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Summary 16 

Representing the quantity zero is considered a unique achievement of abstract human thought. 17 

Despite considerable progress in understanding the neural code supporting natural numbers, how 18 

numerical zero is encoded in the human brain remains unknown. We find that both non-symbolic 19 

empty sets (the absence of dots on a screen) and symbolic zero (“0”) occupy ordinal positions 20 

along graded neural number lines within posterior association cortex. Neural representations of 21 

zero are partly independent of numerical format, exhibiting distance effects with countable 22 

numerosities in the opposing (symbolic or non-symbolic) notation. Our results show that format-23 

invariant neural magnitude codes extend to judgements of numerical zero, and offer support to 24 

theoretical accounts in which representations of symbolic zero are grounded in more basic 25 

representations of sensory absences. 26 

 27 

Keywords: zero, numerosity, magnitude codes, sensory absence, perception, decoding, 28 

representational similarity analysis, MEG  29 
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Introduction 30 

The number zero plays a central role in science, mathematics, and human culture (Kaplan, 1999; 31 

Nieder, 2016) and is considered a unique property of abstract human thought (Bialystok & Codd, 32 

2000; Nieder, 2016). The psychological basis of zero is unusual: while natural numbers 33 

correspond to the observable number of countable items within a set (e.g., one bird; three 34 

clouds), an empty set does not contain any countable elements. To conceptualise zero, one must 35 

instead abstract away from the (absence of) sensory evidence to construct a representation of 36 

numerical absence: creating ‘something’ out of ‘nothing’ (Butterworth, 1999; Nieder, 2016; 37 

Wellman & Miller, 1986). Given these differences, it remains an open question as to how zero is 38 

represented in relation to other numbers. 39 

 40 

In contrast to zero, the neural representation of natural numbers is better understood. Distinct 41 

neural populations are selective for specific numerosities, exhibiting overlapping tuning curves 42 

with neighbouring populations tuned to adjacent numerosities (Kutter et al., 2018; Piazza et al., 43 

2004). This architecture underpins a so-called distance effect (Dehaene et al., 1998), where 44 

numbers close together in numerical space have similar neural representations. For instance, 45 

neural responses to numbers one and two are more similar than neural responses to one and ten 46 

(Borghesani et al., 2019; Luyckx et al., 2019; Piazza et al., 2004). Importantly, a component of 47 

this neural code is thought to be invariant to numerical format (Damarla et al., 2016; Eger et al., 48 

2003, 2009; Piazza et al., 2007; Teichmann et al., 2018) such that, for example, neural 49 

representations of ‘six’ are shared across symbolic and non-symbolic notations (e.g., both the 50 

Arabic numeral “6” and six dots; although see Cohen Kadosh et al. (2007)). In humans, these 51 
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format-invariant representations of numerical magnitude have been localised to the parietal 52 

cortex (Damarla et al., 2016; Eger et al., 2009; Piazza et al., 2007), with topographic maps 53 

underpinning numerosity perception more broadly being found across association cortex (Harvey 54 

et al., 2013; Harvey & Dumoulin, 2017). 55 

 56 

Compared to natural numbers, zero is associated with distinct behavioural and developmental 57 

profiles. For instance, the reading times of human adults are increased for zero compared to non-58 

zero numbers (Brysbaert, 1995), and zero concepts emerge later in children than those for natural 59 

numbers (Krajcsi et al., 2021; Merritt & Brannon, 2013; Wellman & Miller, 1986). Distinct 60 

behavioural characteristics associated with zero are not unsurprising given the heightened degree 61 

of abstraction required to conceptualise numerical absence. In turn, it is plausible that neural 62 

representations of zero are distinct to the scheme that has been discovered for natural numbers 63 

(e.g Schubert et al., 2020). Initial research in non-human animals has indicated that numerical 64 

zero shares some neural properties with natural numerosities, such as overlapping tuning curves 65 

and associated distance effects, along with invariance to particular stimulus properties 66 

(Kirschhock et al., 2021; Okuyama et al., 2015; Ramirez-Cardenas et al., 2016). However, it 67 

remains unknown whether the symbolic, human conceptualisation of numerical zero, which 68 

emerged independently of natural numbers (Ifrah, 1985; Kaplan, 1999), engenders 69 

representations of zero that are both distinct from other numbers and which studies in non-human 70 

animals may have failed to reveal.  71 

 72 

Investigating neural representations of both non-symbolic and symbolic zero can also shed light 73 

on how a symbolic concept of numerical absence emerged in human thought. One intriguing idea 74 
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is that, across phylogeny and ontogeny, low-level perceptual representations tracking an absence 75 

of sensory stimulation (e.g. Merten & Nieder, 2012; Goh et al., 2023) gave rise to conceptual 76 

representations of numerical zero (Nieder, 2016). Specifically, an ability to represent perceptual 77 

absences is hypothesised to support an ability to quantify ‘none’ as less than one, which, in turn, 78 

may have given rise to our ability to reason and calculate with an abstract symbol – zero – 79 

denoting lack of quantity (Nieder, 2016). Asking whether symbolic neural representations of 80 

zero share variance with non-symbolic empty sets provides an initial empirical test of this 81 

hypothesis. 82 

 83 

We tackled these questions by employing two qualitatively different numerical tasks in humans 84 

while leveraging methodological advances to reveal the representational content of neural 85 

responses to numerical stimuli in MEG data (Kriegeskorte & Diedrichsen, 2019; Luyckx et al., 86 

2019). We assay both neural representations of non-symbolic numerosities (dot patterns), 87 

including zero (empty sets), and symbolic numerals, including symbolic zero. We show how 88 

neural representations of zero are situated along a graded neural number line shared with other 89 

natural numbers. Notably, symbolic representations of zero generalised to predict non-symbolic 90 

empty sets – consistent with a hypothesis that human zero is grounded in perceptual absence 91 

(Nieder, 2016). We go on to localise abstract representations of numerical zero to posterior 92 

association cortex, extending the purview of parietal cortex in human numerical cognition to 93 

encompass representations of zero (Harvey & Dumoulin, 2017; Piazza et al., 2007). 94 

