
nail: software for high-speed,1

high-sensitivity protein sequence2

annotation3

Jack W. Roddy1,†, David H. Rich2,†, Travis J. Wheeler1,24

*For correspondence:
twheeler@arizona.edu

†These authors contributed
equally to this work

1R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA;5

2Department of Computer Science, University of Montana, Missoula, Montana, USA6

7

Abstract8 “ Fast is fine, but accuracy is final.9 ”
10

-- Wyatt Earp11

Background:12

The extreme diversity of newly sequenced organisms and considerable scale of modern13

sequence databases lead to a tension between competing needs for sensitivity and speed in14

sequence annotation, with multiple tools displacing the venerable BLAST software suite on one15

axis or another. Alignment based on profile hidden Markov models (pHMMs) has demonstrated16

state of art sensitivity, while recent algorithmic advances have resulted in hyper-fast annotation17

tools with sensitivity close to that of BLAST.18

Results: Here, we introduce a new tool that bridges the gap between advances in these two19

directions, reaching speeds comparable to fast annotation methods such as MMseqs2 while20

retaining most of the sensitivity offered by pHMMs. The tool, called nail, implements a heuristic21

approximation of the pHMM Forward/Backward (FB) algorithm by identifying a sparse subset of22

the cells in the FB dynamic programming matrix that contains most of the probability mass. The23

method produces an accurate approximation of pHMM scores and E-values with high speed and24

small memory requirements. On a protein benchmark, nail recovers the majority of recall25

difference between MMseqs2 and HMMER, with run time ∼26x faster than HMMER3 (only ∼2.4x26

slower than MMseqs2’s sensitive variant). nail is released under the open BSD-3-clause license27

and is available for download at https://github.com/TravisWheelerLab/nail.28

29

Introduction30

Profile hidden Markov models for high sensitivity31

Thedominantmethod for accurate annotation of biological sequences is sequencedatabase search,32

in which an unknown sequence is classified by aligning it to sequences in an established database.33

This alignment-based approach of annotating sequences has historically been associated with the34

Smith-Waterman algorithm (Smith et al., 1981) and fast heuristics such as BLAST (Altschul et al.,35

1990). In the years since the introduction of BLAST, profile hidden Markov models (pHMMs: Krogh36

et al. (1994); Durbin et al. (1998); Eddy (1998)) have been shown to produce superior sequence37

search sensitivity (Karplus et al., 1998; Krause et al., 2024).38

1 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

twheeler@arizona.edu
https://github.com/TravisWheelerLab/nail
https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Much of the sensitivity of pHMMs is due to their natural representation of profiles – when a39

collection of sequence family members is used to train the model, a pHMM captures the position-40

specific letter and gap frequencies inherent to the family. Profile representation of a family of41

sequences allows for improved search sensitivity relative to search using a collection of individual42

sequences (Gribskov et al., 1987; Eddy, 2011; Krause et al., 2024), and these families also enable43

faster annotation time when sequences can be compared to a single family profile rather than44

the family’s constituent members. This pair of benefits has driven the development and use of45

databases of sequence families and accompanying pHMMs all across bioinformatics, e.g. (Mistry46

et al., 2021; Mi et al., 2019; Gibson et al., 2015; Grazziotin et al., 2016; Storer et al., 2021; Huerta-47

Cepas et al., 2019).48

Perhaps less appreciated is the fact that pHMM-based software is typically more sensitive than49

BLAST even when aligning to a database of individual sequences rather than profiles (Wheeler50

and Eddy, 2013; Steinegger and Söding, 2017; Frith, 2023; Krause et al., 2024). Unlike other align-51

ment methods that compute just a single highest-scoring alignment (akin to a maximum proba-52

bility Viterbi alignment (Viterbi, 1967) in pHMM terminology Durbin et al. (1998)), pHMMs enable53

computation of support for homology based on the sum of the probabilities of all alignments via54

the Forward/Backward (FB) algorithm (Rabiner, 1989; Krogh et al., 1994). Posterior probabilities re-55

sulting from FB also enable greater alignment accuracy (Holmes and Durbin, 1998; Do et al., 2005;56

Frith, 2023) as well as improved mechanisms for addressing composition bias and determining57

alignment boundaries (Eddy, 2008).58

Computing FB is computationally expensive – to align a pair of sequences, FB requires com-59

pletion of a dynamic programming matrix with size determined by the product of the sequence60

lengths, with each matrix cell requiring additional calculations to capture the sum of alignment61

probabilities (see Eddy (2011) for discussion). HMMER3 introduced a pipeline in which most can-62

didates are never subjected to expensive FB analysis, thanks to a series of earlier filter stages.63

In common use cases, the first filter of HMMER3 (called MSV) consumes ∼70% of HMMER’s run64

time, while FB consumes ∼20% of time and is primarily responsible for large memory usage due65

to the quadratic-sized dynamic programming matrix required for recovering the alignment. FB66

dominates run time in cases of queries with high length or large numbers of true matches, and be-67

comes the primary run time bottleneck in the event of improved speed for the earlier filter phases68

(Anderson and Wheeler, 2023).69

Algorithms for high speed70

Recent years have seen remarkable speed gains for sequence alignment methods, including those71

targeting alignment of highly-similar sequences (Langmead and Salzberg, 2012; Li, 2013; Kim et al.,72

2019; Edgar, 2020; Li, 2021; Sahlin, 2022; Li, 2023) and those reporting BLAST-like sensitivity in the73

context of high sequence divergence (Steinegger and Söding, 2017; Buchfink et al., 2021). We74

focus here on MMseqs2 (Steinegger and Söding, 2017), a profile alignment tool that achieves ex-75

ceptional speed gains relative to BLAST. The speed of MMseqs2 is primarily due to two innovations76

in its analysis pipeline. First, an optimized lookup table is used to restrict alignment computation77

to only involve matches with two very short high scoring length-k matches; these are extended to78

compute an ungapped alignment filter like that used in HMMER3. Next, MMseqs2 avoids the FB79

alignment step entirely, simply computing a highest-scoring alignment and using that as the basis80

of reported results. This approach produces impressive speed gains, and benefits from the advan-81

tages of position-specific scores, but misses out on the benefits of the more robust FB algorithm82

(Frith, 2023), resulting in modest loss in sensitivity relative to pHMM search (Krause et al., 2024).83

Another search tool, DIAMOND (Buchfink et al., 2021), has also demonstrated excellent speed, but84

its sensitivity does not appear to rival that of MMseqs2 (Krause et al., 2024).85

2 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


A hybrid pipeline for high-speed and sensitive alignment86

Here, we describe a sequence search pipeline that utilizes the MMseqs2 software suite to rapidly87

identify candidate sequence matches, then employs a fast FB heuristic to improve alignment sen-88

sitivity. The fast heuristic limits search space in the FB dynamic programming (DP) matrix to a high-89

probability cloud, as demonstrated in Figure 1, and results in calculations that closely approximate90

the results of the full FB algorithm, while providing a substantial reduction in space requirements91

and run time. The sparse FB implementation, along with downstream analyses making use of the92

resulting sparse posterior probability matrix, are based on methods in HMMER3, but are imple-93

mented from scratch in the Rust programming language, with the aim of creating a modern and94

stable codebase for reduced runtime and memory requirements of highly-sensitive sequence an-95

notation. The software, called nail (for nail is an alignment inference tool), is released under an96

open (BSD 3-clause) licence; source code is available at https://github.com/TravisWheelerLab/nail97

and is hosted on the official Rust package registry at https://crates.io/crates/nail.98

In the following sections, we demonstrate the efficacy of nail’s sparse FB implementation,99

demonstrate the impact of the overall pipeline on speed and sensitivity of sequence search, and100

provide a thorough description of its implementation.101

A.

B.

