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Abstract  

Developmental patterns of behavior are variably organized in time and among 

different individuals. However, long-term behavioral diversity was previously studied 

using pre-defined behavioral parameters, representing a limited fraction of the full 

individuality structure. Here, we continuously extracted ~1.2 billion body postures of 

~2,200 single C. elegans individuals throughout their full development time, to create 

a complete developmental atlas of stereotyped and individual-unique behavioral 

spaces. Unsupervised inference of low-dimensional movement modes of each single 

individual revealed a dynamic developmental trajectory of stereotyped behavioral 

spaces and exposed unique behavioral trajectories of individuals that deviate from 

the stereotyped patterns. Moreover, classification of behavioral spaces within tens of 

neuromodulatory- and environmentally-perturbed populations efficiently uncovered 

plasticity in the temporal structures of stereotyped behavior and individuality. These 

results present a comprehensive atlas of continuous behavioral dynamics across 

development time and a general framework for unsupervised dissection of shared 

and unique developmental signatures of behavior. 
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Introduction  
 

Complex patterns of behavior may be fundamentally described as the 

composition of underlying movement states that integrate with different intensities 

and variable temporal order to form high-level manifestation of behavior. In 

particular, these underlying modes of movement, mainly characterized by posture 

changes during specific developmental windows, were shown across species to form 

stereotyped movement patterns that are shared by many individuals within the 

population, such as in C. elegans (Stephens et al., 2008; Ahamed et al., 2021; 

Schwarz et al., 2015),  D. melanogaster (Berman et al., 2014; Overman et al., 2022) 

and mice (Wiltschko et al., 2015; Hong et al., 2015; Wiltschko et al., 2020). However, 

the complete and continuous organization of stereotyped behavioral modes of 

posture dynamics across and within all developmental stages of an organism is still 

underexplored. In addition, it has been shown that animals within the same 

population, even when isogenic and grown in the same environment, show long-term 

individual-to-individual behavioral diversity that distinguish them from each other 

(Honegger et al., 2020; Kain et al., 2012; Werkhoven et al., 2021; Bierbach et al., 

2017; Freund et al., 2013; Schuett et al., 2011), including across developmental 

timescales (Stern et al., 2017; Ali Nasser et al., 2023). These inter-individual 

differences were mainly extracted by using pre-defined behavioral parameters, 

exposing a limited set of behavioral characters for uncovering individuality within 

populations.  

Here, we used unsupervised inference of the complete dynamic structure of 

C. elegans behavior from egg hatching to adulthood, to define a developmental 

trajectory of behavioral spaces of each single individual within the population. The 

nematode C. elegans is an ideal system to study the temporal and inter-individual 

variation in posture dynamics, among isogenic individuals and across developmental 

timescales, due to their short development time of 2.5 days and the homogeneous 

populations generated by the self-fertilizing reproduction mode of the hermaphrodite. 

By utilizing a long-term imaging system at high spatiotemporal resolution for 

continuous behavioral monitoring and posture extraction of multiple isolated 

individuals, we generated a comprehensive atlas of C. elegans behavioral spaces 

throughout a full developmental trajectory. The dataset includes a total of over 1.2 

billion body postures, continuously extracted from ~2,200 individuals across and 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2024. ; https://doi.org/10.1101/2024.01.27.577215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577215
http://creativecommons.org/licenses/by-nc/4.0/


 3 

within all stages of development. Unsupervised inference of the low-dimensional 

representation of each individual’s behavioral spaces of posture dynamics modes 

across developmental windows revealed both stereotyped and individual-unique 

behavioral trajectories that dynamically change as development progress. Moreover, 

analysis of stereotyped and individual-specific behavioral spaces across tens of 

neuromodulatory- and environmentally-perturbed populations uncovered widespread 

plasticity in the temporal organization of shared and unique developmental patterns 

of behavior. 

Overall, the complete atlas of behavioral dynamics throughout development 

and the unsupervised inference of long-term trajectories of behavioral spaces 

provide a general framework for uncovering diversity in behavioral structures across 

developmental timescales, at the population- and individual-level.  

  

Results  
 
A complete developmental atlas of C. elegans behavioral spaces of posture 
dynamics 

We developed a new analysis system for studying the complete stereotyped 

and individual-unique behavioral spaces of C. elegans, by longitudinal monitoring of 

posture dynamics of single individuals, during their full development time. The 

analysis framework is based on a long-term multi-camera imaging system that was 

previously utilized to extract pre-defined locomotory parameters by solely tracking 

the individual’s position in the arena as a point in space (Stern et al., 2017; Ali 

Nasser et al., 2023). In particular, in this imaging system, single individuals are 

continuously tracked in isolation from egg hatching to 16 hours of adulthood (~2.5 

days), in custom-made laser-cut multi-well plates, and behavioral monitoring is 

performed at high spatiotemporal resolution and in a tightly controlled environment 

(Fig. 1A).   

To represent the complete behavioral space of the spontaneous locomotory 

movements throughout a full developmental trajectory, we tracked each individual’s 

body position at sub-second resolution across the days of development. In each 

frame (total of ~600,000-700,000 frames per individual) we automatically analyzed a 

small sub-region around the tracked position, allowing us to capture the individual’s 

body image (Fig. 1B). We then automatically identified the body posture of each 
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individual at each frame by processing the image to detect the contour and midline of 

the worm (Fig. 1B,C; Fig. S1A). During C. elegans development, size of individual 

animals is significantly increased from L1 to adulthood (~5-fold in length, Fig. S1B). 

To further represent the individual’s pose over time, in each frame we divided the 

body midline into 40 segments of equal length and quantified the curvature between 

each pair of adjacent segments (Fig. 1C; Fig. S1A) (see Methods) (Stephens et al., 

2008). The representation of body postures by using a similar number of midline 

segments across development allows comparing posture dynamics at different 

developmental windows and across different individuals within populations (Fig. 1C). 

The long timescale of the behavioral experiments imposes data-analysis challenges 

such as the ability to efficiently identify head-tail direction of individuals across an 

extremely large set of analyzed frames during development, as well as to maintain 

the correct alignment across frames in which body posture identification has failed. 

We developed a computationally efficient method for fast head and tail detection 

across all developmental stages in the large dataset of individuals (based on 

differences in side-to-side movements) and for aligning the individual’s midline 

orientation over development time (Fig. 1C; Fig S1C,D) (see Methods).  

In total, we analyzed 2,199 individuals (across different genotypes and 

conditions) continuously during all developmental windows, resulting in a dataset of 

~1.2 billion sequential body postures that are integrated in time to generate the full 

repertoire of individual movements throughout development. In summary, we have 

constructed a unique behavioral atlas and efficient analyses methods for studying 

the complete developmental dynamics of behavior across C. elegans individuals. 

 
Unsupervised inference of the organization of stereotyped behavioral spaces 
across development 

The continuous long-term quantification of posture dynamics of a large set of 

individuals across all developmental windows (Fig. 1) allows classifying the 

underlying dominant modes of movement states throughout the progression of 

development, at the population- and individual-level. It has been previously 

demonstrated in various organisms (Berman et al., 2014; Wiltschko et al., 2015), 

including in C. elegans (Ahamed et al., 2021; Schwarz et al., 2015; Stephens et al., 

2008), that temporal sequences of body postures may be utilized for characterizing 

underlying behavioral states. However, whether individuals show distinct spectrums 
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of stereotyped behavioral modes of posture dynamics at different time windows as 

they continuously develop, and how these stereotyped behavioral patterns, that are 

shared by individuals, organized within and across all developmental stages is still 

underexplored.  

To study how longitudinal patterns of stereotyped behavioral modes are 

temporally organized during development time, we separately analyzed modes of 

posture dynamics that are dominant within the wild-type population (n=123) at 

different time windows, within and across all developmental stages. In particular, we 

first age-normalized individuals by dividing the full developmental trajectory of each 

individual to 50 developmental time windows (10 per stage) based on its lethargus 

episodes of inactivity during molting, which robustly mark transitions between 

developmental stages (Cassada and Russell, 1975; Stern et al., 2017) (Fig. S2A). 