  95 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577906doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577906
http://creativecommons.org/licenses/by/4.0/


Results 96 

29 human participants (24 after exclusions; see Methods for details) took part in a 97 

magnetoencephalography (MEG) experiment involving two numerical tasks. The first was a non-98 

symbolic match-to-sample task (Figure 1A) where participants observed two sequentially 99 

presented dot patterns that ranged in number from zero dots (empty set) to five dots (Ramirez-100 

Cardenas et al., 2016). Participants were asked to report whether the patterns contained the same 101 

number of dots or not. We employed two sets of dot patterns: a standard set which randomised 102 

the size of dots within each pattern, and a control set which kept size, density, and luminance 103 

constant across numerosities (Figure 1D). The second task was a symbolic averaging task 104 

(Figure 1B; Luyckx et al., 2019). Here, participants observed a rapid serial presentation of 10 105 

symbolic numerals from zero to five (0, 1, 2, 3, 4, 5), divided into orange and blue sets (5 106 

numbers in each). Participants were asked to report the set of numbers with the higher or lower 107 

average. Decision type (higher or lower) was counterbalanced across participants. The use of two 108 

different tasks (match-to-sample, averaging), and two different decision types in the averaging 109 

task ensured neural patterns induced by the perception of zero are unlikely to be driven by 110 

specific task features or calculation requirements. 111 

 112 

In the non-symbolic match-to-sample task, participants accurately determined whether dot 113 

patterns had the same or different numbers of dots (Meanaccuracy: 0.92, SE: 0.16). Plotting 114 

behavioural tuning curves revealed near-ceiling performance across all numerosities (Figure 1C), 115 

with the exception of five-dot patterns which were more often confused with four-dot patterns 116 

than three-dot patterns (t(23) = 4.97, p < .001) – consistent with numerosity tuning curves 117 
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becoming wider as number increases (Dehaene et al., 1998). In the symbolic task, participants 118 

could reliably perform the task regardless of whether they were reporting the higher 119 

(Meanaccuracy: 0.71, SE: 0.23) or lower (Meanaccuracy: 0.68, SE: 0.27) average (Figure 1D), and 120 

there was no difference between performance across decision types (t(22) = -0.88, p = 0.39).  121 

 122 

 123 

Figure 1. Experimental Procedure. A. Trial structure for the non-symbolic match to sample 124 

task. Participants observed a sample dot pattern followed by a test dot pattern before reporting 125 

whether the two patterns had the same or different numbers of dots. B. Trial structure for the 126 

symbolic averaging task. Participants observed a sequence of blue and orange numerals before 127 

reporting which set of numerals had the higher or lower average. C. Behavioural tuning curves in 128 

the non-symbolic task. Each curve reflects the percentage of trials that participants judged the 129 

test numerosity to be the same as the sample numerosity. Each colour represents trials with 130 

specific sample numerosities. The peak of each curve illustrates correct performance when the 131 

sample and test numerosities matched. Data points either side of the peak represent non-match 132 

trials. Error bars indicate SEM. D. Accuracy in the symbolic task split across participants who 133 
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judged which set of numbers was higher, and those who judged which was lower. E. Stimulus 134 

sets for dot task. Dot size was pseudorandomised in the standard set, while low level properties 135 

of the dots including size, density, and luminance were held constant in the control set. 136 

 137 

Identifying Neural Representations of Number 138 

We next asked whether neural patterns recorded by MEG were sensitive to numerosity, by 139 

timelocking our data to the presentation of the dot pattern/symbolic numeral stimuli. Multiclass 140 

decoders were trained to classify different numerosities (zero to five) in both the non-symbolic 141 

and symbolic tasks. The frequency with which the decoders confused numerosities for one 142 

another is illustrated in Figure 2A. Here, individual panels represent trials where a particular 143 

numerosity was presented to the classifier, and the coloured lines indicate the proportion of those 144 

trials where the classifier predicted each one of the possible classes (zero to five) over the trial 145 

epoch. For example, the “NS-one” panel shows that when one dot is presented in the non-146 

symbolic task, the classifier predominantly and correctly labels this stimulus as numerosity one 147 

(yellow curve), with the next most likely error being a misclassification as the number two 148 

(green curve). Across all numbers and both formats, the classifiers successfully predicted the 149 

numerosity participants were viewing from their neural data, including zero numerosities. 150 

 151 

We next leveraged temporal generalisation analysis to ask whether numerosity representations 152 

were stable over time (King & Dehaene, 2014) (Figure 2B). When training and testing on all 153 

combinations of time points, stable time-windows where numerical information could be 154 

decoded above chance level were identified in both tasks from shortly after stimulus presentation 155 
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up until the end of the analysed time window (non-symbolic: 70ms – 800ms; symbolic 56.7ms – 156 

800ms). These time windows in which stable numerosity representations were identified were 157 

used to create time-averaged data for use in subsequent population tuning curve (Figure 2D) and 158 

multidimensional scaling (Figure 2E) analyses. 159 

 160 

A Neural Number Line from Zero to Five 161 

A fundamental feature of neural codes for natural numbers is a distance effect, whereby numbers 162 

closer together in numerical space are closer together in representational space (Dehaene et al., 163 

1998; Nieder & Dehaene, 2009). Here we asked whether numerical zero exhibits similar distance 164 

effects with other numbers, consistent with it sharing a neural number line with countable 165 

numerosities. A Representational Similarity Matrix (RDM) describing a distance effect from 166 

zero to five successfully predicted neural data across both non-symbolic and symbolic numerical 167 

formats (Figure 2A). In the non-symbolic task, an RDM generalising numerical information 168 

across the two non-symbolic stimulus sets significantly predicted neural responses throughout 169 

the trial, indicating that neural correlates of number were independent of the physical properties 170 

of the dot stimuli (Supplemental Figure 1).  Multidimensional scaling of neural representations 171 

of numerosity in turn illustrates a distance effect (Figure 2E), with the numbers zero to five 172 

occupying positions along a single, ordered dimension, while a second dimension loosely 173 

distinguished intermediate numerosities (one to four) from the extremes (zero and five).  174 