 /Full Forward Backward

 /Sparse Forward Backward

Figure 1. Sparsely filled Forward/Backward matrix capturing most of the probability mass. Top panel(A) shows heatmap of scores per cell in the Match State matrix for the sequence Q01LW8_ORYSA aligned tothe model for its matching family, DAO (FAD dependent oxidoreductase); bottom panel (B) shows the sparseset of (non-blue) cells that make up the cloud used for computing sparse Forward/Backward. The modelpositions are aligned along the y-axis and the sequence positions are aligned along the x-axis.

3 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://github.com/TravisWheelerLab/nail
https://crates.io/crates/nail
https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Results102

The primary innovation of nail is the development of an approximate method that reduces the103

time andmemory required for computation of the Forward and Forward/Backward (FB) algorithms104

for pHMMs, along with downstream analyses that are based on posterior probabilities resulting105

from FB (including creation of an alignment). The approach is a close cousin to the X-drop heuris-106

tic used in BLAST: start with a seed that establishes a region of interest within the DP matrix, and107

expand DP calculations out in both directions until pruning conditions are met – details are pro-108

vided in the Methods section. Figure 1 presents a single example of the reduced computation109

required by nail’s sparse Forward/Backward for a relatively short alignment of one Pfam-based110

pHMM against a sequence belonging to the family. Seeds for nail’s FB heuristic are acquired by111

running MMseqs2 as a subroutine for candidate identification.112

We begin by describing the data used for evaluation, then demonstrate the space-pruning ef-113

ficacy of nail’s Cloud Search approach. We then show that annotation with nail significantly114

improves accuracy over maximum probability alignment, while adding only a small amount of115

processing time. Scripts and notes to reproduce benchmarking results can be found at https:116

//github.com/TravisWheelerLab/nail-benchmarks.117

Benchmarks118

Pfam domain benchmark119

Assessment was performed primarily using a benchmark created with software (create-profmark)120

available in the HMMER3 release (Eddy, 2011). The benchmark consists of 1,339 families from121

Pfam-A v35.0 (Mistry et al., 2021) that could be split into a training and test set such that the test122

set contained at least 10 sequences and no training-test pair of sequences shares greater than123

25% identity. The training set defines a multiple sequence alignment for each family, and we refer124

to the collection of training families as the query. For each family, sequences from the group not125

included in the training set were down-sampled such that at most 30 sequences were used for the126

family and no two sequences were >50% identical; this left 25,688 total sequences, which serve127

as the test set. Each true test sequence was embedded in a larger unrelated sequence, to simu-128

late the sub-sequence nature of the protein domains in Pfam; specifically, unrelated sequences129

were produced by sampling from uniprot_sprot (2023_05), shuffling, then splicing the true test se-130

quence into the middle of the shuffled sequence. This set of sequences containing true positives131

was supplemented with 2 million additional sequences sampled and shuffled as above, but with132

no embedded matches. By construction, this benchmark contains cases that are highly difficult133

for sequence alignment tools to recognize (train and test sequences are less than 25% identical),134

in order to emphasize differences in sensitivity. Note that the benchmark does not include re-135

versed sequences, as these are prone to producing an excess of unexpected positives due to the136

surprising distribution high scores when aligning sequences to their reversals or even reversals of137

their homologs (Glidden-Handgis andWheeler, 2023). Formore details on benchmark construction138

method and philosophy, see (Eddy, 2011).139

Long protein data set140

Alignment with Pfammodels represents a common use case for sequence alignment, but one that141

involves relative short sequences – the median Pfam domain length is just over 300. The purpose142

of nail’s sparse Forward/Backward implementation is to avoid calculation over a full quadratic-143

sized dynamic programming matrix, and longer sequences are the ones that suffer most from144

this quadratic scaling; we therefore performed some tests using sequences on the longer end145

of the protein sequence length distribution. Specifically, we captured 6 pairs of long sequences146

from Uniprot (Table 1), and performed experiments to assess time and space efficiency along with147

4 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://github.com/TravisWheelerLab/nail-benchmarks
https://github.com/TravisWheelerLab/nail-benchmarks
https://github.com/TravisWheelerLab/nail-benchmarks
https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


approximation accuracy. For each pair, one sequence was designated the query and the other the148

target.149

Query Target
Name Length Name Length

TITIN_HUMAN 34,350 TITIN_MOUSE 35,213
EBH_STAAC 10,498 EBH_STAEQ 9,439
VLMS_LECSP 8,903 W4932_FUSPC 8,892
R1AB_CVH22 6,758 R1AB_BC512 6,793

HMCN1_HUMAN 5,635 HMCN1_MOUSE 5,634
RYR1_HUMAN 5,038 RYR1_PIG 5,035

Table 1. Long sequence pairs

Analysis pipeline – a sketch150

As a first step, the nail pipeline runs MMseqs2 search, which rapidly produces a set of candidate151

query/target pairs by performing k-mer-based seed selection followed by fast local alignment. nail152

runs the standard MMseqs2 search pipeline (with a few parameters adjusted as in Table 2): (i) a153

k-mer match stage identifies candidate matches based on the presence of two co-diagonal length-154

k matches with score above a threshold score; (ii) a parameterized number of above-threshold155

paired k-mermatches are extended to capture only those candidates with good-scoring ungapped156

alignments, then (iii) surviving candidates are aligned to produce the single highest-scoring gapped157

alignment for each candidate query/target pair. After running MMseqs2 search, nail retains all re-158

sults with P-value less than 0.01. The first and last positions of each surviving MMseqs2 alignment159

are mapped to corresponding cells (i.e. target and query positions) in a hypothetical FB alignment160

matrix. Using themapped cells as a starting point, a heuristic search algorithm (Cloud Search) iden-161

tifies a contiguous subset of FBmatrix cells with non-negligible probability. Within this reduced set162

of matrix cells, nail then completes a sparse variant of Forward/Backward, producing an over-163

all alignment score along with position-specific posterior probabilities that positions are aligned;164

these posterior probabilities are used to compute a composition bias score adjustment along with165

the final sequence alignment. See Methods for more details.166

Sparse Forward/Backward reduces computation, is a good approximation167

To evaluate nail’s sparse Forward/Backward method, we tested the extent to which it reduces the168

number of computed cells, as this directly impacts time and space utilization. We also measured169

howwell the sparse analysis approximates alignment scores computedusing full Forward/Backward.170

To analyze search space reduction, we computed the percentage of the full quadratic search171

space that is explored by the sparse approach. In Figure 2A, matrix sparseness (y-axis) is plotted172

against matrix size (x-axis – the product of the lengths of the query pHMM and target sequence).173

Reduction in search space is modest for alignments of shorter sequences; this is not surprising, as174

the total size of the matrix is not particularly large, so that even a modestly-wide band around the175

maximum-scoring alignment will consume much of the full analysis space. For longer sequences176

(for examplewith a length-400model aligned to a length-2500 protein, creating amatrix of size 106),177

nail’s sparse method often restricts the total number of computed cells to 1% or less of the full178

size of the matrix. Note that the sparsification is slightly greater on average for alignments involv-179

ing false positive matches. Though nail’s implementation is not SIMD vectorized as in HMMER3180

(Farrar, 2007; Eddy, 2011), the dramatic reduction in computed cells results in notable speed gains181

(see below). Figure 2B shows, for true positives from the domain benchmark, that the Forward182

5 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


score computed on the sparse matrix typically closely matches the score computed by Forward on183

the full matrix.184

(a) Each point represents a candidate alignment that survived the MMseqs2 Viterbi filter, and plots the fraction of the fulldynamic programming matrix included in nail’s sparse cloud computations (y-axis) against the full matrix size (x-axis).Alignments of true domain matches are plotted in blue; red points show sparsification for false positive alignments; greenstars (bottom right) show sparsification for long-sequence pairs, and follow the general trendline of space reduction as afunction of matrix growth.