We then quantified all 10-second sequences of body postures of all individuals in 

each of the 50 developmental time windows (400,000 – 2 million posture sequences 

per developmental time window) (Fig. 2A). This analysis results in 50 pools of high-

resolution body movements within the wild-type population which correspond to the 

50 developmental windows across and within all stages. To take an unsupervised 

approach for identifying the underlying stereotypic modes of posture dynamics that 

are dominant within the population, in each of the 50 developmental time windows 

we performed principal component analysis (PCA) of the pool of all 10-second body 

movements of the wild-type individuals (Fig. 2B). To further identify the effective 

dimensionality in each of the developmental time windows we used cross-validation 

of PCA reconstruction errors (see Methods) (Fig. S2B,C). In particular, the PCA 

dimensionality reduction method detected PC dimensions that represent underlying 

dominant modes of posture dynamics that can reconstruct each ‘real’ 10-second 

movement of each individual, during a specific developmental time window (Fig. 2C). 

We found that the dimensionality of behavioral spaces increased over development 

time, with a relatively lower number of significant PC dimensions during earlier 

developmental stages, compared to later stages (Fig. S2C). Furthermore, the 

composition of significant PC dimensions across developmental windows revealed a 

spectrum of stereotyped behavioral spaces that are temporally distinct, implying that 

the population moves through a sequence of non-fixed behavioral spaces during 

development (Fig. 2D,E). Interestingly, by quantifying distances between stereotyped 

behavioral spaces that are exposed at different developmental windows, as well as 
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by representing them in a t-SNE map, we found that the distances between PCA 

behavioral spaces that are closer in time tend to be smaller and vice versa (Fig. 

2D,E; Fig. S2D) (see Methods). Similar analysis of time-shuffled behavioral spaces 

did not show this dependence (Fig. S2D). This analysis suggests a continuous 

smooth progression of stereotyped behavior throughout development. 

In summary, these results show distinct structures of underlying behavioral 

modes in C. elegans across and within developmental windows, defining a dynamic 

developmental trajectory of behavioral spaces. 
 

Individual-specific spaces of underlying posture dynamics modes uncover 
behavioral uniqueness  

Individuals within populations, even when genetically identical and exposed to 

the same environment show wide inter-individual behavioral diversity (Bierbach et 

al., 2017; Freund et al., 2013; Honegger et al., 2020; Kain et al., 2012; Schuett et al., 

2011), including across developmental timescales (Stern et al., 2017; Ali Nasser et 

al., 2023). An open question is whether unsupervised inference of behavioral spaces 

of posture dynamics can be used to systematically capture individual-to-individual 

behavioral diversity at specific developmental windows. We hypothesized that 

individuals within the population may explore unique behavioral spaces that are 

composed of modes of posture dynamics that are significantly different from the 

stereotyped behavioral spaces of the population. Thus, we extracted behavioral 

uniqueness of individuals within the wild-type population by performing PCA of 

posture dynamics modes separately for each animal at each developmental window 

(Fig. 3A,B), such that each individual is represented by its own sequence of 50 low-

dimensional behavioral spaces throughout development time (Fig. S3A). We then 

compared the behavioral space of each individual, at each developmental window, to 

the stereotyped behavioral space extracted from the whole population (Fig. 3C-F; 

Fig. S3B-D). In particular, we first quantified the distance of each of the individual’s 

PC modes of posture dynamics (represented by the PCs loading vectors) to the 

space spanned by the population’s stereotyped PC modes. Then, based on the 

integration of these PC distances, we defined a global relative-distance parameter 

(0-1, low to high uniqueness), which robustly captures the uniqueness of the 

complete behavioral space of each single animal (see Methods). By systematically 
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quantifying the relative distances between the behavioral spaces of all wild-type 

individuals and the stereotyped space at each developmental window (Fig. 3C), we 

identified specific individuals that showed variable levels of behavioral divergence. 

For instance, we identified multiple individuals that showed extremely high 

behavioral uniqueness (large distance parameter) at specific developmental 

windows (Fig. 3D,F; Fig. S3B), implying that their underlying dominant behavioral 

modes of posture dynamics significantly differ from the stereotyped behavioral 

modes of the population. In contrast, while we were able to detect high uniqueness 

levels of multiple individuals, other individuals within the same population showed 

relatively low behavioral uniqueness parameter (closer to 0), implying that most of 

their individual-specific PC modes of posture dynamics are highly similar to the 

stereotyped behavioral modes of the population (Fig. 3E,F; Fig. S3D). Furthermore, 

we also detected individuals with intermediate levels of behavioral uniqueness such 

as animals that showed high similarity of only a limited fraction of their underlying PC 

modes to the stereotyped PC modes of the population (Fig. S3C), suggesting an 

overall continuum of behavioral spaces uniqueness which is exposed by the 

unsupervised method.  

Once extreme individuals are detected within the population by the analysis of 

uniqueness of PCA spaces during a specific developmental window (Fig. 3D), the 

simultaneous representation of scores of underlying PC modes and of ‘real’ 

locomotory patterns over time allows to further detect unique locomotory movements 

of these extreme individuals and to study how these unique patterns are built from 

specific underlying PC modes (Fig. 3G-K).  Interestingly, the simultaneous temporal 

analysis of scores of individual-specific PCs and of posture changes within the same 

developmental window at high resolution (Fig. 3G) revealed that while relatively 

inactive states of locomotory patterns of unique individuals may be reconstructed 

sparsely by a low number of dominant individual-specific PC modes (Fig. 3G-I), more 

complex patterns are built from many dominant PC modes that are concurrently 

represented and integrated into the higher-level locomotory movement (Fig. 3G,J,K). 

While the indicated examples represent only a small subset of the unique locomotory 

patterns within the population, overall, these results demonstrate the use of 

unsupervised inference of individual-specific behavioral spaces for unbiased 

detection of individual uniqueness. 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2024. ; https://doi.org/10.1101/2024.01.27.577215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577215
http://creativecommons.org/licenses/by-nc/4.0/


 8 

Long-term individuality in uniqueness of behavioral spaces across 
developmental windows  

To study how long-term individuality signatures of posture dynamics are 

organized across developmental timescales, we analyzed the consistency in 

uniqueness of individual-specific behavioral spaces across a full developmental 

trajectory, within and across all developmental stages. Specifically, we asked 

whether individuals that show high or low uniqueness of their behavioral space of 

posture dynamics (Fig. 3), will also tend to show similar levels of uniqueness during 

other developmental windows. To analyze long-term consistency in relative 

behavioral uniqueness levels we first ranked all wild-type individuals based on the 

distance between their individual-specific behavioral spaces and the population’s 

stereotyped space, in each developmental window, compared to all other individuals 

within the same experiment (relative rank: 0-1, from most stereotyped to most unique 

individual in the population, see Methods) (Fig. S4A). We then quantified temporal 

correlations between individual uniqueness ranks across developmental time 

windows, such that higher temporal correlations would indicate higher consistency of 

individuals in being more or less unique across different developmental periods (Fig. 

4A). We found that the total temporal correlations between individuals uniqueness 

ranks across the full developmental trajectory were significantly higher compared to 

a shuffled rank dataset (Fig. 4A,B; Fig. S4A), implying long-term consistency in 

levels of behavioral spaces uniqueness throughout development time. Moreover, by 

separately analyzing temporal correlations within each developmental stage and 

across all pairs of developmental stages we found that while individuals show 

variable consistency levels across different developmental periods, temporal 

correlations were still highly significant within and across all developmental stages 

(Fig. S4B).   

To further utilize the unsupervised detection of behavioral spaces uniqueness 

for identifying specific individuals within the population that showed extreme 

tendency of being unique or stereotyped throughout development, we quantified 

each individual’s average uniqueness rank across all developmental windows (Fig. 

4C). In addition, we analyzed inter-individual variation in average uniqueness rank 

within the population as a global measure of how extreme individuals are towards 

being behaviorally unique or stereotyped over development time (Fig. 4C).  We 

found that individuals within the wild-type population tend to be more extremely 
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unique or stereotyped across developmental windows, compared to a shuffled rank 

dataset (Fig. 4C).  Moreover, analysis of specific individuals showing extreme 

average rank levels revealed long-term consistency in exposing high or low 

uniqueness of behavioral spaces during most of the developmental windows (Fig. 

4D-F; Fig. S4C-E). Interestingly, a fraction of the individuals that were consistently 

unique in their long-term trajectory of behavioral spaces showed different divergence 

trajectories, implying variation in underlying behavioral modes within these highly 

unique individuals (Fig. 4E; Fig. S4C). These results suggest the developmental 

organization of unique behavioral spaces of posture dynamics into long-term 

individuality signatures that are variable within the population.  

