise combinations of
materials, whereas the pink colors indicate high dissimilarity. The Spearman’s correlation (rs) between the corresponding
Vision and Text RDMs are annotated in the box below. (B) Two-dimensional embedding from the MDS of the group average
Vision and Text RDMs, color-coded based on the six types of material generator depicted in (A).

Vision- and Language-based Representations Reveal Salient Perceptual Features139

Next, we sought to interpret the representative dimensions of materials expressed through the behavioral tasks. We annotated140

the MDS results of the Vision RDMs with the image stimuli and the participants’ verbal descriptions. Colorfulness, material141
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name, and softness are the key features across participants. On the group average level, as shown in Figure 5A, we labeled the142

most frequent word that participants used in the description of “material name” and “mechanical properties” for each stimulus.143

Materials with vivid body colors and high saturation (left side in MDS, e.g., red, pink) are separated from less saturated colors144

(e.g., light blue and light gray) (leftmost column in Figure 5A). Materials’ chemical and physical properties determine the145

specific range of their colors and surface textures32. This innate connection may facilitate visual material categorization. We146

also observed that participants tend to group “hard” materials (e.g., rock, glass, or crystal) away from “soft” ones (e.g., soap,147

wax, or rubber) (middle column in Figure 5). Here, perceived softness might be a notable attribute associated with the material148

category. At the individual level, although participants used different sets of material names to depict the stimuli, they grouped149

the materials with similar names close to each other. This suggests that visual judgments are influenced by the interpretation of150

material identity (rightmost column in Figure 5B).151

We found that removing the “material names” from the text embeddings (“No material name” condition in Figure 6B)152

significantly decreased the correlation between Vision and Text RDMs for almost all participants (Wilcoxon one-sided signed-153

rank test, all p<0.0005 across three language models). Different LLMs produced similar results, except GPT-2 embedding led154

to lower vision-language correlations. Material naming may serve as a high-level feature that envelops the particular structural155

combination of various material characteristics, providing critical information to the perceptual inference of material attributes.156

Together, our results suggest that participants actively use semantic-level features to distinguish and group materials in visual157

assessment, which might explain the correlation between the two behavioral tasks.158

Image-level Representations from the Generative Model Weakly Correlate with Human Perception159

We investigated how image-level features extracted from our image-generative model contribute to participants’ visual judgment160

of materials. To generate an image with StyleGAN, a latent code w ∈W is transformed to the channel-wise latent features,161

StyleSpace features48, with different learned affine transformations at each convolution layer (i.e., b4.conv1 to b1024.conv1)162

of the generator G. Figure 7A illustrates the structure of the StyleSpace features. For a given image, we can retrieve 17163

StyleSpace-feature vectors representing image features across nine resolutions (from 4 pixels × 4 pixels to 1024 pixels × 1024164

pixels) in its image generation process. StyleSpace features represent visual attributes in a scale-specific manner (Figure 7B).165

Manipulating coarse-scale features (4 × 4 to 16 × 16 resolutions) mainly changes the rough contour of the source material to166

that of the target material. Middle-scale features (32 × 32 to 64 × 64 resolutions) correspond to the material surface properties167

(e.g., translucency) and local variation of geometric complexity. Fine-scale features (128 × 128 to 1024 × 1024 resolutions)168

represent the more refined details, such as the microstructure of surface texture and the object’s body color. Based on these169

latent features, we built 17 StyleSpace-feature RDMs to represent the image-level dissimilarity of materials.170

We computed the Spearman’s correlation between a participant’s Vision RDM and each of the StyleSpace-feature RDMs.171

The individual participants’ data with statistical significance (p < 0.005 with FDR correction) are shown in Figure 7D. Our172

analysis indicated weak but significant correlations (mean correlations range from 0.09 to 0.24) between participants’ visual173

perception of material similarity and image features across all StyleSpace layers. The coarse-to-middle-scale StyleSpace174