0 100 200 300 400 500
Sequence Bitscore of Full Forward-Backward

0 0

100 100

200 200

300 300

400 400

500 500

Se
qu

en
ce

 B
its

co
re

 o
f S

pa
rs

e 
Fo

rw
ar

d-
Ba

ck
wa

rd

Pfam Domain Benchmark: Sequence Bitscore
Trend
y = x
True Positives

(b) Each point represents the relationship between sparse and full Forward scores for a true match in the benchmark. Loss ofscore shows up as vertical depression below diagonal. In some cases, a sparse alignment is reported with bias-adjusted scorethat is greater than the full matrix score; this is because nail follows HMMER3’s heuristics for bias score adjustment, butmatrix sparsity sometimes causes the bias-induced score adjustment (which decreases scores) to be smaller in scale.
Figure 2. Efficacy and impact of sparsifying Forward/Backward matrix.

6 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


10 3 10 2 10 1 100 101

Mean False Positives Per Search

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

Re
ca

ll

Pfam Domain Benchmark: Recall vs. Mean False Positives Per Search
hmmer (default)
nail (default)
mmseqs (sensitive)
mmseqs (default)
1% False Discovery Rate
Recall Before First False Positive

Figure 3. Recall as a function of false annotation rate. The protein domain benchmark consists of 25,688true target sequences from 1,339 Pfam families, mixed with 2 million shuffled sequences from Uniprot. nailand HMMER were each tested with default parameters; MMseqs2 was tested with both default and sensitive(-s 7.5 --max-seqs 1000) settings.

Recall as a function of false annotation185

We used the Pfam-based benchmark described above to assess the accuracy gains achieved with186

the Forward/Backward algorithm relative to MMseqs2 alignment, and to measure the efficacy187

of nail’s sparse implementation in retaining these gains. Each of the 1,339 query alignments188

was used to search for matching family members in the test database containing 25,688 true-189

embedded sequences mixed with 2 million simulated sequences. An alignment was considered190

to be ‘true positive’ if at least 50% of the length of an embedded target sequence was covered by191

an alignment with the query from the same family. A hit that entirely matched shuffled sequence192

was defined as a ‘false positive’. Alignments between a query and target of differing families were193

treated as neutral (ignored) rather than being penalized, since it is not possible to ensure lack of194

homology across assigned family labels.195

Figure 3 presents recall (fraction of all true positives that are recovered at a specific E-value196

cutoff) as a function of false annotation rate (number of false positive matches per query with that197

E-value or better). For each tested method, all resulting alignments were gathered together and198

sorted by increasing E-value, so that a recall curve can be plotted. HMMER3’s hmmsearch tool199

was run with default settings (‘-E 10’), and establishes a sensitivity target; since hmmsearch can200

produce multiple ‘domain’ alignments for a matched query-target pair, the domain with the best201

score (lowest E-value) was retained. Curves are plotted for MMseqs2 with default and sensitive202

(‘-s 7.5 --maxseqs 1000’) settings, and indicate a large sensitivity loss relative to pHMM annotation203

with HMMER. nail closes this gap, particularly at low false positive levels, producing near-HMMER204

sensitivity with MMseqs2-like speed (see below).205

The horizontal dashed lines in Figure 3 represent the recall before the first false positive for206

each tool, which we refer to as recall-0 and is equivalent to the measure primarily reported in207

(Steinegger and Söding, 2017) and (Buchfink et al., 2021). All tools show at least several percent208

gain in recall beyond that first false positive, with HMMER showing the steepest recall gains. As209

implemented, nail essentially re-scores candidate matches produced by MMseqs2. To establish210

7 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


an upper bound on the recall gains possible with sparse Forward/Backward, nail includes an op-211

tion to compute the entire Forward/Backwardmatrix for all candidates reported byMMseqs2 stage212

(‘--full-dp’). The corresponding curve is not shown here because it is essentially identical to that of213

the sparse implementation in nail. This demonstrates that loss of recall in nail relative to HMMER214

is due to limitations in candidates passing the initial filter, not failure of the sparse method, and215

highlights the value of future developments in fast candidate identification. We note that another216

high-speed annotation tool, DIAMOND (Buchfink et al., 2021), was omitted from analysis due to217

much lower benchmark sensitivity, in agreement with Krause et al. (2024).218

Note: this analysis accentuates the difference in real world performance of the tools because219

the benchmark is constructed to consist exclusively of hard-to-find matches. Furthermore, the220

performance gap may also be overstated due to the fact that the benchmark is built from Pfam221

sequences, which themselves were partly gathered using HMMER. Even so, the analyses agreewith222

other observations of superior pHMM sensitivity (Steinegger and Söding, 2017; Krause et al., 2024).223

Exploring the tension between speed and accuracy224

Assessment of sequence annotation methods must consider the tradeoff between speed and sen-225

sitivity. In doing so, it is helpful to summarize the full recall curves from Figure 3with a simple statis-226

tic. Here, we use the value recall-0, which is computed as the fraction of planted positives assigned227

an E-value better than the best-scoring false positive. This summary statistic is easy to interpret228

and generally agrees with relative ordering of methods in analyses such as Figure 3. Figure 4, plots229

run time (y-axis) and recall-0 (x-axis) for annotation of the Pfam-based benchmark described above230

– an idea tool will produce a point that is low (fast) and to the right (sensitive). We view these results231

as a conservative estimate of the speed benefits of the sparse Forward/Backward approach, be-232

cause the Pfam-based domain sequences are often quite short – the relative speed/recall tradeoff233

is expected to be increasingly in favor of sparse Forward/Backward for longer sequence elements234

(see Figure 2).235

0.2 0.3 0.4 0.5 0.6 0.7
Recall before First False Positive

101 101

102 102

103 103

104 104

Ru
nt

im
e 

(s
ec

)

Pfam Domain Benchmark: Runtime vs Recall before First False Positive
hmmsearch (default)
nail (full DP)
nail (default)
mmseqs (nail pipeline settings)
mmseqs (sensitive)
mmseqs (default)

Figure 4. Run time vs. recall. Pfam-based benchmark was searched with tool variants to demonstrateperformance-runtime tradeoffs. These include MMseqs2 variants (default; sensitive: -s 7.5 --max-seqs 1000;nail pipeline settings: --k-score 80 --min-ungapped-score 15 --max-seqs 1000), HMMER3’s hmmsearch(default), and nail variants (default; --full-dp). All tools were run with 8 threads.

8 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Figure 4 includes results of searching with HMMER3, which produces the highest recall-0 values236

at the cost of ∼62-fold increase in run time relative to sensitive MMseqs2. Recall and times for237

MMseqs2 default and sensitive are shown, along with values for MMseqs2 as parameterized when238

used within the nail pipeline (see Table 2). Meanwhile, nail recoversmore than half of MMseqs2’s239

lost sensitivity, while increasing run time only ∼2.4-fold. The full matrix variant of nail is also240

plotted, to demonstrate the speed boost achieved with sparse alignment, with essentially no loss241

in recall. A large majority of the sensitivity difference between nail and HMMER3 is the result of242

aggressive candidates filtering by the k-mer match stage in MMseqs2, suggesting that an alternate243

ultra-fast alignment seed detection method is warranted.244

Methods245

MMseqs2 as a prefilter for nail246

The first step in the nail pipeline is to identify a collection of promising query-target candidates,247

along with alignment matrix positions that will serve as seeds for sparse matrix calculations. nail248

identifies candidates by running theMMseqs2 ‘search’ commandwith two non-default parameters249

(see Table 2). This produces a maximal-scoring alignment and E-value for each reported query-250

target pair. The E-value is a measure of significance of an alignment computed by internally adjust-251

ing the alignment’s P-value by the size of the search space (the P-value indicates, for an alignment252

with score 𝑠, the probability of a non-homologous pair of sequences producing score ≥ 𝑠). Echoing253

the filtering strategy used in HMMER3, the nail pipeline converts MMseqs2 E-values into P-values254

(by inverting the database size adjustment), then filters out candidates with P-Value > 0.01 (i.e. 1%255

of non-homologous query-target pairs are expected to pass the filter).256

Parameter MMseqs2
sensitive

nail
default

Description

--k-score auto (88) 80 k-mer threshold for generating simi-lar k-mer lists
--min-ungapped-score 15 15 Accept only matches with ungappedalignment score above threshold
--max-seqs 300 1000 Maximum results per query sequenceallowed to pass the prefilter

Table 2. MMseqs2 parameters that can be altered through nail’s command line interface, along with briefdescriptions of their effects (copied from mmseqs prefilter -h command). Standalone MMseqs2 internallydetermines a value for --k-score based on a combination of sensitivity settings and system information; thistable presents the value selected by MMseqs2 for sensitive search on our benchmark tests, with kmer size of6. nail overrides this setting with a more permissive default. Note: further reduction to --k-score will increase
nail sensitivity and runtime.