 

Unsupervised detection of plasticity in stereotyped trajectories of behavioral 
spaces  

Long-term patterns of behavior across development may be modified by the 

internal state of the individual, as well as by its past or current environment. To ask 

whether unsupervised inference of stereotyped behavioral patterns extracted from 

dominant posture dynamics modes within the population could identify behavioral 

plasticity under various internal and external contexts, we repeated the unsupervised 

analysis in 30 additional populations, subjected to multiple neuronal and 

environmental perturbations. The complete dataset (a total of 2,199 individuals 

across 31 populations) includes populations mutant for neuronally-expressed genes 

(Packer et al., 2019; Taylor et al., 2021) whose effects on behavior have not been 

studied before, as well as neuromodulatory mutants and environmentally perturbed 

populations (early-life starvation) that were previously studied across development 

using pre-defined locomotory parameters such as the speed or roaming activity of 

individuals (Stern et al., 2017; Ali Nasser et al., 2023). Quantification of average 

distances between stereotyped behavioral spaces across all analyzed populations 

(Fig. 5A,B; Fig. S5), both reproduced known behavioral effects and uncovered 

previously-unknown effects on stereotyped behavioral patterns during development. 

As expected, we found that tph-1 mutant populations which are deficient for 

serotonin production showed a large distance from the wild-type population (average 

distance: 0.24) (Fig. 5B,C), as well from all other analyzed populations (Fig. 5A; Fig. 

S5) across many developmental windows. These behavioral differences of 

serotonin-deficient individuals reflect underlying stereotyped PC modes of fast 
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curvature changes (Fig. 5C), recapturing their high roaming activity across 

developmental stages that was previously identified in tph-1 individuals using pre-

defined parameters (Flavell et al., 2013; Stern et al., 2017). In addition, we also 

found that populations that were exposed to early-life starvation across different 

genotypes clustered together, suggesting common modes of behavioral responses 

to early stress across development (Fig. 5A; Fig. S5) (Ali Nasser et al., 2023). As we 

were mainly interested in studying novel behavioral effects, we further focused on 

the effects of neuronally-expressed genes (Packer et al., 2019; Taylor et al., 2021) 

that have not been tested before for their long-term behavioral alterations. 

Interestingly, we revealed that a fraction of the populations that are mutant for these 

neuronal genes showed both homogenous and time-specific effects on trajectories of 

stereotyped behavioral spaces across development (Fig. 5B,D-H). For instance, we 

found that animals mutant for the homeobox gene Ceh-33 (Ruvkun and Hobert, 

1998) or for the Cpz-1 enzyme (Hashmi et al., 2004) showed substantial differences 

in behavioral spaces across most of the developmental stages (L1-L4) (average 

distance: 0.20 and 0.17, respectively), relative to the wild-type population (Fig. 

5B,D,E). However, these distances were more pronounced in the first half of the L2, 

L3 and L4 stages, indicating temporal regulation within developmental stages. 

Additionally, we also identified more time-limited alterations in stereotyped 

behavioral spaces, such as in the stereotyped patterns of individuals mutant for the 

neuronally-expressed homeobox gene Ceh-6 (Bürglin et al., 1989) and for the 

D2005.1 gene which is predicted to function in the A-I RNA editing process (Fischer 

et al., 2013) that showed larger difference during the L1 and L2 stages, compared to 

later developmental stages (average distance: 0.14 and 0.16, respectively) (Fig. 

5B,F,G). These results suggest that neuronally-expressed genes with diverse 

functions, such as genes which are involved in cell differentiation processes and  

other regulatory pathways, may be involved in shaping long-term behavioral 

structures across development. In contrast, a fraction of the analyzed populations, 

such as mutants for the predicted gene Y116A8C.19, showed relatively minor 

differences in stereotyped behavioral spaces across development, relative to the 

wild-type population (average distance: 0.12) (Fig. 5B,H). Overall, these findings 

show both consistent and stage-specific behavioral plasticity of developmental 

trajectories of stereotyped behavioral spaces, uncovered by unsupervised behavioral 

classification across multiple populations. 
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Identification of temporal patterns of long-term behavioral uniqueness across 
conditions  

To have an extended view, using the developmental behavioral atlas, of how 

long-term individuality patterns are reshaped across different neuromodulatory and 

environmental contexts, we quantified the unique behavioral spaces of all individuals 

within the analyzed populations. Similar to the wild-type population (Fig. 4; Fig. S4), 

we analyzed the relative distance of each single individual to the stereotyped 

behavioral spaces of its own population and quantified temporal correlations 

between behavioral uniqueness ranks of all individuals across and within 

developmental windows (Fig. S6). These analyses allowed us to expose the diversity 

in temporal patterns of consistency in behavioral uniqueness, that may arise 

homogenously across development time or during specific developmental periods. 

By initially analyzing the distributions of total temporal correlations between ranks of 

individual uniqueness across all developmental windows, we found significant 

individual consistency in behavioral uniqueness levels within all analyzed 

populations, relative to a population-matched shuffled dataset (Fig. S6). Similarly, 

quantifying the variation in average behavioral uniqueness rank across development 

within the different populations showed that while variation levels are diverse, all 

analyzed populations had extreme individual biases in behavioral uniqueness levels 

across development, compared to a population-matched shuffled dataset (Fig. 6A). 

These results show that persistent individuality in the uniqueness levels of posture 

dynamics modes is widespread and can be efficiently detected using the 

unsupervised inference of individual-specific behavioral spaces within multiple 

populations. 

To further ask if individuality patterns may be non-homogenously organized 

during development time in the different populations, we separately analyzed the 

temporal correlations between behavioral uniqueness ranks of individuals within and 

between specific developmental stages (Fig. 6B). We found that multiple populations 

showed non-homogenous behavioral consistency, that changed across different 

developmental periods (Fig. 6B). For example, we found that animals mutant for the 

dopamine receptor DOP-1 (Suo et al., 2002) that is expressed in a limited number of 

dopamine-sensing neurons, had non-significant consistency in behavioral 

uniqueness levels between the adult stage and all other stages (L1-L4), compared to 
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higher and significant consistency in behavioral uniqueness rank within the adult 

stage, as well as within all other developmental stages (Fig. 6B; Fig. S7A). These 

patterns of temporal correlations were not shown in 3-day starved dop-1 individuals 

that had relatively homogenous consistency within and across all developmental 

stages (Fig. 6B; Fig. S7B), suggesting an effect of the early-life environment on the 

temporal organization of long-term individuality patterns of posture dynamics. 

Furthermore, we also found specific temporally non-homogenous alterations of 

behavioral consistency in mutants for neuronal genes whose effect on behavior has 

not been studied before. For instance, individuals mutant for the gene D2005.1 

(predicted to be involved in A-I editing) (Fischer et al., 2013) showed significant 

consistency in uniqueness levels of behavioral spaces that is higher within the L2 

stage  (Fig. 6B; Fig. S7C) and mutants for the Homeobox gene ceh-6  (Bürglin et al., 

1989) did not show significant long-term temporal correlations between the L1 stage 

and all other developmental stages, as well as within the L1 stage (Fig. 6B; Fig. 

S7D).  

In summary, these results reveal temporal organization of consistent 

behavioral uniqueness across populations subjected to various neuronal and 

external perturbations and shed light on the power of unsupervised analysis of 

individual-unique behavioral spaces in exposing diverse temporal structures of long-

term individuality. 

 
Discussion  
 

Behavioral structures are highly dynamic throughout development time, 

representing a mix of stereotyped patterns that are shared by many individuals within 

the population and unique behavioral modes that are specific to the individual. In this 

work, we generated a complete and continuous developmental atlas of posture 

dynamics during the spontaneous behavior of C. elegans and used unsupervised 

inference of underlying behavioral modes for studying the organization of 

stereotyped and individual-unique behavioral spaces during development time. 

Across species, underlying behavioral states had been previously characterized at 

specific developmental periods by temporal body-posture changes which reflect the 

animal’s movement in space (Stephens et al., 2008; Ahamed et al., 2021; Schwarz 

et al., 2015; Berman et al., 2014; Overman et al., 2022; Wiltschko et al., 2015, 2020; 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2024. ; https://doi.org/10.1101/2024.01.27.577215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577215
http://creativecommons.org/licenses/by-nc/4.0/


 13 

Hong et al., 2015; Kaplan et al., 2020). However, how the spectrum of posture 

dynamics modes continuously progress throughout the complete developmental 

trajectory, within and across all stages, and whether different individuals explore 

unique trajectories of posture dynamics as they develop, is not known.  