 175 

A stronger test of a distance effect in neural data is furnished by examining the confusability 176 

between neighbouring numerosities using population tuning curves (Figure 2D). These plots are 177 
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time-averaged versions of the classifier confusion matrices in Figure 2A, i.e. the proportion of 178 

trials where the classifier predicted a particular numerosity as a function of the true numerosity 179 

within the time window in which numerical information could be reliably decoded (Figure 2B). 180 

For example, the red curve in Figure 2D indicates that the proportion of trials predicted as being 181 

zero peaks when the numerosity seen by the decoder was also zero, is next highest when the 182 

numerosity seen by the decoder was “one”, and so on.  183 

 184 

In the non-symbolic task (Figure 2D, left), the classifier confuses zero with one 185 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.218) more often than it confuses zero with two 186 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.138) (t(23) = 6.23, p < .001). Similarly, it confuses one with two 187 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.206) more often than with three (𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 188 

0.155) (t(23) = 4.76, p < .001),. This pattern of results is indicative of a gradedness in the 189 

representation of numerical magnitude across non-symbolic numerosities. In contrast, in the 190 

symbolic task (Figure 2D, right), the multiclass classifier does not confuse zero with one 191 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.159) significantly more than it confuses zero with two 192 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.163) (t(23) = -0.61, p = 0 .54), nor does it confuse one with two 193 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.153) significantly more than it confuses one with three 194 

(𝑀𝑒𝑎𝑛!"#!#"$%#&	!"()%*$() = 0.143) (t(23) = 1.67, p = 0 .11).  This difference in distance effects 195 

between non-symbolic and symbolic formats was statistically significant for both zero (t(23) = 196 

5.45, p < .001) and one (t(23) = 3.48, p = .002), and is suggestive of more gradedness in the 197 

representation of non-symbolic than symbolic numerosities, consistent with previous work 198 

describing narrower tuning curves for symbolic numerals (Eger et al., 2009; Kutter et al., 2018).  199 
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 200 

 201 

 202 

Figure 2. A Neural Number Line from Zero to Five. A. Across-time confusion matrices for 203 

multiclass decoders classifying non-symbolic (top) and symbolic numerosities (bottom). 204 

Individual panels represent trials where particular numerosities were presented to the classifier. 205 

Coloured lines indicate the proportion of those trials where the classifier predicted each 206 

numerosity. B. Temporal generalisation of multiclass decoders trained to decode numerosities 207 
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zero to five in the non-symbolic (left) and symbolic (right) task reveals stable numerical 208 

representations over time in both tasks emerging shortly after stimulus presentation. Black lines 209 

illustrate timepoints where decoding was significantly above chance (p <.05, corrected for 210 

multiple comparisons). These stable time windows were used in the time-averaged analyses 211 

depicted in panels D and E. C: A model representational dissimilarity matrix (RDM) describing 212 

a distance effect from zero to five significantly predicted neural data in both non-symbolic and 213 

symbolic tasks. The diagonal of the RDM was not included in this analysis, preventing the self-214 

similarity of each number from trivially explaining our results. Shaded areas indicate 95% 215 

confidence intervals. Horizontal lines show clusters of time where dissimilarity correlations were 216 

significantly above 0, p <.05 corrected for multiple comparisons. D. Population level tuning 217 

curves derived from decoder confusion matrices. Each curve represents the proportion of trials 218 

the classifier predicted a particular numerosity (indicated by the curve’s colour) as a function of 219 

the numerosity the decoder actually saw. For example, the red curve illustrates how the 220 

prediction of numerosity zero is distributed across different presented numerosities. For non-221 

symbolic numerosities, the classifier confused numbers as a function of their numerical distance, 222 

consistent with a graded representation of numerical magnitude. In the symbolic task, 223 

representations were more categorical than graded. Error bars represent SEM. E. 224 

Multidimensional scaling of numerical representations in both tasks revealed a principal 225 

dimension which tracks numerical magnitude and a second dimension which loosely 226 

distinguishes extreme values from intermediate values.  227 

 228 

Representations of Zero are Shared Between Symbols and Empty Sets  229 
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Together, our previous analyses establish that neural representations of zero are graded 230 

(especially for non-symbolic numerosities) and situated within a number line spanning other 231 

countable numerosities from 1 to 5. We next asked whether representations of zero were format- 232 

and task-independent – generalising across non-symbolic (empty set) and symbolic (“0”) stimuli, 233 

and across the same/different and averaging tasks. To test this hypothesis, we performed further 234 

decoding analyses focused on dissociating numerical zero from non-zero numerosities. If a 235 

binary classifier trained to distinguish zero from non-zero numerosities in one numerical format 236 

is subsequently able to separate zero from non-zero numerosities in another numerical format, 237 

this furnishes evidence for an abstract neural representation of numerical absence that is common 238 

to both formats. 239 

 240 

Decoders trained to distinguish numerical absence within each format separately revealed stable 241 

representations of numerical zero from approximately 100ms to 450ms after stimulus 242 

presentation, before exhibiting a more dynamic temporal profile until the end of the trial epoch 243 

(Figure 3A, top). Crucially, these decoders could also successfully classify representations of 244 

zero in the opposing format to which they had been trained (Figure 3A, bottom) – both when 245 

generalising from empty sets to the decoding of symbolic numerosities, and when generalising 246 

from symbolic zero to non-symbolic dot stimuli. This cross-decoding was successful over the 247 

initial 350ms period where the within-format decoders identified stable representations of 248 

numerical absence, although generalisation was generally stronger when generalising from 249 

symbolic zero to empty sets than vice-versa. 250 
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 251 

 252 

Figure 3. Abstract and Graded Representations of Numerical Absence. A. Representations 253 

of numerical absence generalise over numerical format. Top: A decoder trained to decode zero 254 

from natural numbers reveals stable representations of zero up to ~450ms after stimulus 255 

presentation for both non-symbolic (left) and symbolic (right) formats, with more dynamic / 256 

unstable representations observed towards the end of the epoch. Bottom- left: A decoder trained 257 

to decode empty sets also distinguished symbolic zero from non-zero symbolic numerals. 258 