8/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2024. ; https://doi.org/10.1101/2024.01.25.577219doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577219
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 5. Colorfulness, softness, and material name are critical perceptual features in material similarity judgment. (A)
Annotated MDS of the group average Vision RDM. For “colorfulness”, we marked the image stimuli. For “softness” and
“material name”, we marked the most frequently used word aggregated across all participants. (B) MDS of two individual
participants’ Vision RDMs, annotated with their own use of words.

features generally show low correlations with the participants’ Vision RDMs, implying that the object’s rough contour and175

middle-scale surface texture alone are insufficient for material discrimination. In contrast, the fine-scale StyleSpace features176

show relatively higher correlations with the multiple arrangement data of some participants. Nevertheless, these representations177

(e.g., b256.conv1 RDM in Figure 7C) still exhibit substantially different patterns from human perceptual results. Our findings178
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Fig. 6. (A) Distribution of the number of unique words participants used in the Verbal Description task. (B) Comparison of
vision-language correlations across different language models. For each individual, we computed within-person Spearman’s
correlation between the Vision and Text RDMs. The Text RDM is built by embedding verbal descriptions with four different
pre-trained LLMs: CLIP, BERT, Sentence-BERT, and GPT-2. The blue bars indicate the correlation values when all text
features are included to construct the Text RDM. The gray bars indicate the correlation values when the “material name” is
excluded from constructing the Text RDM. Asterisks indicate FDR-corrected p-values: *** p < 0.001, ** p < 0.01, and *
p < 0.05.

demonstrate that participants do not solely rely on image features when evaluating material similarity. Instead, they incorporate179

high-level cognition to ensure that their interpretations of the images are consistent.180

Joining Text and Image-level Representations Improves Prediction of Human Visual Judgments181

Lastly, we tested whether combining the image representations and human verbal descriptions improves the prediction of human182

visual judgments of materials. For each individual, we used the 17 different StyleSpace-feature RDMs and the participant’s183

Text RDM together (i.e., full model) or only the Text RDM (i.e, reduced model) as predictors in a multiple regression model to184

predict the participant’s Vision RDM. Compared with the reduced model, the model incorporating StyleSpace features and185

verbal descriptions performs significantly better (p < 0.0001 with ANOVA test) and increases the explained variance (adjusted186

R2) across all participants (Figure 7E). This provides compelling evidence that visual judgment of materials involves integrating187

and leveraging multiple spatial scales’ image features and that participants’ verbal reports provide complementary information188

to the prediction of their visual perception.189
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Fig. 7. Comparing representations from the image features and human visual similarity judgment of materials. (A) Structure
of the StyleGAN’s StyleSpace features. The blue, red, and yellow bars illustrate the StyleSpace-feature vectors at coarse-,
middle-, and fine-spatial scales, respectively. The number in the parentheses denotes the dimensionality of the
StyleSpace-feature vector at a specific layer. (B) Manipulating StyleSpace features at different spatial scales leads to changes in
various visual attributes. From left to right of each row, a subset of StyleSpace features of the source image is interpolated with
those of the target image, while keeping the rest of the source image’s StyleSpace features unchanged. In this example, both the
source and target images are produced from the soap-to-rock generator. (C) Examples of StyleSpace-feature RDMs constructed
from the StyleSpace features at different spatial scales. We compute the correlation between each participant’s Vision RDM
and StyleSpace-feature RDM corresponding to each layer. (D) The Spearman’s correlation between an individual’s Vision
RDM and StyleSpace-feature RDM from each of the 17 layers (black dots). Among the 272 pair comparisons (16 participants
× 17 layers), 83% of them demonstrate statistical significance and are plotted. The green bars represent the average
correlations across participants. The blue-shaded region indicates the upper and lower bounds of the noise ceiling. (E) Jointing
verbal description with StyleSpace features improves the prediction of multiple arrangement behavior for all participants with
multiple linear regression. The x-axis represents individual participants. The y-axis represents the explained variance.