Behavioral patterns along the complete developmental trajectory were 

previously studied using pre-defined locomotory parameters that are based only on 

the individual’s position, such as the fraction of time that an animal roams, or the 

speed of movement (Stern et al., 2017; Ali Nasser et al., 2023). While these 

behavioral analyses identified multiple neuromodulatory and environmental effects 

on stage-specific behavioral patterns across development, the behavioral 

characterization using pre-defined parameters represents a limited view of the full 

developmental progression of behavioral spaces. Here, we combined continuous 

extraction of the animal’s posture across a full development time and unsupervised 

inference of low-dimensional behavioral modes, to define the complete 

developmental trajectory of posture dynamics spaces, in ~2,200 individuals within 

tens of C. elegans populations. In particular, to unbiasedly uncover underlying 

dominant behavioral modes, we performed dimensionality reduction (using PCA) on 

all posture dynamics sequences within the population, in each developmental 

window. This analysis detected significant PC dimensions across development which 

represent underlying behavioral components that are shared by individuals within the 

population. We further found that the identified sequence of stereotyped behavioral 

spaces is not fixed in time but rather shows divergence as development progress. 

Interestingly, the developmental trajectory of behavioral spaces was smooth over 

time, implying a continuous gradual change in the spectrum of movement patterns. 

As the C. elegans nervous system is being constantly structured and shaped during 

post-embryonic development, we hypothesize that the continuous and gradual 

progression of stereotyped behavioral spaces across developmental timescales may 

reflect underlying temporal maturation of neuronal circuits and their inter-connections 

(White et al., 1986; Witvliet et al., 2021; Sun and Hobert, 2021; Ripoll-Sánchez et al., 

2023). 

Individuals within the same population, even when genetically- and 

environmentally-matched show wide behavioral diversity (Honegger et al., 2020; 

Kain et al., 2012; Werkhoven et al., 2021; Bierbach et al., 2017; Freund et al., 2013; 

Schuett et al., 2011; Stern et al., 2017; Ali Nasser et al., 2023). To further utilize the 
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long-term unsupervised inference of underlying modes of posture dynamics for 

identifying inter-individual behavioral variation, we dissected low-dimensional 

behavioral spaces separately for each single individual within the population, at each 

developmental time window. We hypothesized that each individual may explore a 

unique behavioral space which includes rare modes of posture dynamics, that are 

dramatically under-represented in the stereotyped behavioral space of the whole 

population. By systematically comparing the low-dimensional behavioral spaces of 

each single wild-type individual to the stereotyped behavioral spaces of the 

population, we found that in each developmental window we could identify highly 

unique as well as highly stereotyped individuals. These results show wide individual 

variation in posture dynamics modes, captured during distinct time windows across 

the developmental trajectory. Interestingly, we further found that individuals within 

the wild-type population showed long-term consistency in their uniqueness levels of 

PCA behavioral spaces across and within all developmental stages, implying that 

long-term behavioral individuality across development can be broadly characterized 

by unsupervised analysis of posture dynamics. While underlying differences among 

isogenic individuals may include variation in the nervous system structure (Witvliet et 

al., 2021; Brittin et al., 2021; Linneweber et al., 2020; Churgin et al., 2021), as well 

as inter-individual differences in gene-expression and neuromodulation (Casanueva 

et al., 2012; Bargmann and Marder, 2013; Rehm et al., 2008; Flavell and Gordus, 

2022), further studies are required to link these underlying variations to long-term 

behavioral diversity across developmental timescales.  

Building on the unsupervised detection of individual-specific behavioral 

spaces within populations, we sought to study the plasticity of long-term variation in 

behavioral trajectories  by analyzing multiple mutant populations for neuromodulatory 

genes that were studied before across development using pre-defined parameters 

(Ali Nasser et al., 2023; Stern et al., 2017), neuronally-expressed genes (Packer et 

al., 2019; Taylor et al., 2021) that had not been studied before for their behavioral 

effects, and environmentally perturbed populations (early life stress) (Ali Nasser et 

al., 2023). These analyses uncovered temporally non-homogenous effects on both 

the stereotyped trajectories of behavior across development, as well as on the time-

distribution of behavioral consistency of individuals. In particular, this approach 

recaptured previously-known effects on behavior (such as in the tph-1 serotonin 

deficient populations) (Flavell et al., 2013; Stern et al., 2017), as well as novel effects 
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of neuronally-expressed genes that had not been previously analyzed for their 

effects on long-term behavioral structures. As temporal patterns of behavior during 

development are tightly structured across different species (Kimmel et al., 1974; 

Pattwell et al., 2012; Rehm et al., 2008; Sokolowski et al., 1984), we suggest that a 

combination of neuronal and environmental effects on stereotyped and individual-

unique behavioral patterns, may constrain the ‘landscape’ of possible individual 

trajectories across development, to shape variation within the population.  

While the methods in this study were developed and used for extracting 

developmental trajectories of unique behavioral spaces in C. elegans, similar 

approaches may be used to classify long-term individuality also in other organisms in 

which posture dynamics can be continuously and efficiently measured across 

development. Overall, these results shed light on the developmental structure of 

behavioral spaces and present a general framework for the unsupervised inference 

of behavioral diversity within developing populations. 
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Materials and Methods  
 

Strains  
C. elegans strains used in this study: Wild-type Bristol N2 (n=123, 1DS n=99, 3DS 

n=119, 4DS n=115); MT15434 tph-1(mg280) II (n=51, 1DS n=87, 3DS n=96, 4DS 

n=104); GR2063 hsd-1(mg433) I (n=23); RB1271 ceh-33(ok1362) V (n=29); RB1286 

lys-7(ok1385) V (n=29); RB1528 ceh-28(ok1833) (n=17); RB2031 D2005.1(ok2689) I 

(n=25); RB2460 srx-95(ok3399) II (n=19); RB2493 skr-9(ok3453) IV (n=24); RB732 

cpz-1(ok497) (n=28); SST001 R07A4.2(sts01) X (n=28); SST005 ZK673.1(sts02) II 
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(n=36); VC1481 ceh-6(gk679) I (n=24); VC2052 Y116A8C.19 (gk958) IV (n=32); 

VC2343 C47E8.6(gk1232) V (n=23); CB1112 cat-2 (e1112) II (n=124, 1DS n=98, 

3DS n=124, 4DS n=85); LX645 dop-1 (vs100) X (n=73, 3DS n=133); LX702 dop-2 

(vs105) V (n=111, 3DS n=143); LX703 dop-3 (vs106) X (n=82, 3DS n=95). ‘DS’ 

indicate days of starvation. 

 

Growth conditions  
C. elegans worms were maintained on NGM agar plates, supplemented with E. coli 

OP50 bacteria as a food source. For behavioral tracking, we imaged single 

individuals grown in custom-made laser-cut multi-well plates. Each well (10mm 

diameter) was seeded with a specified amount of OP50 bacteria (10 uL of 1.5 OD) 

that was UV-killed before the experiment to prevent bacterial growth. For the 

starvation experiments, eggs were collected from isogenic populations using a 

standard bleaching protocol, into an agar plate without OP50 bacteria. Newly 

hatched L1 larvae were starved for a specified time window (L1 arrest of 1, 3 or 4 

days) before being transferred to the imaging multi-well plates.  