Bottom-right: A decoder trained to distinguish symbolic zero from non-zero symbolic numerals 259 

also distinguished empty sets from non-symbolic numerosities. Black lines indicate clusters of 260 

significantly above chance decoding, p <.05, corrected for multiple comparisons. B. Left: 261 

Illustration of the hypothesis that abstract representations of numerical absence are situated on a 262 

graded number line that generalises across format, with empty sets represented as more similar to 263 

symbolic numeral one than numeral five (top), and symbolic zero as more similar to one dot than 264 

five dots (bottom). Centre:  Training a classifier to decode non-symbolic empty sets from non-265 
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symbolic numerosities and testing it on symbolic numbers in a pairwise manner revealed 266 

increasing discriminability as distance from zero increased (top). The same cross-format distance 267 

effect is observed when training a classifier on symbolic zero and testing it on non-symbolic 268 

numerosities (bottom). Shaded areas represent 95% CIs. Right: clusters of significant differences 269 

between different numerosities’ discriminability from zero, p<.05, corrected for multiple 270 

comparisons. An increase in discriminability for numbers further from zero reveals a cross-271 

format distance effect. 272 

 273 

Graded Representations of Zero are Invariant to Numerical Format 274 

Next, to establish the representational structure of cross-format representations of zero, we 275 

leveraged the numerical distance effect already identified for within-format representations 276 

(Figure 2). To test for such effects, we computed the discriminability between zero and each 277 

non-zero numerosity in the alternative numerical format (Figure 3B, middle). Strikingly, neural 278 

representations of symbolic zero (“0”) were more often confused with one or two dots in the 279 

non-symbolic task, than they were with four or five dots (Figure 3B, middle). Similarly, neural 280 

representations induced by non-symbolic zero (empty sets) were more often confused with the 281 

symbolic numeral 1 or 2 than they were with symbolic numerals 4 or 5. Pairwise tests comparing 282 

the discriminability of different non-zero numerosities from zero revealed clusters of significant 283 

differences in discriminability (Figure 3B, right), with an increased distance from zero increasing 284 

discriminability. Together, these cross-format analyses support a hypothesis that an approximate, 285 

graded representation of numerical absence is engaged not only by symbolic zero (“0”) but also 286 

by lower-level perceptual absences (empty set stimuli). 287 

 288 
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We also sought to test a more stringent hypothesis that abstract, format-independent neural 289 

representations of zero are themselves situated within a cross-format neural number line – 290 

essentially extending the question of format-independence to now include all numerosities from 291 

0 to 5. A representational dissimilarity matrix situating abstract numerosity representations 292 

within a graded number line significantly predicted the neural data (Supplemental Figure 2, left). 293 

Testing for cross-format distance effects between all numerosities using RSA also revealed a 294 

qualitative distance effect, although this did not reach statistical significance (Supplemental 295 

Figure 2, right). Finally, multidimensional scaling of neural representations induced by symbolic 296 

and non-symbolic numerosities in a shared space corroborated evidence for a distance effect for 297 

zero across tasks (Supplemental Figure 3). 298 

 299 

Abstract Representations of Numerical Zero are Localised to Posterior Association Cortex 300 

Finally, we sought to reconstruct and compare source-level neural activity for zero and non-zero 301 

numerosities in both the non-symbolic and symbolic tasks. By performing mass-univariate 302 

contrasts of broadband source power (zero > non-zero numerosities) in both the non-symbolic 303 

(Figure 4A top; peak voxels (xyz): left hemisphere = -36, -24, 56; right = 60, -64, -24) and 304 

symbolic (Figure 4A bottom; peak voxels (xyz): left hemisphere = -28, -56, 32; right = 28, -72, 8) 305 

tasks and computing the conjunction between these two contrasts (Figure 4B; peak voxels within 306 

conjunction (xyz): non-symbolic task: left hemisphere = -20, -64, 32; right =  60, -64, -24; 307 

symbolic task: left hemisphere = -28, -56, 32; right = 20, -48, -64), we are able to show that 308 

neural activity induced by numerical absence is distributed across the posterior association cortex 309 

(Figure 4B). Neural responses to zero within this conjunction map were again situated within a 310 
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number line populated by non-zero numbers, with numerical magnitude increasing along a single 311 

dimension that was similar for both symbolic and non-symbolic formats (Figure 4, bottom-right).  312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

Figure 4. Neural activity induced by numerical zero localised to posterior association 325 

cortex. A: Mass univariate contrasts of source power revealed regions more active following 326 

presentations of zero vs. non-zero numerosities in non-symbolic (top) and symbolic (bottom) 327 

tasks. Colour represents t-value and only clusters significant at p < .05 are presented, corrected 328 

for multiple comparisons. B: A conjunction of zero > non-zero contrasts in both numerical 329 

formats yielded a map identifying broad regions of the posterior association cortex as 330 

representing numerical absence across numerical formats. Multidimensional scaling of each 331 
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numerosity’s neural pattern within these regions revealed a graded representational structure of 332 

numerical magnitude along a single dimension that was similar for both formats.  333 

 334 

Discussion 335 

The number zero is associated with unique psychological properties compared to natural 336 

numbers. Here, we characterise the neural representation of numerical zero in the human brain. 337 

We describe how numerical zero occupies a slot at the lower end of neural number lines for both 338 

symbolic and non-symbolic numerical formats. Strikingly, we show that a component of this 339 

representation is both task- and format-independent, such that empty sets – the absence of dots – 340 

generalised to predict the neural profiles and distance effects observed for symbolic zero. These 341 

abstract, format-invariant representations of zero were situated at the lower end neural code for 342 

number that was localised across the posterior association cortex.  343 

 344 

That zero is situated at the lower end of a neural number line in the human brain is consistent 345 

with an emerging body of work examining representations of zero in non-human animals 346 