Discussion190

We probed how vision and language are connected in material perception. Using an unsupervised image synthesis model, we191

developed a novel approach to create a diverse array of plausible visual appearances of familiar and novel materials. With these192

images, we measured and analyzed behavioral tasks alongside image features derived from our material appearance synthesis193
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network. We found a moderate but significant correlation between visual judgments and verbal descriptions of materials194

within individual participants, signifying both the efficacy and limitation of language in describing materials. Along with the195

image-level analysis of material similarity, our findings suggest that material perception goes beyond extracting information196

solely from low-to-mid-level image statistics; instead, it may actively integrate semantic-level representation to resolve the197

ambiguous visual information. Demonstrating the potential link between vision- and language-based representations, our study198

invites further investigation of material perception by considering it an avenue to explore the language-perception relationship199

across a broad range of visual cognition tasks.200

The lack of precise alignment between the representations from two behavioral tasks pinpoints the gap between visual201

judgment and verbal description of materials (Figure 7E). On the one hand, combining vision- and text-based representations202

reveals informative features for material discrimination, such as the object’s color, softness, and material name. This would203

be challenging to manifest when limited to a single modality. At the same time, the verbal descriptions do not fully capture204

the nuances of material appearances the participants visually perceive. One potential explanation could be that participants205

faced difficulty in describing subtle visual characteristics, such as spatial color variation and surface geometric complexity, with206

accuracy and consistency. Nevertheless, these visual attributes could be crucial in finely distinguishing samples within the207

general clustering of materials. Our findings reveal that combining latent image features and text representations enhances208

the explained variance in participants’ visual assessment of materials. This implies that semantic representation and visual209

perception collaboratively facilitate material judgment. Our finding is consistent with the recent research demonstrating that210

assembling distilled image features from Deep Neural Networks (DNN) and textual features from LLMs reduces the gap to211

approximate human similarity judgment49, 50. The misalignment between language and vision in material perception draws212

attention to the potential limited expressiveness of language in communicating about materials. This notion is crucial to consider213

in developing computer vision applications, spanning from material-related scene annotation to text-guided material synthesis.214

Our results show that when the material name is removed from the text embedding, the correlation between Vision and Text215

RDMs systematically decreases across participants (Figure 6). This may stem from the functional roles that nouns (material216

names) play in everyday language usage51. With material names (e.g., crystal or soap), we can label materials that possess217

an array of unique and/or related attributes, such as softness, translucency, glossiness, and the object’s shape. During this218

labeling process, material names can encapsulate the perceptual similarity of materials across multiple dimensions and partition219

samples of materials into a system of semantic categories52, potentially helping us communicate about materials in an efficient220

way. In future works, we might investigate material perception from the perspective of effective communication4, 52, 53, such as221

examining the structure and complexity of material naming and comparing material naming across various language systems.222

The computational mechanisms of material perception remain an area of ongoing exploration without a unified consensus.223

Over the past decade, a prevailing view has portrayed material perception as a mid-level visual process anchored in the224

feed-forward-based visual processing hierarchy. Instead of explicitly estimating a material’s physical parameters, the visual225

system may derive a representation by learning the statistical image structures that materials exhibit54–57. Material perception226

12/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2024. ; https://doi.org/10.1101/2024.01.25.577219doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577219
http://creativecommons.org/licenses/by-nc-nd/4.0/


starts by extracting low-level image features and gradually integrating them into a mid-level representation, which indicates227

material properties. Subsequently, the mid-level features are combined to form a high-dimensional representational space that228

provides the basis for high-level processing, such as material categorization34.229

Our discovery underscores the significance of acknowledging the top-down influence in material perception, challenging230

the conventional notion of strictly perceiving materials as a feed-forward process. Notably, we found that participants’ visual231

judgments of material similarity align more closely with their own semantic representations of materials, as evidenced by verbal232

reports, rather than with image-level representations extracted from the image generation model. We observed substantial233

individual differences in material description. For the same image, participants could describe it differently and even oppositely.234