 

Imaging system  
Longitudinal behavioral imaging was performed using custom-made imaging 

systems. Each imaging system consists of an array of six 12 MP USB3 cameras 

(Pointgrey, Flea3) and 35 mm high-resolution objectives (Edmund optics) mounted 

on optical construction rails (Thorlabs). Each camera images up to six wells, each 

containing an individual grown in isolation. Movies are captured at 3 fps with a 

spatial resolution of ∼9.5 um. For uniform illumination of the imaging plates we used 

identical LED backlights (Metaphase Technologies) and polarization sheets. To 

tightly control the environmental parameters during the experiment, imaging was 

conducted inside a custom-made environmental chamber in which temperature was 

controlled using a Peltier element (TE technologies, temperature fluctuations in the 

range of 22.5 ± 0.1°C). Humidity was held in the range of 50% +/− 5% with a sterile 

water reservoir and outside illumination was blocked, keeping the internal LED 

backlights as the only illumination source. Movies from the cameras were captured 

using commercial software (FlyCapture, Pointgrey) and saved on two computers (3 

cameras per computer; each computer has at least 8-core Intel i7/i9 processor and 

64 GB RAM). 
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Imaging data processing  
 

Extraction of locomotion trajectories of individuals center of mass 
To extract behavioral trajectories of individuals center of mass across the 

experiment, captured movies were analyzed by custom-made script programmed in 

MATLAB (Mathworks, version 2019b). In each frame of the movie and for each 

behavioral arena, the worm is automatically detected as a moving object by 

background subtraction, and the coordinates of its center of mass are logged. In 

each experiment, 600,000-700,000 frames per individual are analyzed using ~50 

processor cores in parallel to reconstruct the full behavioral trajectory of individuals 

over days of measurements across development. The total time of image processing 

was 3-7 days per experiment (tens of individuals across development). Egg hatching 

time of each individual in the experiment is automatically marked by the time when 

activity can be detected in the behavioral arena. The middle of the lethargus periods, 

in which animals stop their locomotion and molt, were as the transition points 

between different stages of development (based on 10s time-scale speed 

trajectories over time, smoothed over 300 frames). To synchronize temporal 

behavioral trajectories of different individuals we age-normalized individuals by 

dividing the behavioral trajectory of each life stage into a fixed number of time 

windows.  

 

Posture analysis and head-tail detection across development 
To find the worm’s midline in each frame, the worm’s contours were first extracted 

from cropped background-subtracted images at a fixed grayscale level threshold, 

using the Marching Squares algorithm as implemented in the Julia package 

Contour.jl (Darakananda & Lycken, 2022). If multiple contours are found, the one 

that consists of most points is selected. This yields a list 𝑝! , (𝑖 = 1, . . 𝑘) of 𝑘 points 

𝑝! = (𝑥! , 𝑦!) around the worm’s contour in each frame where at least one contour was 

detected. In each of these frames, the two ends of the worm were identified as peaks 

of curvature along the contour as follows: First, the contour was smoothed by 

circularly convolving the list of points with a Gaussian kernel of width 𝜎" = 2. 

Curvature of the smoothed contour (𝑝/!)!#$%  was estimated at each contour point as 

the change in angle at the point when traversing the contour counter-clockwise, 
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divided by the distance $
&
|𝑝/!'$ − 𝑝/!($|, yielding curvature values 𝜅!. Finally, peaks of 

curvature, where 𝜅! > 𝜅!($ and 𝜅! > 𝜅!'$ were identified, and the two with the highest 

curvature values were selected as the worm’s ends. This results in two coordinates 

of the worm’s ends in each frame where contour detection was successful. 

Next, the two ends are aligned across different frames so that their identity is 

preserved within each continuous range of successful frames. In each successful 

frame, the distance travelled by each end since the previous successful frame is 

computed, and the labels of the two ends are swapped if the swap results in a lower 

sum of the two distances. The distance ratio, which is the ratio of the sum of 

distances compared to the sum if the ends are swapped is recorded for each frame. 

Note that after possibly swapping the labels, the distance ratio is always in the range 
[0,1]. 

 

Head and tail detection 
To identify which of the two ends is the head, we first omit frames where the 

continuous tracking of each end is less certain. Frames are skipped if they satisfy at 

least one of four conditions: (1) more than one contour was detected, (2) the 

distance ratio exceeded 0.2, (3) at least two frames in a row where no distance ratio 

could be computed (either no contour was detected or some failure occurred in the 

procedure described above, such as only one peak in contour curvature) or (4) the 

contour was too round. Roundness (criterion (4)) was computed as the ratio of the 

area of its interior to its length, and z-score of this roundness parameter was 

computed for each frame 𝑖 relative to roundness values in frames 𝑖 − 5000 to 𝑖 +

5000. Frames where the roundness z-score exceeded 3 were skipped. The 

roundness criterion was employed to avoid frames where a wrong contour is 

detected for a curled-up worm. 

By omitting these frames, time is divided into segments consisting of consecutives 

non-omitted frames. We classify which of the two ends is the head, separately in 

each time segment. Identification of the head is based on its faster side-to-side 

movements, compared to the tail, which can be detected during both roaming and 

dwelling. The trajectories of each end are first smoothed by convolution with a 

Gaussian kernel of width 𝜎 = 5, to obtained two smoothed series of points 𝑒!
($), 𝑒!

(&). 

The speed at each end is estimated as 𝑠!
(+) = $

&
;𝑒!'$
(+) − 𝑒!($

(+) ;, and the log speed ratio 
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lsr! = log(𝑠!
($)/𝑠!

(&)) is computed at each frame. End 1 is selected as the head if the 

average log speed ratio across the time segment is positive, otherwise end 2 is 

selected as the head. The absolute value of the average log speed ratio is recorded 

as a confidence measure for the head identification in the time segment. All 

subsequent analysis was restricted to segments where the confidence exceeded 

0.05. 

 

Midline identification and curvature analysis 
Following head and tail identification, each contour was split into two parts at the 

head and tail, and an approximately length-parameterized cubic spline was fitted to 

each part, following the direction from the head to the tail. Splines were fitted using 

the Julia package Dierckx.jl (Barbary, 2023), which is a wrapper around the Fortran 

library dierckx (Dierckx, 1993). Midlines were then computed by sampling each of 

the two splines at a set of 41 equally spaced spline parameter values (𝑠 =

0, 0.025, 0.05, … ,1), averaging each pair of samples to obtain points along the worm’s 

midline, and fitting a spline through these points. This spline was iteratively 

resampled at the same values of 𝑠 until the resulting points were approximately 

equally spaced. The result of the last iteration is 41 equally spaced points along the 

worm’s midline. 

The angle between each three consecutive points was computed, yielding an 

estimate of the worm’s midline curvature at each of 39 points. Due to higher levels of 

noise in the procedure near the ends of the worms, we removed the two extreme 

points, obtaining a representation of the midline as a vector of 𝑘 = 37 curvature 

values. We collected curvature vectors at each successful frame for each individual, 

yielding a matrix representation of the worm’s posture dynamics over development 

time.  

 

Posture dynamics PCA 
To characterize dominant posture dynamics modes across development throughout 

the population, we first aligned the developmental time of all individuals, dividing 

each larval stage into 10 time bins, and analyzed the posture data in each 

developmental time bin separately. In each bin, we performed PCA on the pool of 

10-second curvature matrices from the entire population, from each window 
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contained in a time segment where head detected passed the confidence threshold 

(see “Head detection” above). PCA was fitted to the data using the Julia package 

MultivariateStats.jl. PCA analysis yields, for each time bin, characteristic modes (PC 

vectors) of curvature dynamics whose linear combinations best reconstruct curvature 

matrices, and corresponding variance values, describing how much of the variance 

in curvature matrices is explained by each PC. This analysis was repeated for each 

analyzed population, as well as for each individual worm separately.  

To choose the number of PCs used in each time bin, we estimated PCA 

reconstruction error for different dimensionalities, using the cross-validation method 

(Owen and Perry, 2009). Dimensionality estimation was performed for each of the 

analyzed populations in each time bin. For individual worms, the dimensionality used 

was that obtained from the population estimate, except when fewer dimensions were 

sufficient to explain 99% of observed variance in the individual, in which case only 

those dimensions were used. The dimensionality chosen in each time bin for each 

population was the first value of 𝑑 where the base-10 logarithm of reconstruction 

error from 𝑑 − 1 dimensions decreased by less than 0.01 when increasing the 

dimensionality to 𝑑. For computational tractability, in each population and time bin, 

𝑁 = 1000 time windows were sampled for use in the dimensionality estimation 

procedure. PCA is performed on the pool of curvature matrices for these time 

windows, represented as a 𝑇𝑘 × 𝑁 matrix 𝑀 where each column is a 𝑇 × 𝑘 curvature 

matrix laid out as a vector. For cross-validation, a random set of rows and columns is 

chosen to be held out as a validation set. We mark by 𝑀J  a rearrangement of 𝑀’s 

rows and columns where the held-out rows and columns appear first, so that 𝑀J  may 

be decomposed as 𝑀J = K𝐴 𝐵
𝐶 𝐷P, where 𝐴 corresponds to the held-out rows and 

columns. Each row and column of 𝑀	is chosen to be held out independently with 

probability √0.1, so that A contains, on average, 10% of 𝑀’s entries. PCA is then 

applied to 𝐷, yielding a decomposition 𝐷 ≈ 𝑈,𝑉,- to principal axes in the column of 

𝑈, and PCA scores in 𝑉,. These are used to reconstruct scores 𝑉V. for 𝐶 as the least 

squares solution of 𝐶 ≈ 𝑈,𝑉V.- and principal axes 𝑈J/ 	for 𝐵 as the least squares 

solution of 𝐵 ≈ 𝑈J/𝑉,-. An estimate of 𝐴 from	𝑑 dimension is then obtained as 𝐴W(0) =

𝑈J/
(0)𝑉V.