(Kirschhock et al., 2021; Okuyama et al., 2015; Ramirez-Cardenas et al., 2016). Across two 347 

different studies, single neurons selective for non-symbolic empty sets were found in the parietal 348 

and prefrontal cortex of non-human primates (Okuyama et al., 2015; Ramirez-Cardenas et al., 349 

2016). In line with the present results, many of these neurons – but not all – were found to 350 

exhibit distance effects with non-zero numbers. When comparing non-symbolic and symbolic 351 

instances of zero, we found symbolic instances were more discrete and less graded than non-352 

symbolic instances, consistent with work describing sharper tuning curves for symbolic number 353 
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representations (Eger et al., 2009; Kutter et al., 2018). Recent single-cell recordings in the human 354 

medial temporal lobe have also identified discrete symbolic zero-selective neurons that did not 355 

exhibit graded activations in relation to non-zero symbolic numerals (Kutter et al., 2023). 356 

Strikingly, however, the majority of our analyses revealed a graded representation of zero that 357 

generalised across both symbolic and non-symbolic formats, in keeping with behavioural 358 

findings that situate zero at the lower end of a graded psychological number line in humans 359 

(Merritt & Brannon, 2013). 360 

 361 

Our finding that representations of numerical absence have a format-invariant component 362 

extends previous work documenting neural representations of numerosity that generalise across 363 

countable non-symbolic elements and their symbolic counterparts (Eger et al., 2009; Libertus et 364 

al., 2007; Piazza et al., 2007). Here we show how neural representations of non-symbolic empty 365 

sets, which do not contain any countable items, also share variance with symbolic zero (Figure 366 

3). These abstract representations of zero were localised to regions of the posterior association 367 

cortex that have previously been associated with numerical processing (Figure 4B; Arsalidou & 368 

Taylor, 2011; Eger et al., 2003; Harvey & Dumoulin, 2017; Piazza et al., 2007). It remains 369 

debated whether findings of format-invariant numerical codes are explained by single neurons 370 

coding for the same numerosities across formats, or whether they reflect the recruitment of 371 

neighbouring format-specific neural populations that are interdigitated within a numerosity map 372 

(Cohen Kadosh & Walsh, 2009). Future intracranial recording studies will be required to 373 

determine whether single cells in the human brain code for numerical zero in both non-symbolic 374 

and symbolic formats. However, our finding of cross-format distance effects is more consistent 375 

with a shared neural code, as it is less likely that spatially overlapping but format-specific neural 376 
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codes would also generalise to exhibit cross-format distance effects with more distant 377 

numerosities.  378 

 379 

Finding shared neural representations of non-symbolic empty sets and symbolic zero lends 380 

weight to recent suggestions that representations of numerosity zero may have emerged from 381 

more fundamental representations of sensory absence (Nieder, 2016). On this account, low-level 382 

perceptual representations indicating an absence of sensory stimulation (e.g. Merten & Nieder, 383 

2012; Goh et al., 2023) provide the perceptual grounding for a conceptual representations of 384 

numerical zero (Nieder, 2016) – consistent with a broader principle that the human brain co-opts 385 

basic sensory and motor functions in the service of more complex cognitive abilities (Dehaene & 386 

Cohen, 2007). Such a hypothesis is consistent with similar behavioural signatures for the 387 

processing of absence across perceptual and numerical domains. For instance, reading times are 388 

increased for number zero compared to non-zero numbers (Brysbaert, 1995), whilst reaction 389 

times for deciding a stimulus is absent are higher than for deciding a stimulus is present (Mazor 390 

et al., 2020, 2021). Additionally, judgements about the absence of features mature later in 391 

children than judgements about presence (Coldren & Haaf, 2000; Sainsbury, 1971), a 392 

developmental pattern mirrored by the late mastery of numerical zero in children (Krajcsi et al., 393 

2021; Merritt & Brannon, 2013; Wellman & Miller, 1986). We note however that the neural 394 

responses recorded in our study to empty-set stimuli were still within the context of a numerical 395 

task – and, as such, only provide initial evidence for a perceptual grounding of zero. A stronger 396 

test of this hypothesis would examine shared representations of numerical and perceptual 397 

absence – for instance, classifying a stimulus as absent in a non-numerical task (Mazor et al., 398 

2020; Merten & Nieder, 2012; Barnett et al., 2023).  399 
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 400 

We took care to ensure that the neural representations of zero identified in our data were not 401 

trivial consequences of zero being classified as the “lowest” stimulus in our tasks. The concern 402 

here is that if our tasks required participants to adopt a particular mathematical attitude towards 403 

zero, then decoding of this task-dependent concept would confound any results aimed at 404 

identifying task-invariant representations of numerical absence. We consider this explanation of 405 

our results as unlikely, however, as, by design, the symbolic and non-symbolic tasks required 406 

adopting qualitatively distinct mathematical attitudes towards zero stimuli: the match-to-sample 407 

task necessitated deciding whether two dot stimuli were the same or different, whereas the 408 

symbolic task required maintenance of condition-specific numerical averages. Because the non-409 

symbolic task did not require participants to order stimuli, any format-invariant representations 410 

of zero cannot be explained by a generic requirement to identify lower vs. higher numerosities. 411 

 412 

The adoption of the number zero has enabled great advances in science and mathematics 413 

(Kaplan, 1999). Here, we show that the human brain represents this unique number by 414 

incorporating representations of numerical absence into a broader neural coding scheme that also 415 

supports countable numerosities. Representations of numerical zero were found to be format-416 

invariant and graded with respect to non-zero numerosities, and were localised to regions of the 417 

posterior association cortex previously implicated in numerical cognition. Our results 418 

demonstrate that neural number lines include zero, and, more importantly, provide initial 419 

evidence that the abstract concept of symbolic zero is linked to representations of non-symbolic 420 

empty sets. Our study lays the foundations for a deeper understanding of how the human ability 421 
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to represent the number zero may be grounded in perceptual capacities for detecting an absence 422 

of sensory stimulation.  423 

 424 

Materials and Methods 425 

Participants 426 

29 participants (Mage: 29.27 years, SDage: 10.69) took part in the MEG experiment at the 427 