Mapping the MMseqs2 profile to a pHMM257

Ideally, the previous step would provide landmarks (begin/end cells) in the pHMM alignment ma-258

trix for each identified candidate query-target pair. Because the alignment results correspond to259

anMMseqs2-style profile, and those profile positions do not necessarily map to the HMMER3-style260

pHMM positions used in nail’s Forward/Backward alignment, nail must mapMMseqs2 profile po-261

sition to the corresponding HMMER3 pHMMposition. This is accomplished by performing an align-262

ment of each MMseqs profile against the consensus sequence generated from the corresponding263

HMMER3 pHMM, using the MMseqs ‘search’ tool. The resulting alignment is used to map between264

the two profile representations through a linear scan.265

9 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Default implementation of the Forward/Backward algorithm266

To prepare for discussion of a sparse alignment implementation, we first describe the standard267

implementation of the Forward/Backward algorithm for aligning a query profileHMM (or sequence)268

to a target sequence. Input to the algorithm consists of:269

• An alphabet Σ of size 𝑘 (𝑘 = 20 for the amino acid alphabet).270

• A length-𝑛 target sequence 𝑇 = 𝑡1, 𝑡2, . . . , 𝑡𝑛, with all 𝑡𝑗 ∈ Σ.271

• A query pHMM 𝑄 defined by a collection of values organized around three core states for272

each of 𝑚 positions:273

– Match states (𝑀 ) emit residues (letters) from Σ with a position-specific distribution, and274

during alignment are used to associate (match) a residue 𝑡𝑗 from 𝑇 to a position 𝑞𝑖 in 𝑄;275

– Insert states (𝐼 ) emit residues in between match-state residues, and during alignment276

allow some residues in 𝑇 to not correspond to positions in 𝑄 (to lie between matched277

residues). In principle, position-specific insertion emission probabilities are legal, but278

nail follows the common convention of employing a single emission distribution for all279

insert states (which matches the background distribution);280

– Delete states (𝐷) are silent states (no emission) that, in alignment, allow some positions281

in 𝑄 to be deleted (not represented) in 𝑇 .282

– Note: though this description introduces the query as a pHMM, nail is capable of search-283

ing with a single sequence. A single sequence will correspond to a pHMM in which emis-284

sion probabilities are not position-specific, but instead depend simply on the observed285

residue at each position. Transition probabilities are uniform.286

In support of these states, 𝑄 is described by two matrices (see Durbin et al., 1998 for more287

detail):288

1. For each position 𝑖, emissions of match state 𝑀𝑖 are defined by a vector 𝑞𝑖1, 𝑞𝑖2, . . . , 𝑞𝑖𝑘,289

where a value 𝑞𝑖𝑐 corresponds to the model’s probability of observing residue 𝑐 at posi-290

tion 𝑖.291

2. A transition matrix captures the probability of transitioning from one state to another292

in sequential positions (transitions between D and I states are not included):293

𝑡(𝑀𝑖,𝑀𝑖+1), 𝑡(𝑀𝑖, 𝐷𝑖+1), 𝑡(𝑀𝑖, 𝐼𝑖), 𝑡(𝐼𝑖, 𝐼𝑖), 𝑡(𝐼𝑖,𝑀𝑖+1), 𝑡(𝐷𝑖, 𝐷𝑖+1), 𝑡(𝐷𝑖,𝑀𝑖+1)294

With this input, the Forward algorithm fills in three (𝑚 + 1)(𝑛 + 1)matrices, 𝐹𝑀 , 𝐹 𝐼 , and 𝐹𝐷, one for295

each state. The value stored at a cell (𝑖, 𝑗) in a state’s matrix corresponds to all ways of aligning the296

first 𝑗 letters of 𝑇 with the first 𝑖model positions, ending in that state. After initializing 𝐹𝑀
0,0 = 𝐹𝐷

0,0 =297

𝐹 𝐼
0,0 = 0, the remaining matrix cells are computed via the recurrence equations:298

𝑐 = 𝑡𝑗

𝐹𝑀
𝑖,𝑗 = 𝑞𝑖𝑐 ⋅ sum

⎧

⎪

⎨

⎪

⎩

𝐹𝑀
𝑖−1,𝑗−1 ⋅ 𝑡(𝑀𝑖−1,𝑀𝑖),

𝐹 𝐼
𝑖−1,𝑗−1 ⋅ 𝑡(𝐼𝑖−1,𝑀𝑖),

𝐹𝐷
𝑖−1,𝑗−1 ⋅ 𝑡(𝐷𝑖−1,𝑀𝑖)

𝐹 𝐼
𝑖,𝑗 = sum

{

𝐹𝑀
𝑖,𝑗−1 ⋅ 𝑡(𝑀𝑖, 𝐼𝑖),

𝐹 𝐼
𝑖,𝑗−1 ⋅ 𝑡(𝐼𝑖, 𝐼𝑖)

𝐹𝐷
𝑖,𝑗 = sum

{

𝐹𝑀
𝑖−1,𝑗 ⋅ 𝑡(𝑀𝑖−1, 𝐷𝑖),

𝐹𝐷
𝑖−1,𝑗 ⋅ 𝑡(𝐷𝑖−1, 𝐷𝑖)

Notes:299

10 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


• The result of the Forward algorithm is a ratio of the sum, over all possible alignments, of300

the probability of observing 𝑇 under the assumption of relationship to 𝑄, divided by the301

probability of observing 𝑇 under a random model. The log of this ratio is a score, and the302

E-value of an alignment can be computed based on how this score relates to the distribution303

of scores for alignments involving random sequences (see Eddy, 2008).304

• This recurrence is similar to the Viterbi recurrence (Viterbi, 1967) for finding the highest-305

probability alignment; it differs in that it sums the values of alternate paths, rather than se-306

lecting the maximum probability path. Viterbi is essentially equivalent to the scheme used in307

Smith-Waterman, BLAST, MMseqs2, DIAMOND, and others (Durbin et al., 1998; Frith, 2020).308

• This description addresses only the core model and assumes global alignment; local align-309

ment, and additional states, require straightforward modifications to the recurrence, see310

Eddy (2008).311

• The recurrence involves calculation of the products of probabilities, and can suffer from nu-312

merical underflow. The Viterbi (max) method avoids underflow by performing all computa-313

tions in log space. This is not possible for the Forward algorithm, due to the fact that it adds314

probabilities. This is often addressed by moving values in and out of log space (supported by315

fast approximation of log(𝑝1 + 𝑝2)); this is the method used in nail’s implementation. Some316

implementations achieve further acceleration by scaling values directly in order to avoid con-317

version to log space entirely (Eddy, 2011).318

• Though the recurrence suggests recursive function calls, the matrix can be computed by fill-319

ing a table in an ordered fashion, due to the ordered local dependencies of computations.320