(0)-, where 𝑈J/
(0) and 𝑉V.

(0) are the first 𝑑	columns of 𝑈J/ and 𝑉V. respectively, and 
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a relative reconstruction error computed as 𝜀0 ≔ ∑ K𝐴!+ − 𝐴W!+
(0)P

&
!,+ /∑ [𝐴!+ − �̅�]

&
!,+ , 

where �̅� is the mean of all elements in 𝐴. 

For each time bin in each population, we repeated this procedure 𝑘 = 10 times for 

each candidate dimensionality 𝑑	in the range 1:50, to obtain 𝑘 reconstruction error 

estimates per choice of dimensionality 𝑑. For each dimensionality, we obtain several 

bootstrap estimates of the mean reconstruction error by resampling 𝑘 error estimates 

with replacement from the set of 𝑘 estimates, to obtain 𝐾 = 10,000 estimates of the 

mean error. Next, we estimate the first value of dimensionality 𝑑 where the base-10 

logarithm of mean reconstruction error decreases by less than 0.01 when increasing 

the dimensionality by 1. This value is estimated 𝐾 times, once from each resampling 

of the 𝑘 error estimates, and finally averaged and rounded to the nearest integer to 

obtain the dimensionality estimate. 

 

Comparison of PCAs 
To assess differences across individual-unique PCA spaces and populations PCA 

spaces, in each developmental time bin, we quantify the (unnormalized) distance of 

the population or individual PCA (𝑉) to the reference PCA (𝑊), where each PCA is 

truncated to the number of significant PCs determined by dimensionality estimation. 

Specifically, to compare significant PCs (eigenvectors) 𝑣$, … , 𝑣0 with associated 

variances (eigenvalues) 𝜆$, … 𝜆0 to reference PCs 𝑤$, … , 𝑤2 (where 𝑑, 𝑟 are the 

estimated dimensionalities of the PCAs), we compute the expected squared distance 

of a random vector 𝑣 to the subspace spanned by reference PCs 𝑤$, … , 𝑤2, where 𝑣 

is sampled from the distribution induced by the significant PCs of 𝑉 and their 

associated variances: namely, the distribution of 𝑉𝑧 where 𝑉 is the projection matrix 

with columns 𝑣$, … , 𝑣0 and 𝑧 is a 𝑑-dimensional vector with independent components 

of variances 𝜆$, … 𝜆0. The distance of an arbitrary vector 𝑣	from the subspace 

spanned by the reference PCs is 

e𝑣 −f[𝑣 ⋅ 𝑤+]𝑤+

2

+#$

e = |(𝐼 −𝑊𝑊-)𝑣|, 

where 𝑊 is a projection matrix with columns 𝑤$, … , 𝑤2. Therefore, the required 

expected square distance is given by 

𝑑i(𝑉,𝑊) ≔ E[|(𝐼 −𝑊𝑊-)𝑉𝑧|&	] = 	E	tr[(𝐼 −𝑊𝑊-)𝑉𝑧𝑧-𝑉-(𝐼 −𝑊𝑊-)]	
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= tr[(𝐼 −𝑊𝑊-)𝑉	diag(𝜆)𝑉-(𝐼 −𝑊𝑊-)] =fo(𝐼 −𝑊𝑊-)𝑣!p𝜆!o
&

0

!#$

 

i.e., the sum of squared distances of loading vectors √𝜆!𝑣! to the subspace of 𝑊. 

This distance is then normalized by the total variance explained by significant PCs of 

𝑉 to obtain the relative distance measure in the range [0,1] as 

(1) 

𝑑(𝑉,𝑊) ≔
𝑑i(𝑉,𝑊)
∑ 𝜆!0
!#$

	=
∑ |(𝐼 −𝑊𝑊-)𝑣!|&𝜆!0
!#$

∑ 𝜆!0
!#$

	

 

For comparisons between populations, or between different time bins of the same 

population, we used the symmetrized distance $
&
[𝑑(𝑉,𝑊) + 𝑑(𝑊, 𝑉)], with the 

number of dimensions used chosen according to dimensionality estimation 

procedure described above (see Dimensionality Estimation). For comparing 

individuals to their population, we took the individual’s PCA as 𝑉, and the population 

PCA as the reference 𝑊 in (1) For the dimensionality of the individual’s PCA in each 

time bin (value of 𝑑 in equation (1), we used the dimensionality estimated from the 

population, except where fitting the individual’s PCA (up to 99% explained variance) 

resulted in fewer PCs than the population estimate, in which case all the individual’s 

PCs were used. For comparing individuals to other individuals, or between 

developmental time bins of the same individuals, we used the symmetrized distance 
$
&
(𝑑(𝑉,𝑊) + 𝑑(𝑊, 𝑉)), with the dimensionality chosen as described above for 

comparison of individuals to the population. 

 

Long-term consistency analysis of PCA space uniqueness 
To analyze long-term consistency in relative behavioral uniqueness levels, we 

ranked all individuals based on their relative distance to the population (1). As the 

ranking required a complete individual-to-individual comparison in each 

developmental window, we only included individuals that had a full trajectory of PCA 

spaces across developmental time bins 6 to 50 (mid-L1 to adulthood), due to 

relatively increased rate of missing PCAs during earlier time bins (N2 (n=112, 1DS 

n=95, 3DS n=112, 4DS n=108); tph-1 (n=44, 1DS n=78, 3DS n=92, 4DS n=91); cat-

2 (n=114, 1DS n=83, 3DS n=114, 4DS n=79); hsd-1 (n=21); ceh-33 (n=17); lys-7 
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(n=20); ceh-28 (n=10); D2005.1 (n=18); srx-95 (n=13); skr-9 (n=22); cpz-1 (n=17); 

R07A4.2 (n=23); ZK673.1 (n=17); ceh-6 (n=12); Y116A8C.19 (n=30); C47E8.6 

(n=20); dop-1 (n=72, 3DS n=124); dop-2 (n=105, 3DS n=127); dop-3 (n=78, 3DS 

n=89)). In each time bin, individuals were ranked within each experiment by their 

relative distance to the population. Ties were resolved as fractional ranks (“1 2.5 2.5 

4 ranking”). This produces a rank 𝑟!,% for the 𝑖th individual in the 𝑘th time bin, 

between 1 and 𝑛!, where 𝑛! is the number of individuals measured in the experiment 

which includes individual 𝑖. These ranks were normalized to obtain relative 

uniqueness rank values between 0 and 1, as 𝑢!,3 = K𝑟!,% −
$
&
P /𝑛!. Thus, a relative 

uniqueness rank 𝑢!,% =
$
&
 is obtained when the relative distance of worm 𝑖 in bin 𝑘 to 

the population is the median distance for that experiment. A higher relative rank 

occurs in a time bin where a worm’s PCA is more unique, in the sense of a larger 

relative distance to the population than other worms in its experiment, and a lower 

relative rank occur where the worm’s PCA is more stereotypical. Particularly, in each 

time bin, the worms with the highest and lowest relative distance to the population 

are assigned relative ranks (1 − 1/(2𝑛)) and 1/(2𝑛), respectively, where 𝑛 is the 

number of worms in the experiment. 