For example, one participant described the yellow soap-to-toy midpoint material (Figure 2E, Soap-to-toy panel, Leftmost in235

Top Row) as “soap”, “easy to deform”, and “translucent and glossy”. In contrast, another participant described the same image236

as “stone”, “hard”, and “opaque and cloudy”. When presented with identical image features, variations in high-level cognitive237

factors, such as material recognition, may determine how participants interpret and integrate information at the image level.238

This highlights the intricate interplay between low-level visual features and higher-level cognitive functions in perception37, 58.239

Evaluating the link between visual judgment and verbal description with behavioral data is the first step for probing their240

neural representations in material perception. Neuroscience research actively examined the neural representation of language241

and non-linguistic processing (e.g., music, working memory) and investigated the specificity and interrelationship of brain242

regions responsible for these cognitive skills59. Efforts were also made to explore how the brain encodes certain conceptual243

representations (e.g., objects, actions) elicited by visual and linguistic stimuli14, 60. Recent work suggested that incorporating244

language feedback is crucial for explaining neural responses in high-level visual brain regions61. Following these practices, a245

plausible future direction could be to examine whether and how brain regions’ engagement for visual judgment differs from246

those activated by semantic descriptions of materials. Addressing such cortical representations across modalities may help to247

unravel the open questions: What is the causal relationship between material recognition and attribute estimation? At a more248

fundamental level, how does the functional mechanism of perceiving materials differ from and connect to that of perceiving249

textures and objects?250

Unlike previous works that usually examined material perception with real or rendered zoom-in surfaces, we intentionally251

synthesized images of materials coupling with object-level realism. Our approach of constructing a Space of Morphable252

Material Appearance with transfer learning and model interpolation methods could be extended to a broader range of materials253

(e.g., metal, glass). Beyond sampling at the interpolation midpoint, the expressiveness of our model and its latent representation254

offers a unique capability to manipulate material-related attributes (e.g., translucency and surface geometry) of the object while255

facilitating controlled and continuous adjustments of visual characteristics linked to material categories. This enables us to256

potentially design visual stimuli for psychophysical experiments to examine individual differences in material perception and257

related scene understanding. Given the lack of labeled image datasets of materials, our image synthesis framework can also258

serve as a versatile tool for data augmentation, providing an ample supply of additional samples for training in material-related259
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computer vision tasks, including material classification, text-to-image generation, and semantic material attribute editing.260

Methods261

Image Datasets262

We created our training datasets of high-resolution images (1024 pixels × 1024 pixels) by taking photographs of real-world263

materials with an iPhone 12 Mini smartphone. Overall, our training data consists of three subcategories: soap (Dsoap),264

crystal (Drock), and squishy toy (Dtoy) datasets, including 8085 (60 objects), 3180 (24 objects), and 1900 (15 objects) images,265

respectively.266

StyleGAN and Transfer Learning267

We used the style-based generative adversarial network, StyleGAN2-ADA, as the backbone model. Our previous work, Liao268

et al. (2023)27, provides a detailed description of the model and the training process. StyleGAN2-ADA inherently applies a269

variety of data augmentation during training, and the length of training is defined by the total number of real images seen by the270

network. We obtained a Soap Model by training the StyleGAN2-ADA from scratch on Dsoap for a total length of 3,836,000271

images, with a learning rate of 0.002 and R1 regularization of 10.272

We fine-tuned the Soap Model separately on the Drock and Dtoy, which allows all model parameters to adjust to the new273

datasets. Full-model fine-tuning processes on Drock and Dtoy used the same hyperparameters as the training on Dsoap. The274

lengths of fine-tuning were 1,060,000 and 960,000 images for Drock and Dtoy, respectively. We used the models with the lowest275