This is usually performed in row-major order (filling from upper left to lower right, one row321

at a time), though dependencies allow for other orders, such as filling in sequential anti-322

diagonals (Ropelewski et al., 1997), as is done in nail.323

The Forward algorithm computes a measure of support for the relationship between 𝑇 and 𝑄, but324

does not directly produce a specific alignment between the two. One important byproduct of the325

calculation is that each (𝑖, 𝑗) cell in the Forwardmatrices represents the probability of all alignments326

ending in the corresponding state, having accounted for the first 𝑗 letters of 𝑇 and the first 𝑖 posi-327

tions of 𝑄. A common followup to Forward is to perform the same sort of computation in reverse,328

filling in tables from lower-right to upper-left based on an inversion of the recurrence for Forward.329

This Backward algorithm computes, for each cell, the probability of all alignments starting at 𝑡𝑗 and330

model position 𝑖. The Forward and Backward matrices can be combined (Durbin et al., 1998) to331

produce a posterior probability that each cell is part of the correct alignment. This posterior prob-332

ability matrix can serve as the basis of an alignment with maximum expected accuracy (Holmes333

and Durbin, 1998; Durbin et al., 1998). We omit details, as they are not required to understand the334

work here, but note that typical calculation of each of these matrices is performed across the full335

quadratic alignment space.336

Efficient search for high-probability cloud in Forward/Backward matrices337

The Forward/Backward computation described above captures the total probability of all possi-338

ble alignments, and in doing so, fills in multiple matrices with quadratic size (the product of the339

lengths of 𝑇 and 𝑄). nail improves computational efficiency with a heuristic that exploits the fact340

that this is usually overkill – most possible alignments have such low probability that excluding341

them from computation has no relevant impact on the overall sum of probabilities (see Figure 1).342

nail’s sparse matrix approach aims to identify which matrix cells contain non-negligible probabil-343

ity, and limit calculations to touch only those cells. Doing so minimally impacts computed scores344

and resulting sequence alignments, while substantially reducing the total computation. In this sec-345

tion, we describe a heuristic approach for achieving this goal. The method, which we call Cloud346

Search, resembles the well-known X-drop algorithm used in maximum-score alignment methods347

11 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


such as BLAST (Altschul et al., 1990). nail begins with a seed that provides guidance on where348

high-probability cells are likely to be found, then expands a search forward and backward across349

the matrices for a cloud of cells around this seed that appear to contain essentially all relevant350

probability mass. This constrained space is then used as the basis for all downstream analysis.351

Figure 5. Cloud Search. In this schematic representation of Cloud Search: (1) An alignment from MMseqs2 isused as the source of begin- and end-points (green and yellow; these could come from any source). (2)Calculation is performed in the forward direction (moving down and to the right) from the begin point byfilling in one anti-diagonal at a time, pruning each diagonal in from the ends based on score-dropoffconditions; this typically extends beyond the provided end point. (3) A similar flood fill pass is performed inthe reverse direction starting from the provided end point, moving up and to the left. (4) The union of the tworesulting spaces is identified as the sparse cloud.

Cloud Search by pruned anti-diagonal completion352

The method proceeds as follows:353

• Cloud Search is initiated with a pair of alignment matrix cells, begin and end. As currently354

implemented, this pair is taken from an MMseqs2 alignment between 𝑄 and 𝑇 (Figure 5: (1))355

– the first and last positions of the alignment specify the begin cell (𝑖𝑏, 𝑗𝑏) and end cell (𝑖𝑒, 𝑗𝑒).356

In principle a cell pair could be produced by some other seed finding approach, and could be357

initialized by more than one such pair of begin/end cells.358

• Cloud Search flood-fills the matrices forward (down and right) from the begin cell, extending359

out until pruning conditions are reached – Figure 5: (2). After initializing 𝐹𝑀
𝑖𝑏 ,𝑗𝑏

= 𝐹𝐷
𝑖𝑏 ,𝑗𝑏

= 𝐹 𝐼
𝑖𝑏 ,𝑗𝑏

= 0360

(green cell in upper left), neighboring cells down and right of (𝑖𝑏, 𝑗𝑏) are computed in anti-361

diagonal fashion, first filling the two cells (𝑖𝑏+1, 𝑗𝑏) and (𝑖𝑏, 𝑗𝑏+1), then the three cells below these,362

and so on. Based on the recurrence, each cell on one anti-diagonal pushes values to recipient363

cells in subsequent anti-diagonals; based on this push-based transfer of information, the364

only cells touched on one anti-diagonal are those that are reachable from some active cell365

on the previous two anti-diagonals. Beginning from (𝑖𝑏, 𝑗𝑏), all reachable anti-diagonal cells366

are computed and retained, until the anti-diagonal achieves length 𝛾 (default: 5). After this,367

when an anti-diagonal has been computed, two pruning conditions are applied to constrain368

expansion of search space.369

– Once all values in an anti-diagonal 𝑑 have been computed, the maximum value for that370

anti-diagonal is captured as max𝑑 . All cells with 𝐹𝑀
𝑖,𝑗 ≥ max𝑑 − 𝛼 are retained, and others371

12 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


are pruned. Scores at this point are captured in nats (natural logarithms), with default372

𝛼 = 12, so that this effectively prunes cells on an anti-diagonal that have probability that373

is ∼1 million-fold lower than the most-probable cell on that anti-diagonal.374

– As flood fill continues, the overall best-seen score across all computed anti-diagonals is375

captured as max𝑜. Any cell with score 𝐹𝑀
𝑖,𝑗 < max𝑜 − 𝛽 is pruned. With a default 𝛽 = 20,376

this prunes cells with ∼1 billion-fold reduction from the best seen overall value (this is377

analogous to X in the X-drop heuristic). When all cells in an anti-diagonal are pruned, the378

flood fill stops.379

Pruning is performed based entirely on values stored in the Match state matrix 𝐹𝑀 , and all380

scores are maintained in log space. The result of this phase is a set of cells expanding down381

and right from (𝑖𝑏, 𝑗𝑏), schematically represented as dark green cells in Figure 5: (2). This cloud382

of cells typically remains in a fairly tight band around the maximum probability (Viterbi) path.383

Importantly, this cloud search approach typically extendswell beyond the initial end cell (𝑖𝑒, 𝑗𝑒),384

meaning that a conservative selection of initial points does not constrain the Forward cloud385

search.386

• After the Forward Cloud Search phase, a similar Backward pass is performed, beginning at387

(𝑖𝑒, 𝑗𝑒), and flood filling as in the previous stage, but up and to the left (Figure 5: (3); yellow388

cells).389

• Cloud Search concludes by selecting the union of the Forward and Backward clouds (Figure 5:390

‘Cloud Union’). This establishes a set of cells that hold a non-negligible expansion around the391

range bounded by the initiating cells (𝑖𝑏, 𝑗𝑏) and (𝑖𝑒, 𝑗𝑒).392

Linear space requirement for computing Cloud Search393

The forward and reverse passes of Cloud Search can be computed in linear space, using a 3 by394

𝑚 matrix, in which each row holds the dynamic programming values computed along one anti-395

diagonal. In general, the 𝑛𝑡ℎ anti-diagonal, 𝑑𝑛, is assigned to row 𝑛 mod 3, and each column in the396

cloud matrix 𝐶 corresponds to a column in the implicit DP matrix. For a given matrix cell 𝐹 ⋅
𝑖,𝑗 , its397

anti-diagonal is given by 𝑑𝑛 = 𝑖+ 𝑗. Then, the value is stored in the cloud matrix at row (𝑖+ 𝑗) mod 3,398

column 𝑗. Modifications to the recurrence equations follow naturally.399

During the forward pass of Cloud Search, the values computed along anti-diagonal 𝑑𝑛 depend400

on the values computed along the previous anti-diagonals 𝑑𝑛−1 and 𝑑𝑛−2. The cloud matrix access401

pattern satisfies those dependencies: the values along 𝑑𝑛 are stored in the row that previously402

contained the (now retired) values of 𝑑𝑛−3, while the previously computed values of 𝑑𝑛−1 and 𝑑𝑛−2403

remain available. Similarly, during the reverse pass, the values along 𝑑𝑛 are stored in the row404

previously containing the values of 𝑑𝑛+3 with the values on 𝑑𝑛+1 and 𝑑𝑛+2 retained. Figure 6 gives an405

example of the cloud matrix access pattern during a forward pass of Cloud Search.406