 

Relative uniqueness temporal correlations 
We computed correlations of relative uniqueness ranks across individuals between 

each pair of developmental time bins. To assess statistical significance of these 

temporal correlation, we compared the median of temporal correlations across all 

pairs of different time bins in the range 6-50, to medians obtained from 1000 

randomly shuffled rank datasets, where ranks in each time bin were shuffled 

independently within each experiment  The same shuffled datasets were also used 

to assess significance of the median temporal correlation within each pair of 

developmental stages separately, and in each of the analyzed populations  

The relative uniqueness rank of each individual was averaged across developmental 

time bins 6-50 to obtain a global uniqueness measure between 0 and 1, where 

higher values indicate consistently unique individuals, and lower values indicate 

consistently stereotyped individuals. To assess statistical significance of individual 

consistency in relative uniqueness rank across the population, we compared the 

variance of the mean relative uniqueness rank to those obtained from the same 
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shuffled rank datasets used for significance testing of relative uniqueness temporal 

correlation. This was repeated in each of the analyzed populations. 

 

t-SNE visualizations 
A two-dimensional representation of the wild-type population PCA trajectory (Fig. 

2D) was generated using t-SNE (Van der Maaten and Hinton, 2008). The t-SNE 

representation was computed using the TSne.jl Julia package, from the symmetrized 

relative distance $
&
[𝑑(𝑉,𝑊) + 𝑑(𝑊, 𝑉)] between each pair of time bins, with 

perplexity parameter value 20.  

For the t-SNE visualizations of wild-type individuals alongside the wild-type 

population trajectory (Fig. 3B, 4E-F, S4C), we used PCAs for all individuals and time 

bins where the output dimension of the fitted PCA was at least 2, as well as PCAs of 

the wild-type population in all time bins (6157 PCAs in total). Symmetrized relative 

distances were computed between all pairs of such PCAs, which were used to 

compute a t-SNE representation with a perplexity parameter value 10. 

For the t-SNE visualization of populations (Fig. 5A), symmetrized relative distances 

were averaged across time bins 6-50. The t-SNE perplexity parameter was 8. 

In all t-SNE visualization, lines representing developmental trajectories were 

obtained by fitting a cubic spline through the data point. 
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Figure 1  
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Figure 1. Generation of a complete atlas of C. elegans behavioral spaces 
across development by long-term monitoring of posture dynamics  
(A) A custom-made multi-camera imaging system allows longitudinal monitoring of 

posture dynamics of multiple individual worms during their behavior, across and 

within all stages of development, at high spatiotemporal resolution and under tightly 

controlled environment. (B) Representative camera images (top) and enlarged 

images (bottom) of a single individual across all stages of development (L1-L4 and 

adulthood) and their corresponding computed contours (yellow). Images were 

enlarged ×2.5 for the L1-L3 images, ×2 for the L4 image and ×1.75 for the Adult 

image for visual clarity. ‘H’ and ‘T’ indicates head and tail, respectively. (C) Examples 

of 10-second posture dynamics windows of 3 different individuals, during all stages 

of development. For each individual represented are body contour sequences (top), 

midline sequences (middle) and curvature profiles (head to tail) across 40 segments, 

homogenously distributed along the individual’s midline (bottom). Color code of body 

contours and midlines marks time progression within the time window. Color code of 

midline curvature profiles marks curvature in each point of the midline (head to tail). 

Posture dynamics images were enlarged relative to original images (L1: ×3.75, L2: 

×2.5, L3: ×1.87, L4: ×1.6, Adult: ×1.15s for visual clarity.  
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Figure 2  
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Figure 2. Unsupervised classification of stereotyped behavioral spaces across 
development  
(A) Representative pools of posture dynamics of different individuals within the wild-

type population during specific developmental windows. Posture dynamics 

represented as curvature profiles (head to tail) across 40 segments, homogenously 

distributed along the individual’s midline. (B) Principal component analysis (PCA) 

identifies underlying PC modes of posture dynamics that are dominant within the 

wild-type population (n=123). Shown are the first 10 PCs that explain most of the 

variation in the population during specific developmental windows. Developmental 

windows represented in (A,B): L1 – 7th time bin, L2 – 7th time bin, L3 – 7th time bin, 

L4 – 7th time bin, Adult – 5th time bin, out of 10 time-bins per stage of development. 

(C) An example of 10-second posture dynamics (top right) of an individual, and its 

reconstruction (bottom right) using a combination PC vectors (bottom left, shown 

here multiplied by their scores), based on their PC scores (top left). (D) t-SNE map of 

distances between stereotyped PCA spaces across development (10 per stage) (see 

Methods). Each dot represents stereotyped behavioral space of the wild-type 

population at a specific developmental window. Color code marks time progression 

across development. (E) Stereotyped developmental trajectory of PCA spaces 

across developmental time windows. Shown are the first 12 PCs of each PCA space 

that explain most of the variation in the population.  
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Figure 3 
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Figure 3. Uncovering individual-unique behavioral spaces within populations 
(A) Examples of PCA behavioral spaces of 4 different wild-type individuals, 

separately generated for each single individual during the same developmental 

window (5th time bin in the L3 stage). Shown are the first 15 PCs that explain most of 

the variation in each individual-unique behavioral space. (B) t-SNE map represents 

distances between individual-unique behavioral spaces of wild-type individuals 

across developmental time windows. Each dot represents an individual-unique 

behavioral space at a specific developmental window. (C) Distributions of distances 

between PCA behavioral spaces of wild-type individuals and the stereotyped PCA 

behavioral space of the population from mid L1 stage to adulthood. Each dot 

represents a single individual. Blue line marks the median distance across the 

population. (D,E) Examples of similarity matrices between the individual-unique and 

the population’s stereotyped PC modes (top), and the corresponding individual’s PC 

modes (bottom), in animals that showed high behavioral uniqueness (D) or 

stereotyped behavior (E) during a specific developmental time window (5th time bin in 

the L3 stage). (F) Example of a similarity matrix between a PCA behavioral space 

generated from a shuffled dataset (see Methods) and the population’s stereotyped 

PC modes (top), and the corresponding stereotyped PC modes of the population 

(bottom), during a specific developmental time window (5th time-bin in the L3 stage). 

Color code in (D-F) marks similarity between PC modes, quantified as the absolute 

value of the dot product (0-1). (G) Example of temporal dynamics of scores of PC 

modes (top) and the corresponding posture dynamics (bottom) during a 6-minute 

window of the highly unique individual represented in (D, left). (H-K) Bar plots of 

scores of PC modes (H,J) and the corresponding locomotory pattern (I,K) during 10-

second time windows within the larger window represented in (G). Arrows in (G) 

indicate the 10-second time windows, marked using the same color in (H-K).  
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Figure 4 
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Figure 4. Consistent individuality in behavioral spaces uniqueness across and 
within developmental stages  
(A) Left: Temporal correlations between relative uniqueness rank of behavioral 

spaces from the mid L1 stage to adulthood (45 developmental windows), of wild-type 

individuals with a full trajectory of PCA spaces (see Methods). Right: Temporal 

correlations between relative uniqueness rank of behavioral spaces generated from 

a shuffled dataset. Color code marks individual rank temporal correlations. (B) 
Distributions (top) and their corresponding CDF plots (bottom) of total temporal 

correlations between relative uniqueness rank of individuals (red) and of temporal 

correlations between individuals generated from a shuffled rank dataset (black) as in 

(A). *** P-value<0.001 (comparison to 1000 shuffled datasets) (see Methods). (C) 
Right: Distribution of average relative rank of behavioral spaces uniqueness within 

the wild-type population, across developmental windows of individuals (blue), 

compared to a distribution of average relative rank generated from a shuffled dataset 

(orange). Each dot represents a single individual within the population. Left: Variation 

in average relative rank of behavioral spaces uniqueness among wild-type 

individuals across developmental windows (blue bar), compared to variation 

generated from a shuffled rank dataset (distribution of 1000 runs, orange). *** P-

value<0.001. (D) Relative uniqueness rank of individual-specific behavioral spaces 

across developmental windows in a consistently unique individual (top, red) and a 

stereotyped individual (bottom, blue). Black line marks the median relative rank 

across the population. (E,F) t-SNE maps represent individual-specific time 

trajectories of behavioral spaces across development (top) and the comparison of 

individual trajectories to the stereotyped trajectory of the wild-type population 

(bottom) in consistently unique (E) and stereotyped (F) individuals. Gray dots in 

background represent all individual-unique behavioral spaces as in Fig. 3B. Average 

relative uniqueness rank of each individual across development is indicated in the 

top left corner. Color code marks time across development.  
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Figure 5 
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Figure 5. Divergence in stereotyped trajectories of behavioral spaces across 
mutant and environmentally perturbed populations  
(A) t-SNE map represents average distances across development between 

trajectories of stereotyped behavioral spaces of 31 analyzed populations (total of 