Wellcome Centre for Human Neuroimaging, University College London. 5 participants either 428 

failed to follow task instructions (chance performance on one or more tasks) or did not complete 429 

the experiment and were therefore excluded from analysis. All analysis was performed on the 430 

remaining sample of 24 participants. Informed consent was given before the experiment and 431 

ethical approval was granted by the Research Ethics Committee of University College London 432 

(#1825/005). 433 

 434 

Stimuli  435 

Numerical dot stimuli were created using custom MATLAB (Mathworks) scripts and consisted 436 

of different numbers of dots (from zero to five) on grey backgrounds (Figure 1C). There were 437 

two sets of dot stimuli, a standard set and control set. In the standard set, dot size was 438 

pseudorandomly specified, while in the control set, low level visual properties of the stimuli (dot 439 

size, density, luminance) were constant across numerosities. Empty set stimuli contained only a 440 

grey background in both stimulus sets. To help prevent participants relying on low level visual 441 

cues in identifying empty set stimuli, the background luminance was varied within and across 442 

stimulus sets, the background square size was randomly varied across all stimuli, and 50% of 443 
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dots were white rather than black. A control analysis confirmed that numerical information was 444 

extracted from the stimuli independently from physical features (see Representational Similarity 445 

Analysis; Supplemental Figure 1). 446 

 447 

Experimental Procedure 448 

The tasks were presented to subjects using MATLAB (Mathworks) and the Psychophysics 449 

Toolbox (Brainard, 1997; Kleiner et al, 2007). Participants practiced the tasks on a computer 450 

before the MEG session. In the MEG scanner, the tasks were performed in alternating 451 

miniblocks with 35 symbolic trials and 54 non-symbolic trials per MEG recording block. The 452 

order of the tasks would swap on each block, and the starting order was counterbalanced across 453 

participants. There were 9 MEG blocks in total, resulting in 315 symbolic numeral trials and 486 454 

non-symbolic dot trials across the whole experiment. Participants responded using two buttons 455 

and their right thumb.  456 

 457 

Non-symbolic Task 458 

Participants performed a match to sample task on dot stimuli (Kirschhock et al., 2021; Ramirez-459 

Cardenas et al., 2016). On each trial, participants saw a sample image containing between zero 460 

and five dots for 250ms followed by a fixation cross for 800ms. A test image, also containing 461 

between zero and five dots, was then presented for 250ms, followed before another 800ms 462 

fixation period (Figure 1A). Within a trial, a single stimulus set was used for both the sample and 463 

test image. Participants reported whether the number of dots in the test stimulus matched that of 464 

the sample stimulus, or not. The response was followed by feedback in the form of a coloured 465 
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rectangle surrounding the response options, with green and red used to indicate correct and 466 

incorrect answers, respectively. Response options were positioned randomly on each trial to 467 

eliminate any correlation between the decision and motor response. Intertrial intervals were also 468 

sampled randomly from a uniform distribution between 500-1000ms.  469 

 470 

Symbolic Task 471 

We adapted the symbolic numeral averaging task introduced by Luyckx et al. (2019) to include 472 

the number zero. In one trial, ten numerals ranging from zero to five were presented in a random 473 

order (Figure 1B). Five of the numerals were blue and five were orange. Each numeral was 474 

displayed for 250ms with an interstimulus interval of 100ms. The numerals were randomly 475 

selected on each trial to obey the constraint that the mean of the blue numerals could not equal 476 

the mean of the orange numerals. The response required at the end of each trial was 477 

counterbalanced across subjects, with half of the subjects reporting which set of numerals 478 

(orange or blue) had the highest average, and the other half reporting the set with the lowest 479 

average. Participants had 2000ms to respond, after which they were given feedback in the form 480 

of a green (correct) or red (incorrect) rectangle surrounding the response options. Again, to 481 

disentangle participants’ decisions from motor responses, response options were positioned 482 

randomly on each trial. Intertrial intervals were randomly sampled from a uniform distribution 483 

between 500-1000ms.  484 

 485 

MEG Preprocessing 486 
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MEG data were analysed using FieldTrip (Oostenveld et al., 2011). MEG was recorded 487 

continuously at 600Hz using a 273-channel axial gradiometer system (CTF Omega, VSM 488 

MedTech) while participants sat upright inside the scanner. To remove line noise, the raw MEG 489 

data were preprocessed with a Discrete Fourier Transform and bandstop filter at 50Hz and its 490 

harmonics. The numeral task was segmented into epochs of -500ms to 4000ms relative to trial 491 

onset. For the dot task, the segments were from -200ms to 2500ms. Baseline correction was 492 

performed where, for each trial, activity in the pre-trial window was averaged and subtracted 493 

from the entire epoch per channel. The data were downsampled to 300Hz to conserve processing 494 

time and improve signal to noise ratio. During artefact rejection, trials with high kurtosis were 495 

visually inspected and removed if they were judged to contain excessive artefacts. To assist in 496 

removing eye-movement artefacts, an independent components analysis was carried out on the 497 

MEG data, and the components with the highest correlation with eye-tracking data were 498 

discarded after visual inspection. Components showing topographic and temporal signatures 499 

typically associated with cardiac artefacts were also removed by eye. This procedure was 500 

performed separately for the numeral and dot task. Finally, a second stage of epoching was 501 

performed to generate trials of individual numerosities. In the numeral task, trials were 502 

segmented into -100ms to 800ms epochs around each numeral onset. Trials were then baseline 503 

corrected again using the pre-stimulus window. In the dot task, trials were segmented into two 504 

different -200ms to 800ms epochs with respect to the onsets of the sample and test stimuli. All 505 

analyses used the sample images only. Finally, all analyses focusing on shared representations 506 

across notational formats were performed on the shared timepoints of -100ms to 800ms relative 507 

to stimulus presentation.  508 

 509 
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Representational Similarity Analysis 510 