Once an anti-diagonal has been computed and pruned, the positions (in the implicit complete407

matrix) of its lower left and upper right cells are stored; these two cells describe an anti-diagonal408

cloud bound: each cell along the anti-diagonal between the two bounding cells is included in the409

sparse cloud. In this fashion, the cloud bounds are stored in linear space, with at most 4𝑚 values410

(two (𝑖, 𝑗) pairs per anti-diagonal) describing a cloud that spans the full width and height of the411

complete matrix.412

Cloud union, trimming, and reorientation413

After completing the forward and reverse passes of Cloud Search, the union of the two clouds is414

taken, as shown in Figure 5: (4). This is done by iterating across the forward and reverse bounds415

from the left-most anti-diagonal present, 𝑑start, to the right-most anti-diagonal present, 𝑑end, and416

producing a new bound at each 𝑑n by combining the two bounds such that the resulting anti-417

diagonal covers the ranges of both the forward and reverse anti-diagonals. On anti-diagonals for418

13 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Figure 6. Example anti-diagonal access pattern. This example shows the implicit DP matrix (top) and thestate of the cloud matrix (bottom) when anti-diagonals 𝑑11 (left example), 𝑑12 (middle example), and 𝑑13 (rightexample) are being filled during the forward pass of Cloud Search. In both representations, the datadependency patterns are shown with arrows. Note that in the implicit DP matrix, the dependencies follow thesame patterns at each step, but, in the cloud matrix, the relative positioning (in memory) of the dependencieschanges.

which there is exclusively a forward or a reverse bound, the union step simply uses that bound.419

It is possible for the clouds identified by the forward and reverse pass to not intersect; this is420

typically caused by a region of very low homology that Cloud Search does not pursue. In such cases,421

nail discards the search clouds and defaults to filling in a rectangular DP matrix bounded by the422

start and end seed positions. In our experience, these situations are exceedingly rare, occurring in423

less than 0.0001% of alignments of true positive sequences in our benchmarks.424

425

Cloud trimming: The union of the forward and reverse clouds typically results in a cloud shape426

with protrusions along the edges of the cloud, as shown in Figure 7: (1). The protrusions contain427

cells that either (a) can’t include probability from paths originating in the first anti-diagonal in the428

cloud, or (b) can’t propagate probability along a path toward the last anti-diagonal in the cloud. In429

other words, in sparse FB, the cells in such protrusions either contain a likely negligible amount430

of probability, or do not contribute to the total probability captured at the end of FB. Additionally,431

certain protrusions cause the cloud to have gaps between contiguous runs of included cells in432

one row of the matrix. Both classes of protrusions slightly complicate the process of reorienting433

the anti-diagonal-based cloud bounds into row-based cloud bounds (discussed next in this section),434

and row-gap-inducing protrusions dramatically complicate the bookkeeping involvedwith a sparse435

matrix data structure (discussed in the section ‘Sparse matrix organization’). Because they can not436

be involved in both Forward and Backward paths without passing through pruned cells, they can437

be safely removed from the cloud.438

To remove these protrusions, we run a simple linear time algorithm that makes both a forward439

and reverse pass iterating across each bound in the cloud union. Pseudocode for the algorithm is440

given in Algorithm 1, and a visual representation can be found in Figure 7: (2).441

442

Cloud reorientation: Although the Cloud Search computations may be performed anti-diagonal443

by anti-diagonal, we reorient the anti-diagonal-based cloud bounds into row-based cloud bounds444

(primarily in preparation for a future nail implementation that will implement the J state used445

in HMMER3 to support multi-domain matches (Eddy, 2008). Reorientation is performed using a446

simple linear time algorithm that iterates across the trimmed cloud union bounds. Pseudocode447

for the algorithm is given in Algorithm 2, and a visual representation can be found in Figure 7: (3).448

14 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Algorithm 1: Cloud trimming
Data: 𝑑start ← first anti-diagonal in cloud

𝑑end ← last anti-diagonal in cloudVector 𝐷left of left anti-diagonal bounds; (𝑟𝑜𝑤, 𝑐𝑜𝑙); result of Cloud SearchVector 𝐷right of right anti-diagonal bounds; (𝑟𝑜𝑤, 𝑐𝑜𝑙); result of Cloud Search
Result: Cloud bounds trimmed to remove all protrusions
for 𝑑 ← 𝑑start + 1 to 𝑑end do

(𝑝𝑟𝑒𝑣row, 𝑝𝑟𝑒𝑣col) ← 𝐷left[𝑑 − 1]
(𝑐𝑢𝑟𝑟row, 𝑐𝑢𝑟𝑟col) ← 𝐷left[𝑑]
Δleft ← 𝑚𝑎𝑥(𝑝𝑟𝑒𝑣col − 𝑐𝑢𝑟𝑟col, 0)
𝐷left[𝑑] ← (𝑐𝑢𝑟𝑟row − Δleft, 𝑐𝑢𝑟𝑟col + Δleft)
(𝑝𝑟𝑒𝑣row, 𝑝𝑟𝑒𝑣col) ← 𝐷right[𝑑 − 1]
(𝑐𝑢𝑟𝑟row, 𝑐𝑢𝑟𝑟col) ← 𝐷right[𝑑]
Δright ← 𝑚𝑎𝑥(𝑝𝑟𝑒𝑣row − 𝑐𝑢𝑟𝑟row, 0)
𝐷left[𝑑] ← (𝑐𝑢𝑟𝑟row + Δright, 𝑐𝑢𝑟𝑟col − Δright)

for 𝑑 ← 𝑑end to 𝑑start − 1 do
(𝑛𝑒𝑥𝑡row, 𝑛𝑒𝑥𝑡col) ← 𝐷left[𝑑 + 1]
(𝑐𝑢𝑟𝑟row, 𝑐𝑢𝑟𝑟col) ← 𝐷left[𝑑]
Δleft ← 𝑚𝑎𝑥(𝑐𝑢𝑟𝑟col − 𝑛𝑒𝑥𝑡col, 0)
𝐷left[𝑑] ← (𝑐𝑢𝑟𝑟row − Δleft, 𝑐𝑢𝑟𝑟col + Δleft)
(𝑛𝑒𝑥𝑡row, 𝑛𝑒𝑥𝑡col) ← 𝐷right[𝑑 + 1]
(𝑐𝑢𝑟𝑟row, 𝑐𝑢𝑟𝑟col) ← 𝐷right[𝑑]
Δright ← 𝑚𝑎𝑥(𝑐𝑢𝑟𝑟row − 𝑛𝑒𝑥𝑡row, 0)
𝐷left[𝑑] ← (𝑐𝑢𝑟𝑟row + Δright, 𝑐𝑢𝑟𝑟col − Δright)

Algorithm 2: Cloud reorientation
Data: 𝑟𝑜𝑤start ← first row in cloud

𝑟𝑜𝑤end ← last row in cloudVector 𝐷left of left anti-diagonal bounds; (𝑟𝑜𝑤, 𝑐𝑜𝑙); result of Cloud SearchVector 𝐷right of right anti-diagonal bounds; (𝑟𝑜𝑤, 𝑐𝑜𝑙); result of Cloud SearchVector 𝑅left of left row bounds; (𝑐𝑜𝑙); initialize all to MAX_INTVector 𝑅right of right row bounds; (𝑐𝑜𝑙); initialize all to 0
Result: Vectors 𝑅left and 𝑅right contain the column indices of the left-most and right-mostcells in each row included the cloud across [𝑟𝑜𝑤start, 𝑟𝑜𝑤end]Indices of rows that are not included in the cloud retain initialization values
for (𝑟𝑜𝑤, 𝑐𝑜𝑙) ∈ 𝐷left do

𝑅left[𝑟𝑜𝑤] ← 𝑚𝑖𝑛(𝑅left[𝑟𝑜𝑤], 𝑐𝑜𝑙)

for (𝑟𝑜𝑤, 𝑐𝑜𝑙) ∈ 𝐷right do
𝑅right[𝑟𝑜𝑤] ← 𝑚𝑎𝑥(𝑅right[𝑟𝑜𝑤], 𝑐𝑜𝑙)

15 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Figure 7. Cloud Search.