Fréchet Inception Distance (FID) scores for the rest of our study. The FID scores for Rock and Toy Models are 22.22 and 23.38,276

respectively. All training was performed on a Tesla V100 GPU on Google Colab.277

Cross-category Material Morphing278

The morphing of images of materials requires applying linear interpolation of the layer-wise latent codes w ∈W , as well as the279

StyleGAN’s generator weights62. To morph from a source to a target material, we first sample two latent codes (i.e., wsource and280

wtarget ) from the corresponding learned W latent spaces (e.g., wsoap ∈Wsoap as source, wrock ∈Wrock as target). As illustrated in281

Figure 2C, w is a tensor with the dimension of 18×512. With equation (1), we can compute the interpolated latent code wλ ,282

at any desired step size λ . The dimension of wλ is also 18×512. Similarly, we implement linear interpolation between the283

convolutional weights of each convolution layer in the source material generator and the corresponding weights in the target284

material generator. The weights are multidimensional tensors. With the same λ , we calculate the interpolated generator weights285

Gλ (equation (2)).286

wλ = wsource +λ (wtarget −wsource) (1)

Gλ = Gsource +λ (Gtarget −Gsource) (2)
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We insert wλ into Gλ to generate the image of morphed material. Specifically, each of 18 slices of wλ is injected into the287

convolution layer at the corresponding spatial resolution (from 4 pixels × 4 pixels to 1024 pixels × 1024 pixels) (Figure 2C).288

Psychophysical Experiments289

Participants Sixteen participants (13 female, median age = 22) from the American University (AU) were given informed290

consent and were reimbursed for their participation. All were Native English speakers and had a normal or corrected-to-normal291

vision. The experiments were approved by the ethics board at AU, and were conducted in adherence to the Declaration of292

Helsinki.293

Stimulus Selection We first generated 30 images for each of the “original” materials: soaps, rocks, and squishy toys, by294

sampling from their corresponding latent spaces, Wsoap, Wrock, and Wtoy and synthesizing with their paired material generators,295

Gsoap, Grock, and Gtoy. We balanced the images in two lighting conditions for each material category: strong and weak (Figure296

2E).297

We randomly paired up two different “original” materials under the same lighting conditions and then synthesized the image298

corresponding to the linear interpolation midpoint (step λ = 0.5). We initially generated 1000 images of morphed materials299

through the corresponding midpoint material generators (Gsoap−to−rock, Gsoap−to−toy, and Grock−to−toy). We picked 12 images300

synthesized from six material categories: soap, rock, squishy toy, soap-to-rock midpoint, rock-to-toy midpoint, and soap-to-toy301

midpoint. For each material category, half of the selected images are from strong lighting conditions (i.e., sunny indoor scene),302

and the remaining half are from weak lighting conditions (i.e., overcast indoor scene). We selected 72 images and tried to303

make the range of visual appearances as diverse and natural as possible. These images were then used as stimuli for Multiple304

Arrangement and Verbal Description tasks.305

Multiple Arrangement Task We conducted the multiple arrangement experiment using Meadows.com ( https://306

meadows-research.com/). Participants were instructed to arrange the images (180 pixels × 180 pixels) of materi-307

als based on the “similarity of material properties” by dragging and dropping them in the circled region (Figure 3A). In the308

first trial, the participants roughly arranged all 72 images into groups. In the subsequent trials, more refined subsets were309

chosen and displayed by an adaptive lift-the-weakest algorithm to reduce the remaining uncertainty of the similarity judgment310

of materials44. The average duration of the experiment was about 60 minutes. The pairwise on-screen Euclidean distances311

between the arranged images were computed upon the completion of the experiment, producing a Vision RDM with inverse312

MDS.313

Verbal Description Task With the same 72 images used in the Multiple Arrangement task, participants described the material314

in the image by freely inputting texts based on five aspects (see Figure 3B). They had unlimited time on each trial and were not315

restricted regarding the order in which they could enter their responses.316

Experiment Procedures All participants first completed the Multiple Arrangement task, and then the Verbal Description task317

in a separate session. All experiments were conducted in a dimly lit laboratory room. The stimuli were presented on an Apple318
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iMac computer with a 21.5-inch Retina Display, with a resolution of 1920 pixels × 1080 pixels.319

