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Abstract

During de novo emergence, new protein coding genes emerge from previously non-genic se-
quences. The de novo proteins they encode are dissimilar in composition and predicted biochemi-
cal properties to conserved proteins. However, many functional de novo proteins indeed exist. Both
identification of functional de novo proteins and their structural characterisation are experimentally
laborious. To identify functional and structured de novo proteins in silico, we applied recently devel-
oped machine learning based tools and refined the results for de novo proteins. We found that most
de novo proteins are indeed different from conserved proteins both in their structure and sequence.
However, some de novo proteins are predicted to adopt known protein folds, participate in cellular
reactions, and to form biomolecular condensates. Apart from broadening our understanding of
de novo protein evolution, our study also provides a large set of testable hypotheses for focused
experimental studies on structure and function of de novo proteins in Drosophila.

keywords: de novo proteins, protein function, structural comparison, protein structure, structure
predictions, sequence space
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Introduction1

Once considered impossible [Zuckerkandl, 1975, Jacob, 1977], many lines of evidence suggest2

that functional proteins can emerge from random sequences that have not been subjected to sev-3

eral generations of evolution [Keefe and Szostak, 2001, Hecht et al., 2004, Babina et al., 2023]. For4

example, high throughput selection experiments with a large number of random sequences have5

shown, that some random proteins can mitigate auxotrophy [the inability to metabolize nutrients;6

Knopp et al., 2021], provide resistance against toxins [Frumkin and Laub, 2023], and even cat-7

alyze biochemical reactions [Chao et al., 2013, Yamauchi et al., 2002]. In accordance with the fact8

that protein folding is often a critical requirement for protein function, many random proteins have9

been also shown to have secondary structures [Davidson and Sauer, 1994, Davidson et al., 1995,10

Tretyachenko et al., 2017, Surdo et al., 2004, Mansy et al., 2007]. De novo emergence is a phe-11

nomenon through which novel protein coding genes arise from non-genic regions of the genome12

[Tautz and Domazet-Lošo, 2011, Carvunis et al., 2012, Oss and Carvunis, 2019, Vakirlis et al.,13

2020a, Bornberg-Bauer et al., 2021, Schmitz and Bornberg-Bauer, 2017]. The de novo proteins14

thus emerged have been considered to be the natural equivalent of random sequences, because15

they emerge from supposedly “random” intergenic regions, and some of their predicted properties16

such as length, structural disorder and aggregation propensity, resemble that of random proteins,17

more than that of conserved proteins [Heames et al., 2023, Bornberg-Bauer et al., 2021, Ángyán18

et al., 2012, Bhave and Tautz, 2021, Castro and Tautz, 2021, Middendorf and Eicholt, 2024, Aubel19

et al., 2024]. For example, de novo proteins in Drosophila, are predicted to be more disordered than20

conserved proteins [Heames et al., 2020, Middendorf and Eicholt, 2024, Peng and Zhao, 2023],21

which can be partially explained due to higher GC content of the former [Landry et al., 2015, Zheng22

and Zhao, 2022]. While the structure of large sets of de novo proteins have been computationally23

analyzed [Schmitz et al., 2018, Heames et al., 2020, Peng and Zhao, 2023, Basile et al., 2017,24

Chen et al., 2023, Vakirlis et al., 2020b], the structures of only four de novo proteins have been25

experimentally approximated [Lange et al., 2021, Bungard et al., 2017, Baalsrud et al., 2018, Mat-26

suo et al., 2021]. Determining the function of de novo genes and proteins is another challenging27

task. It involves identifying the cell types and stages in which de novo proteins may be involved28

and testing their phenotypic effects using genetic tools [Chen et al., 2010a, Gubala et al., 2017,29

Lange et al., 2021, Reinhardt et al., 2013]. Nonetheless, functional de novo proteins indeed exist30

and have been identified in organisms as diverse as insects, plants (Arabidopsis thaliana), fungi31
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(Saccharomyces cerevisae), arctic codfish , mice (Mus musculus) and humans (Homo sapiens)32

[McLysaght and Guerzoni, 2015, Li et al., 2009, Cai et al., 2008, Chen et al., 2010a, Gubala et al.,33

2017, Lange et al., 2021, Zhuang et al., 2019, Reinhardt et al., 2013, Heinen et al., 2009, Li et al.,34

2010a, Xie et al., 2019, Li et al., 2014, Vakirlis et al., 2022, Linnenbrink et al., 2024, Klasberg et al.,35

2018, Li et al., 2010b, Matsuo et al., 2021, Rivard et al., 2021, Begun et al., 2007]. Experimen-36

tal structure determination is a laborious process that cannot be performed in a high throughput37

manner. This is especially difficult for de novo proteins because of high aggregation propensity38

and low solubility in vitro [Eicholt et al., 2022]. Despite the increasing numbers of solved struc-39

tures, novel structures, whether they be folds or domains, were rarely ever found [Grant et al.,40