Sparse Forward/Backward to recover score and alignment449

With the cloud of non-negligible alignment matrix cells in hand, it is possible to compute an ap-450

proximation of the full Forward/Backward alignment algorithm by filling in only cells in the cloud.451

This implicitly treats all other cells as if they carry a probability of zero.452

Sparse matrix organization453

To compute a Forward/Backward approximation, the ranges defined in the row-based cloudbounds454

are used as the basis for creating a sparse version of each of the matrices 𝑀 , 𝐼 , and 𝐷. Since the455

row bounds describe exclusive contiguous runs of columns present in a row, we can store the𝑀 ,456

𝐼 , 𝐷 values of the entire cloud in a single flat array, with padding cells between each run of con-457

tiguous values to accommodate the data dependencies described in the FB recursion. This flat458

array layout is supported by a table of complementary offsets that enable rapid identification of459

locations in the flat array corresponding to positions in the implicit matrix (Figure 8B), with two460

offsets for each block of active cells. In practice, the space required to hold active and padding461

cells is generally only slightly larger than the number of active cells. This layout is used to allocate462

a sparse𝑀 , 𝐼 , and 𝐷 matrix in the form of an array for computing sparse Forward, another three463

arrays for computing Backward, and a single array for computing per-cell posterior probabilities464

in support of optimal accuracy alignment.465

Sparse Forward-Backward466

Computing the sparse approximation of Forward/Backward is a matter of traversing the com-467

pressed arrays in increasing order for Forward, and decreasing order for Backward, in runs defined468

by blocks of active cells. When filling in the sparse matrices, pad cell values are set to zero, and469

other cells are computed based on the standard recurrence equations, with retrieval of data via470

logical row and column indices supported by the function given in Figure 8C. To compute cell-wise471

posterior probabilities, the product of the Forward and Backward matrices are computed in the472

usual fashion. A Maximum Expected Accuracy alignment is identified based on these posterior473

probabilities (Durbin et al., 1998).474

Cloud filter, and Forward filter:475

Though reduced space Forward/Backward is fast, many of the input alignment candidates will pro-476

duce such a low-quality alignment that they will not end up being reported. To avoid time spent477

analyzing such candidates, nail performs two consecutive filters. The more robust of these is a478

filter applied after computing the sparse Forward score within the sparse cloud: using the sparse479

Forward score, a P-value is computed and alignments with P>1e-4 are removed (so that 0.01% of480

unrelated sequences are expected to pass the filter; this is similar in function to the Forward filter481

used in HMMER3).482

16 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Figure 8. Sparse Matrix. Example organization of a sparse cloud into a flat array with supporting offset data,and demonstration of its use. (A) sparse cloud cells in pink/blue are supplemented with the set of paddingcells (white with ) that ensure that any Forward/Backward calculation dependencies will refer to either acloud or padding cell (to avoid conditionals in the DP inner loop). (B) Table of values required to computeoffsets into flat array during DP recurrence computation: the row offset is the column index of the first cell inthe row; the block offset is the index in the flat array of the first cell in the row. (C) Pseudocode for retrieving avalue from the flat array given logical (i.e. implicit full matrix) row and column indices. The retrieval function isfast in practice, and circumvents the use of conditional logic. Note: This is a slight simplification of the actualimplementation, which must support access to each of the𝑀 , 𝐼 , and 𝐷 values that correspond to the samelogical row and column. (D) Representation of the flat array in memory. Note: the visualization has beensimplified for clarity; in practice, each element in a block shown actually corresponds to a tuple of threevalues, one for each of the𝑀 , 𝐼 , and 𝐷matrices. Similarly, each padding cell shown in the flat representationcorresponds to a group of three identical padding values.

Prior to computing the Forward score on the sparse cloud, nail is able to approximate that483

score using a method that we call ‘cloud filter’, which adds the sparse Forward score (starting at484

the begin cell) and sparse Backward score (starting at the end cell) computed during Cloud Search,485

approximately adjusting for score accumulated in cells shared by the twowaves. This adjustment is486

achieved by estimating howmuch of the forward pass scoremust have beenmissed in the reverse487

pass, and vice versa. To do this, nail keeps track of the best score observed during forward Cloud488

Search expansion (best_fwd), and the best score observed before extending past the anti-diagonal489

containing end cell (best_infwd). The difference (Z = best_fwd - best_infwd) is an estimate of the part490

of the Forward pass’s score that is not shared by the two passes of Cloud Search. A similar value491

is captured during the backward pass of Cloud Search (A = best_bkwd - best_inbkwd). The total492

Forward score is then estimated as A + max(best_infwd,best_inbkwd) + Z; a P-value is computed493

for this, and only candidates with corresponding P≤1e-3 are passed on to the Forward stage.494

Bias correction, alignment boundaries, alignment:495

For all downstream analyses, nail follows the methods of HMMER3, but with a sparse matrix im-496

plementation. This includes (i) estimation of the effect of composition bias on the alignment score,497

and corresponding score adjustment, (ii) identification of the start and end of an aligned region498

based on posterior probabilities captured in states that precede and follow the core HMMER3499

model (HMMER’s ‘domain definition’ step), and (iii) maximum expected accuracy alignment. Result-500

ing (bias-corrected) scores are converted to E-values as in HMMER (see Eddy, 2008). Note that bias501

correction depends on posterior probabilities, so bias based on sparse computationmay be higher502

or lower than in HMMER3 – this may cause the overall (bias-adjusted) score in nail to exceed that503

17 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


of HMMER3.504

Test Environment505

All tests were performed using 8 threads on a Linux workstation with an Intel i9-14900KF (6.0GHz506

boost) 24 core processor and 128GB RAM. Standard wall clock times were captured.507

Discussion508

As implemented, nail demonstrates that it is possible to employ powerful Forward/Backward in-509

ference with significantly reduced time and memory requirements. Here, we highlight ways in510

which we expect future advances may lead to superior annotation performance.511

Better candidate seeds512

nail’s dependency on MMseqs2 creates two common ways that a good alignment can be missed.513

In themost straightforward one, theMMseqs2 portion of the pipeline fails to find a good alignment514

candidate, so nail’s sparse Forward/Backward stage is never given a chance to identify the match.515

The fast k-mer match stage of MMseqs2 is the common cause of such misses, and is responsible516

for most of the sensitivity difference between nail and HMMER3. nail’s implementation makes517

it possible to explore development of new candidate detection options with no exposure to other518

parts of the algorithm. Fast and highly sensitive candidate detection may be improved through519

an alternative k-mer matching scheme (perhaps leveraging fast FM-index implementation as with520

Anderson and Wheeler, 2021), neural networks (Schütze et al., 2022), minimizer analogs (Sahlin,521

2022; Joudaki et al., 2020), hardware accelerators (Anderson andWheeler, 2023), or othermethods.522

Reporting fragments or multiple domains523

A more subtle issue is that the current nail pipeline only analyzes the MMseqs2-sourced region524

with the highest score; it does not explore lower-scoring MMseqs2 matches to identify a superior525

Forward/Backward score/alignment. The most common impact of this will be that only a single526

match will be reported when there are in fact multiple hits to be found, as will be true when there527

are multiple copies of a query domain, or a highly fragmented sequence match. In some cases, an528

unfortunate MMseqs2 seed can mean that the best matching alignment is missed by nail (as in529

Figure 9). Mechanisms for identifying multiple good begin/end seeds, and for efficiently managing530

the associated sparse cloud(s), will improve nail’s completeness and sensitivity.531

Support for more complex models532

nail reduces the computation workspace while retaining the core models of pHMM search. With533

this architecture in place, it will be possible to expand model complexity while retaining desirable534

run time properties. For example, it will be possible to directly incorporate models of sequence535

repetition (Frith, 2011; Olson and Wheeler, 2018) and sequencing error (Krause et al., 2024) for536

improved annotation. Furthermore, nail will also be extended to support nucleotide annotation537

as well as annotation of protein-coding DNA (Krause et al., 2024).538

Faster computations539

The Forward/Backward recurrence calculations are modeled after the generic implementation in540

HMMER, with significant overhead required to support movement back and forth to log-scaled541

representations of odds ratios. Dynamic scaling in probability space is faster (Eddy, 2011) and542

should be feasible in the sparse representation described here.543

Funding544

This work was supported by NIH grants P20GM103546 and 1R01GM132600 (NIGMS), and by DOE545

grant DE-SC0021216.546

18 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


A.