2,199 individuals) (see Methods), including mutants for neuronal genes and 

environmentally-perturbed populations. ‘DS’ indicates days of starvation (B) 

Heatmap shows distances between stereotyped behavioral spaces of each analyzed 

population and the stereotyped behavioral space of the wild-type population. (C-H) 

Stereotyped behavioral spaces of tph-1 (C), ceh-33 (D), cpz-1 (E), D2005.1 (F), ceh-

6 (G) and Y116A8C (H) mutant populations (top) and their corresponding distances 

to the stereotyped behavioral spaces of the wild-type population (bottom) across 

development. Shown are the first 12 PCs that explain most of the variation in each 

behavioral space. Analyses were performed on distances from mid L1 stage to 

adulthood (45 developmental windows) (see Methods). 
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Figure 6 
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Figure 6. Plasticity in long-term individuality patterns of behavioral uniqueness 
across populations 
(A) Variation in average relative rank of behavioral spaces uniqueness across 

developmental windows, among individuals within all analyzed populations (blue 

dots), compared to variation among individuals generated from a shuffled rank 

dataset (distributions of 1000 runs, grey). *** P-value < 0.001 (FDR corrected) by 

bootstrap analysis (see Methods). (B) Heatmap represents median temporal 

correlations (Pearson correlation) between individual uniqueness rank, across all 

pairs of developmental windows in all analyzed populations. Dots represent 

significance of median temporal correlations (P-value<0.05, FDR corrected) by 

bootstrap analysis, compared to a shuffled rank dataset of the same population. 

Analyses include individuals with a full trajectory of PCA spaces from the mid L1 

stage to adulthood (45 developmental windows) (see Methods).  
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Figure S1 
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Figure S1. Individual size and posture dynamics quantification across 
development  
(A) An example of the quantification of an individual’s contour, body midline, and 

curvature profile across 40 body segments, homogenously distributed from head to 

tail (‘h’ and ‘t’, respectively). Color code marks curvature in each point along the 

midline. (B) Individuals average length (mm) within the wild-type population (n=123) 

across developmental stages (2 time bins per stage). Each dot represents a single 

individual. Line indicates average length and shaded area indicated standard error of 

the mean. (C) Head and tail detection across all developmental stages (L1-Adult) 

based on differences in speed of detected ends of each animal (see Methods). 

Represented are examples across developmental stages of midline dynamics (top 

left), smoothed trajectories of detected head (blue) and tail (orange) (top right) and 

distributions of log(head speed/tail speed) within the time window (bottom). P-value 

indicates significance of differences in head vs. tail speed (Wilcoxon signed rank 

test) (see Methods). Color code of midline dynamics marks time within the presented 

window. Images were enlarged for visual clarity (indicated in white zoom ratio 

relative to cropped image as in (A)). (D) Examples of continuous midline curvature 

quantification of an individual across all developmental stages. Shown are time 

windows that represent 10% of the total time of each developmental stage of the 

individual (10,000-12,000 sequential frames). Color code marks curvature in each 

point along the midline. White indicates frames in which midline extraction has failed. 
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Figure S2 
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Figure S2. Inference of stereotyped PCA behavioral spaces across 
developmental windows  
(A) Left: Developmental stage classification across development time using low 

activity lethargus states between stages. Right: Age-normalization for each individual 

was performed by equally dividing each developmental stage into a fixed number of 

time bins. Shown are examples of two individuals. (B) Examples of dimensionality 

estimation during specific developmental time windows of wild-type individuals 

(n=123) across all stages. Shown is the cross-validation relative square error for 

each choice of dimensionality (top) and the change in the base-10 logarithm of the 

error with each additional dimension (bottom). Dashed line indicates the threshold of 

0.01 for the change in logarithmic error (see Methods). Green line indicates 

estimated dimensionality. Time windows represented: L1 – 7th time bin, L2 – 7th time 

bin, L3 – 7th time bin, L4 – 7th time bin, Adult – 5th time bin, out of 10 time bins per 

developmental stage. (C) Variation explained by each PC during all 50 time windows 

across development. Dots indicate PCA space dimensionality estimate in each of the 

developmental time windows. Color code marks time window number within each 

stage (10 windows per developmental stage). (D) Average distance across 

stereotyped PCA spaces of the wild-type population separated by a specific number 

of time windows (blue) relative to mean distance across stereotyped PCA spaces 

that are shuffled in time (1000 runs, orange). Shaded area represents standard error 

of the mean.  
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Figure S3 
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Figure S3. Inter-individual variation in PCA behavioral spaces across 
developmental stages 
(A) Examples of developmental trajectories of PCA behavioral spaces from mid L1 

stage to adulthood (45 developmental windows), separately generated for single 

wild-type individuals (see methods). Shown are the first 12 PCs that explain most of 

the variation of the individual-unique behavioral space in each developmental 

window. (B-D) Examples of similarity matrices between the individual-unique and the 

population’s stereotyped PC modes (top) and the corresponding individual’s PC 

modes (bottom), in animals that showed high (B), intermediate (C) or low (D) 

behavioral uniqueness during specific developmental time bins. Time windows 

represented: L1 – 7th time bin, L2 – 7th time bin, L3 – 7th time bin, L4 – 7th time bin, 

Adult – 5th time bin, out of 10 time bins per developmental stage. Color code in (B-D) 

marks similarity between different PCs, quantified as the absolute value of the dot 

product (0-1). 
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Figure S4 
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Figure S4. Long-term individual consistency in uniqueness levels of 
behavioral spaces  
(A) Left: Relative uniqueness rank of behavioral spaces of wild-type individuals 

across developmental time windows. Right: A shuffled dataset of individual relative 

ranks. (B) Distributions of temporal correlations between uniqueness rank of wild-

type individuals (represented by CDF plots), quantified separately across and within 

all pairs of developmental stages (orange), compared to a shuffled rank dataset 

(green). *** P-value<0.001 (comparison to 1000 shuffled datasets) (see Methods). 

(C) t-SNE map represents time trajectories of behavioral spaces across 

developmental windows of two highly unique wild-type individuals shown in Fig. 4E. 

Gray dots in background represent all individual-unique behavioral spaces as in Fig. 

3B. (D,E) Relative behavioral uniqueness rank across developmental time windows, 

relative to the population, in consistently highly unique (D) and stereotyped 

individuals (E) shown in (Fig. 4E,F). Black line marks the median relative rank across 

the population. Analyses include individuals with a full trajectory of PCA spaces from 

mid L1 stage to adulthood (45 developmental windows) (see Methods). 
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Figure S5 
 

 
 

 

Figure S5. Distances between stereotyped behavioral spaces of multiple 
populations under different neuronal and environmental contexts 
Heatmap represents average distances of stereotyped behavioral spaces across 45 

developmental windows (mid L1-Adulthood), between all wild-type, mutant, and 

environmentally-perturbed populations (total of 31 populations). Color code marks 

average distance. 
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Figure S6 
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Figure S6. Temporal patterns of individuals consistency in behavioral 
uniqueness within multiple populations   
Heatmaps represent temporal correlations (Pearson correlation) between relative 

uniqueness ranks of individuals within the different populations across 

developmental windows (top), and corresponding CDF plots of distributions of 

temporal correlations across all pairs of developmental windows (red), relative to 

CDF plots generated from a shuffled rank dataset of each population (blue) (bottom). 

*** P-value < 0.001 (FDR corrected) by bootstrap analysis (see Methods). Analyses 

include individuals with a full trajectory of PCA spaces from mid L1 stage to 

adulthood (45 developmental windows) (see Methods). 
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Figure S7 
 

 
 
 
 
 
 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2024. ; https://doi.org/10.1101/2024.01.27.577215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577215
http://creativecommons.org/licenses/by-nc/4.0/


 53 

Figure S7.  Non-homogenous temporal patterns of individuals consistency in 
behavioral uniqueness across development 
(A-D) Distributions of temporal correlations (represented by CDF plots) between 

uniqueness relative rank of dop-1 (A), dop-1 exposed to 3 days of early starvation 

(B), D2005.1 (C) and ceh-6 (D) individuals, quantified separately across and within 

developmental stages (orange), compared to CDF plots generated from a shuffled 

rank dataset (green). * P-value < 0.05, ** P-value < 0.01, *** P-value < 0.001 (FDR 

corrected) by bootstrap analysis (see Methods). 
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