Creating Text RDMs from Verbal Description Data We used a fixed template to concatenate the five aspects that participants320

described an image: “It is a material of [material name] with the color of [color], it is [optical properties], it is [mechanical321

properties], and it is [surface texture].” Next, we encoded the concatenated text into a feature vector through a pre-trained322

LLM. The four commonly used pre-trained transformer-based language models (i.e., CLIP7, BERT45, Sentence-BERT46, and323

GPT-247) can embed a sentence or paragraph of text into a high-dimensional feature space. For CLIP, Sentence-BERT, and324

GPT-2, we extracted the feature vector at the last hidden layer. For BERT, we concatenated the feature vectors from its last four325

hidden layers. The size of the embedded text feature vector varies across different language models: 512 for CLIP, 3072 for326

BERT, 384 for Sentence-BERT, and 768 for GPT-2. For each participant, we built a 72 × 72 Text RDM by computing the327

pairwise cosine dissimilarity between the resulting feature vectors of the verbal descriptions (Figure 4A, Bottom Row).328

To investigate the effect of removing the “material name” on the embedding of the verbal descriptions, we used the following329

template to form the image caption: “It is a material with the color of [color], it is [optical properties], it is [mechanical330

properties], and it is [surface texture].” Hence, we used the same procedure described above to encode the descriptions without331

material names as feature vectors.332

Creating StyleSpace-Feature RDMs We used StyleGAN’s StyleSpace48 to describe the innate image features of materials333

(Figure 7A). For a StyleGAN generator, a 4 × 4 input is progressively expanded to a 1024 × 1024 output image. For each major334

resolution (every resolution from 4 pixels × 4 pixels to 1024 pixels × 1024 pixels), there are two convolution layers (conv0 and335

conv1) for feature map synthesis (except that the 4 × 4 resolution only has conv1) and a single convolution layer (i.e., tRGB336

layer) that converts the output to an RGB image. The latent code w ∈W is injected into different learned convolution layers to337

obtain the channel-wise style vectors, namely StyleSpace. Here, we focused on the style vectors for feature map representation.338

Overall, we can extract 17 style vectors representing latent image features across different generative steps for a particular339

generated image. The dimensionality of these style vectors varies depending on their corresponding spatial resolution of the340

convolution layer, gradually decreasing from 512-dimension at 4 × 4 resolution to 32-dimension at 1024 × 1024 resolution.341

For the 72 images used in the psychophysical experiments, we extracted their StyleSpace features and computed the342

pairwise Euclidean distances between images, thus generating 17 StyleSpace-feature RDMs (i.e., one for each StyleSpace343

layer) (see examples in Figure 7C).344

Predicting Vision RDM with Text and StyleSpace-feature RDMs To determine the contribution of verbal description345

and image-level features to the multiple arrangement behavior, we use multiple linear regression based on the Text and346

StyleSpace-feature RDMs63.347

We first converted the 72 × 72 RDMs into 2556-dimensional feature vectors, by extracting the off-diagonal elements of an348

RDM. We set the participant’s own Vision RDM feature vector as the predicted variable. Two first-order multiple regression349

models were fitted for each participant: one “full” model that included the Text RDM and all 17 StyleSpace-feature RDMs; and350

16/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2024. ; https://doi.org/10.1101/2024.01.25.577219doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577219
http://creativecommons.org/licenses/by-nc-nd/4.0/


one “reduced” model that only included the Text RDM. For each model, we computed the adjusted R2 to indicate the explained351

variance of the Vision RDM. We also used ANOVA to test whether the “full” model improves the fit of the data compared to352

the “reduced” model, with statistical significance (95% confidence level).353
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