B.

C.

D.

Figure 9. Example of MMseqs2 producing a seed outside of the dense probability cloudTop panel shows heatmap of scores per cell in the Match State matrix for a full-DP alignment of the sequenceTPHS_32929 aligned to the model for its matching family, TPH (Pfam domain PF13868). The location of thepoorly placed seed produced by MMseqs2 (white line) is shown at the top center of the matrix. Bottom panelshows the sparse set of low-probability cells identified by Cloud Search based on the MMseqs-derived seed,missing the dense probability mass of the true optimal alignment. The model positions are aligned along they-axis and the sequence positions are aligned along the x-axis.

Acknowledgments547

We are grateful to George Lesica and Genevieve Krause for helpful discussions during develop-548

ment of software and benchmarks. We also gratefully acknowledge the computational resources549

and expert administration provided by the University of Montana’s Griz Shared Computing Clus-550

ter (GSCC), and the high performance computing (HPC) resources supported by the University of551

Arizona TRIF, UITS, and Research, Innovation, and Impact (RII) and maintained by the UArizona552

Research Technologies department.553

19 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


References554

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular555

biology. 1990; 215(3):403–410.556

Anderson T, Wheeler T. An FPGA-based hardware accelerator supporting sensitive sequence homology filter-557

ing with profile hidden Markov models. bioRxiv. 2023; p. 2023–09.558

Anderson T, Wheeler TJ. An optimized FM-index library for nucleotide and amino acid search. Algorithms for559

Molecular Biology. 2021; 16(1):1–13.560

Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature561

methods. 2021; 18(4):366–368.562

Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple se-563

quence alignment. Genome research. 2005; 15(2):330–340.564

Durbin R, Eddy SR, Krogh A, Mitchison G. Biological sequence analysis: Probabilistic models of proteins and565

nucleic acids. Cambridge university press; 1998.566

Eddy SR. Profile hidden Markov models. Bioinformatics. 1998; 14(9):755–763.567

Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation.568

PLoS Comput Biol. 2008; 4(5):e1000069.569

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011; 7(10):e1002195.570

Edgar R. URMAP, an ultra-fast read mapper. PeerJ. 2020; 8:e9338.571

Farrar M. Striped Smith-Waterman speeds database searches six times over other SIMD implementations.572

Bioinformatics. 2007; 23(2):156–161.573

Frith MC. A new repeat-masking method enables specific detection of homologous sequences. Nucleic acids574

research. 2011; 39(4):e23–e23.575

Frith MC. How sequence alignment scores correspond to probability models. Bioinformatics. 2020; 36(2):408–576

415.577

Frith MC. A simple theory for finding related sequences by adding probabilities of alternative alignments.578

bioRxiv. 2023; p. 2023–09.579

GibsonMK, Forsberg KJ, DantasG. Improved annotation of antibiotic resistance determinants revealsmicrobial580

resistomes cluster by ecology. The ISME journal. 2015; 9(1):207–216.581

Glidden-Handgis G, Wheeler TJ. WAS IT A MATch I SAW? Approximate palindromes lead to overstated false582

match rates in benchmarks using reversed sequences. bioRxiv. 2023; p. 2023–06.583

Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for com-584

parative genomics and protein family annotation. Nucleic acids research. 2016; p. gkw975.585

Gribskov M, McLachlan AD, Eisenberg D. Profile analysis: Detection of distantly related proteins. Proceedings586

of the National Academy of Sciences. 1987; 84(13):4355–4358.587

Holmes I, Durbin R. Dynamic programming alignment accuracy. Journal of computational biology. 1998;588

5(3):493–504.589

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T,590

Jensen LJ, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource591

based on 5090 organisms and 2502 viruses. Nucleic acids research. 2019; 47(D1):D309–D314.592

Joudaki A, Rätsch G, Kahles A. Fast Alignment-Free Similarity Estimation By Tensor Sketching. bioRxiv. 2020; p.593

2020–11.594

Karplus K, Barrett C, Hughey R. HiddenMarkovmodels for detecting remote protein homologies. Bioinformat-595

ics (Oxford, England). 1998; 14(10):846–856.596

20 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/


Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2597

and HISAT-genotype. Nature biotechnology. 2019; 37(8):907–915.598

Krause GR, Shands W, Wheeler TJ. Sensitive and error-tolerant annotation of protein-coding DNA with BATH.599

bioRxiv. 2024; .600

Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Hidden Markov models in computational biology: Appli-601

cations to protein modeling. Journal of molecular biology. 1994; 235(5):1501–1531.602

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9(4):357–359.603

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint604

arXiv:13033997. 2013; .605

Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021; 37(23):4572–4574.606

Li H. Protein-to-genome alignment with miniprot. Bioinformatics. 2023; 39(1):btad014.607

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER608

GO-slim and improvements in enrichment analysis tools. Nucleic acids research. 2019; 47(D1):D419–D426.609

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL, Tosatto SC, Paladin L, Raj S,610

Richardson LJ, et al. Pfam: The protein families database in 2021. Nucleic Acids Research. 2021; 49(D1):D412–611

D419.612

Olson D, Wheeler T. ULTRA: A model based tool to detect tandem repeats. In: Proceedings of the 2018 ACM613

International Conference on Bioinformatics, Computational Biology, and Health Informatics; 2018. p. 37–46.614

Rabiner LR. A tutorial on hiddenMarkov models and selected applications in speech recognition. Proceedings615

of the IEEE. 1989; 77(2):257–286.616

Ropelewski A, Nicholas H, Deerfield D. Implementation of genetic sequence alignment programs on super-617

computers. The Journal of Supercomputing. 1997; 11:237–253.618

Sahlin K. Strobealign: flexible seed size enables ultra-fast and accurate read alignment. Genome Biology. 2022;619

23(1):260.620

Schütze K, Heinzinger M, Steinegger M, Rost B. Nearest neighbor search on embeddings rapidly identifies621

distant protein relations. Frontiers in Bioinformatics. 2022; 2:1033775.622

Smith TF, WatermanMS, et al. Identification of commonmolecular subsequences. Journal ofmolecular biology.623

1981; 147(1):195–197.624

Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive625

data sets. Nature biotechnology. 2017; 35(11):1026–1028.626

Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element627

families, sequence models, and genome annotations. Mobile DNA. 2021; 12(1):1–14.628

Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE629

transactions on Information Theory. 1967; 13(2):260–269.630

Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013; 29(19):2487–631

2489.632

21 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577580
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Profile hidden Markov models for high sensitivity
	Algorithms for high speed
	A hybrid pipeline for high-speed and sensitive alignment

	Results
	Methods
	MMseqs2 as a prefilter for nail
	Mapping the MMseqs2 profile to a pHMM
	Cloud union, trimming, and reorientation

	Cloud filter, and Forward filter:

	Discussion