Representational Similarity Analysis (RSA) allows us to test specific hypothesis about how 511 

neural representations are structured (Kriegeskorte & Kievit, 2013). Here, we tested for the 512 

existence of a distance effect across numerosities (Figure 2C). To do this, we defined a model 513 

representational dissimilarity matrix (RDM) that describes the dissimilarity of two numerosities 514 

as a function of their numerical distance. To compare this model dissimilarity matrix with the 515 

neural data we first created a neural dissimilarity matrix that represents the similarity in neural 516 

patterns associated with each numerosity. To do this, we first ran a linear regression on the MEG 517 

data with dummy coded predictors for each of the six numerosities (trial numerosity coded with 518 

a 1, alternative numerosities coded with a 0). This produced a coefficient weight for each 519 

numerosity at each time point and sensor. These weights were then combined into a vector, 520 

representing the multivariate neural response for each numerosity, averaged over trials. To create 521 

the neural RDM, we computed the Pearson distance between each pair of condition weights over 522 

sensors, resulting in a 6x6 neural RDM reflecting the pairwise similarity of neural patterns 523 

associated with each numerosity. These neural RDMs were smoothed over time via convolution 524 

with a 60ms uniform kernel. To compare the neural and model RDMs, at every time point we 525 

correlated the lower triangle of each matrix (excluding the diagonal) using Kendall’s Tau rank 526 

correlation (Nili et al., 2014).  527 

 528 

Cross-task RSA was performed in the same manner, except here there were 12 predictors in the 529 

linear regression (0-5 symbolic, 0-5 non-symbolic). This resulted in a 12x12 neural RDM, of 530 

which we used the quadrant representing the cross-task pairwise similarities between 531 

numerosities when comparing with the model RDM (Supplemental Figure 2). The whole 532 
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quadrant including the diagonal was used in this analysis. This is because here the diagonal does 533 

not contain redundant information, but rather the similarity of the same numerosity across two 534 

different notations, and cells in the upper triangle represent different pairwise similarities to 535 

those in the lower triangle. 536 

 537 

Finally, to test whether numerical information was decodable from non-symbolic stimuli over 538 

and above the physical features of the stimuli, we ran a cross-stimulus set RSA in the same 539 

manner as above, except now we tested exclusively within the non-symbolic task (Supplemental 540 

Figure 1). As such, the 12 predictors were: 0-5 from the standard set and 0-5 from the control set.  541 

This RSA established whether representations of numerical magnitude generalised across 542 

stimulus set, and therefore went beyond information that could be derived solely from physical 543 

features of the stimuli. 544 

 545 

Decoding Analyses 546 

To examine the representational structure of the number zero more specifically across symbolic 547 

and non-symbolic formats, we employed different decoding techniques using both multiclass and 548 

binary decoders. First, to reveal the temporal profile of numerosity representations, we trained a 549 

multiclass Linear Discriminant Analysis (LDA) decoder to decode numerosities zero to five 550 

(Figure 2B). This was performed in a temporal generalisation procedure, whereby the classifier 551 

was trained on each time point and tested on all other time points (King & Dehaene, 2014). This 552 

process results in a train time x test time decoding accuracy matrix, which illustrates how stable 553 

representations of numerosity are over time.  554 
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 555 

We performed both within-notation and cross-notation decoding procedures. Within-notation 556 

decoding involved training and testing a classifier to identify numerosities on trials from one 557 

notation (e.g. numerals or dots). In cross-notation decoding, we trained the classifier on one 558 

notation and tested it on the other (e.g., training on symbolic trials and testing on non-symbolic 559 

trials, and vice versa). For the within-notation approach, we implemented a 5-fold cross-560 

validation strategy. Prior to decoding, five trials per numerosity were averaged and the resulting 561 

average trials was balanced per numerosity. It is worth noting that cross-validation is not 562 

required in cross-notation decoding because the test data is never seen by the classifier during 563 

training, and thus there is no risk of overfitting. Cross-notation decoding allows us to empirically 564 

assess whether the neural patterns associated with numerals share a common neural code across 565 

notations.  566 

 567 

To complement our RSA analyses and isolate the representational structure underpinning 568 

numerical zero specifically, we extracted the confusion matrices from the decoders (Figure 2A, 569 

2D). Confusion matrices indicate how often different stimulus classes (i.e., numerosities) are 570 

confused for one another, and this information can be used to infer the organisation of neural 571 

representations. For example, a decoder that confuses zero with the number one more than the 572 

number two displays evidence for a numerical distance effect. The data used to train the decoders 573 

from which these confusion matrices were extracted was time-averaged over the timepoints 574 

where the initial multiclass decoder could decode numerosity significantly above chance (non-575 

symbolic: 70ms – 800ms, symbolic 56.7ms – 800ms; Figure 2B). We also computed confusion 576 

matrices across time (Figure 2A). 577 
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 578 

To examine whether representations of zero could reliably be dissociated from numerosities 579 

presented in the alternative format, we created a decoding procedure using a binary LDA 580 

classifier to decode zero vs. non-zero numerosities (Figure 3A). Within this training regime, the 581 

number of trials per non-zero numerosities was kept equal, and the number of zero trials vs. non-582 

zero numerosity trials was also balanced. The resulting ‘zero’ decoder was uniquely trained to 583 

identify neural representations of numerical zero in symbolic or non-symbolic notation and was 584 

tested on the other format to identify format-invariant representations of zero.  585 

 586 

Finally, to reveal whether abstract representations of numerical zero exist on a graded number 587 

line, or whether they are categorically distinct from other numbers, we ran a new cross-format 588 

decoding analysis using binary classifiers. Here, we trained the decoders to discriminate zero vs. 589 

all non-zero numerosities (one to five) separately, and then tested these binary decoders on the 590 

corresponding numerosities in the opposite notation. This resulted in five different classifiers per 591 

notation. Specifically, we trained five different decoders to dissociate: symbolic zero vs symbolic 592 

one, symbolic zero vs symbolic two, symbolic zero vs symbolic three, symbolic zero vs 593 

symbolic four, and symbolic zero vs symbolic five. We then tested these decoders on empty sets 594 

vs one dot, empty sets vs two dots, empty sets vs three dots, empty sets vs four dots, and empty 595 

sets vs five dots, respectively. This was also done in the reverse direction: training on non-596 

symbolic trials and testing on symbolic numerals. We used the area under the receiver operating 597 

characteristic (AUROC) as a metric for discriminability between each pair of classes. In line 598 

with the hypothesis that format-invariant representations of zero exist on a graded, abstract 599 

neural number line, we expected the discriminability to improve as the numerical distance from 600 
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zero increased (Figure 3B). To statistically test whether this was the case, we performed one-601 

tailed, paired comparisons between the discriminability of successive numbers with zero (e.g., by 602 

comparing 0-2 vs. 0-1, 0-3 vs. 0-2, etc.; Figure 3B).  603 

 604 

For all decoding analyses, we utilized multiclass or binary LDA decoders in conjunction with the 605 

MVPA-light toolbox (Treder, 2020) integrated with FieldTrip. To improve the robustness of the 606 

classifier, we applied L1-regularization to the covariance matrix, and the shrinkage parameter 607 

was automatically determined using the Ledoit-Wolf formula within each training fold (Ledoit & 608 

Wolf, 2004). 609 

 610 

Source Reconstruction 611 

Both FieldTrip’s template single shell head model and its standard volumetric grid (8mm 612 

resolution) were warped to participants’ individual fiducial points, generating a subject-specific 613 

forward model aligned in MNI space.  Source reconstruction was performed using a linearly 614 

constrained minimum variance (lcmv) beamformer (Van Veen et al., 1997) which applies spatial 615 

filters to the MEG data to generate source-level time courses. To reduce the impact of noise on 616 

the source estimates, we used a regularisation parameter of lambda = 5%. For each task, spatial 617 

filters were calculated by combining the leadfield matrix with the data covariance matrix across 618 

all numerosities and the timepoints coinciding with the stable cluster of significantly above-619 

chance decoding in the zero vs. non-zero cross-task classifier (100 – 450ms). These spatial filters 620 

were then applied to zero trials and non-zero trials separately, generating reconstructed maps of 621 

source activity for these two trial types. We contrasted the broadband source power of zero > 622 
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non-zero trials in a mass-univariate procedure across subjects for each task separately (Figure 623 

4A) with an alpha parameter of p < .05, corrected for multiple comparisons. For binary LDA 624 

classifiers, this is equivalent to localising the classifier weights (Haufe et al., 2014), and therefore 625 

gives an indication of which brain regions drove our decoding results.  We computed the 626 

conjunction of these two contrasts, revealing the voxels where zero stimuli were dissociable from 627 

other numbers in both symbolic and non-symbolic notations (Figure 4B). 628 

 629 

Multidimensional scaling of source space activity was performed using the same beamforming 630 

parameters to calculate spatial filters over combined non-symbolic and symbolic trials. Using 631 

these filters, virtual channels were created for each source location within the map defined by the 632 

conjunction analysis. The virtual channels were then used to create a cross-task representational 633 

dissimilarity matrix in the same manner as described for the cross-task RSA sensor-level 634 

analysis. This was then submitted to MATLAB’s cmdscale function for multidimensional 635 

scaling. 636 

 637 

Statistical Inference 638 

Across sensor and source level analyses, cluster-based permutation testing was used to 639 

statistically test hypotheses and correct for multiple comparisons (Maris & Oostenveld, 2007). 640 

For all analyses (decoding, RSA, and source-level contrasts), 1000 permutations were used with 641 

cluster-forming alpha parameter of .05 and a significance threshold of .05. It is important to 642 

emphasize that this cluster-based permutation testing approach does not provide information 643 

about when neural representations emerge. This limitation arises because the statistical inference 644 
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process does not focus on individual time points; instead, it relies on cluster-level statistics that 645 

encompass multiple time points (Sassenhagen & Draschkow, 2019). 646 

  647 
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Supplemental Figures 791 

 792 

 793 

 794 

 795 
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 801 

 802 

 803 

Supplemental Figure 1. Cross-stimulus set representations of numerosity in non-symbolic 804 

stimuli. A representational dissimilarity matrix (RDM) was constructed that modelled the 805 

distance effect between non-symbolic numerosities across stimulus sets (top). This model tests 806 

whether numerical information is shared across the standard and control set, independently of 807 

their unique physical features. Numerical distance effects could be extracted from the neural data 808 

independently of the stimulus set soon after stimulus presentation and for the remainder of the 809 

epoch (bottom). Horizontal line represents time points where the correlation of the model RDM 810 
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with the neural data was significantly above zero with an alpha of p <.05, corrected for multiple 811 

comparisons.  812 
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 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

Supplemental Figure 2. Cross-Task RSA reveals a format-invariant neural code for number. An 826 

RDM modelling numerical information as shared between numerical format successfully 827 

predicted our neural data at two different timepoints. Removing the diagonal from this RDM 828 

removes the shared exemplars from the model (empty sets and zero, one dot and symbolic one, 829 

etc.) providing a strong test of the hypothesis that abstract numerical information also exhibits a 830 

distance effect. This model showed a similar pattern of prediction to the full model with shared 831 

exemplars yet failed to reach statistical significance. Broad confidence intervals, represented by 832 

the shaded area, suggest this may be an issue of limited statistical power. Horizontal lines 833 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577906doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577906
http://creativecommons.org/licenses/by/4.0/


indicate clusters where the model RDM correlated with the neural data significantly more than 834 

zero, p <.05, corrected for multiple comparisons. Shaded areas represent 95% confidence 835 

intervals. 836 
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 840 

 841 
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 843 

 844 

 845 

 846 

 847 

 848 

Supplemental Figure 3. Multidimensional scaling of numbers across format. Performing 849 

multidimensional scaling on numerosity representations in a shared space revealed alignment 850 

along an axis defining numerical magnitude (dimension two). This illustrates the cross-task 851 

distance effect, where empty sets (blue zero) are represented more closely to symbolic one (red 852 

one) than symbolic five (red five), and vice versa. Dimension one discriminates between the two 853 

tasks. 854 
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