2004, Levitt, 2009, Tóth-Petróczy and Tawfik, 2014]. However, the recent advancements in high-41

throughput structure predictions through computational techniques, have led to discovery of novel42

folds [Durairaj et al., 2023]. Since de novo proteins are void of ancestry from conserved protein43

families, they could provide rare structural novelty [Bornberg-Bauer et al., 2021]. From another per-44

spective, the occurrence of conserved or ancient structural folds in de novo proteins could suggest45

a high level of evolutionary accessibility in sequence space. This might explain the emergence46

of these folds during the early stages of protein evolution [Lupas et al., 2001, Kopec and Lupas,47

2013, Alva et al., 2010, 2015, Romero Romero et al., 2016]. A protein’s structure can provide some48

clues about its function [Orengo et al., 1999]. For example, one can reasonably guess the func-49

tion of an uncharacterized protein by comparing its structure to that of a known functional protein50

[Nomburg et al., 2024]. Although, protein function is often attributed to its structure, and unfolded51

proteins were assumed to be toxic, many studies show that disordered proteins can be functional52

[Deiana et al., 2019, Jemth et al., 2018, Ali and Ivarsson, 2018]. For example, disordered proteins53

can help form intracellular condensates (or membrane less organelles) that have been shown to54

play a major role in the cellular physiology of diverse organisms [Lin et al., 2017, Hyman et al.,55

2014]. Because de novo proteins could be a source of novelty, with regards to both structure and56

function, we aimed to understand their structures and possible functions through computational57

analyses. To this end, we studied a previously characterized set of 2510 putative de novo pro-58

teins from the Drosophila clade [Heames et al., 2020, Middendorf and Eicholt, 2024]. We used59

a multi-faceted approach analyze these de novo proteins. First, we used Foldseek [van Kempen60

et al., 2023] to find experimentally known protein structures [Protein Data Bank, Berman et al.,61

2000] and predicted protein structures [AlphaFold database, Varadi et al., 2021] that are similar62

to the AlphaFold2 (AF2) [Jumper et al., 2021] predicted structures of our de novo proteins. Sec-63
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ond, we predicted the functions of our de novo proteins using DeepFRI [Gligorijević et al., 2021],64

a machine learning-based tool that predicts functional annotations (gene ontology terms) using65

protein structure and sequence features. Because many of our de novo proteins were predicted to66

be disordered de novo proteins, we hypothesized that they could form biomolecular condensates67

[Uversky, 2017]. To test this hypothesis, we predicted the condensate forming propensity of our68

de novo using PICNIC [Hadarovich et al., 2023], an algorithm that is based on predicted structure69

(AlphaFold2), predicted disorder (IUPred2A), as well as sequence complexity. Understanding the70

condensate forming behavior of de novo proteins would elucidate their potential involvement in the71

formation of membraneless organelles, offering an evolutionarily and biophysically feasible mech-72

anism for their integration with the cellular physiology. Finally, we mapped the de novo proteins on73

the protein sequence space in relation to random and conserved proteins. To this end, we used74

protein language models that can predict several biophysical features from sequences, embedding75

their abstracted properties in the form of numerical values [Lin et al., 2023]. Our method allowed76

us to map different sequences with better resolution than by the analyses of individual properties77

separately [Weidmann et al., 2019, Agozzino and Dill, 2018, Heames et al., 2023, Aubel et al.,78

2024]. With these multi-faceted analyses we found that some de novo proteins can indeed adopt79

structures similar to known proteins and can have possible cellular activities including localization80

to specific organelles. We also found that some de novo proteins are likely to form biomolecular81

condensates. However, with our language model analysis we found that the majority of de novo82

proteins look distinct from conserved proteins of similar length, and resemble more the random83

proteins. Overall, our work enhances our understanding of how de novo proteins can not only84

develop features already known to the living systems, but can also be a source for evolutionary85

novelty.86
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Results87

A few de novo proteins can indeed adopt known structures88

To understand if de novo proteins can form known protein structures, we compared their predicted89

structure to that of conserved proteins. Recent studies have shown that structure predictions are90

not very reliable for de novo proteins [Middendorf and Eicholt, 2024, Aubel et al., 2023, Liu et al.,91

2023], and that many predicted structures are also thermodynamically unstable [Peng and Zhao,92

2023]. Therefore, we refined the predicted structures of Drosophila de novo proteins from our pre-93

vious study Middendorf and Eicholt [2024], using molecular dynamics simulations, performing 394

replicate simulations per protein for 100ns. We thus refined the predicted structures of 1,468 de95

novo proteins. Our MD simulations suggest that most de novo proteins exhibit structural flexibil-96

ity, as indicated by the large root mean square deviation (RMSD) values (Figure Figure 1A and97

Figure S3). Next, we searched for conserved proteins that have predicted structures similar to98

those of de novo proteins, using Foldseek [van Kempen et al., 2023]. Specifically, with MD refined99

structures as queries, and the AFDB50 [Varadi et al., 2021] as the target, we observed that the100

majority of de novo proteins did not have a significant structural similarity to the conserved proteins101

in AFDB50 (TM score <0.5, Figure 1B). This was also the case for AF2 predicted structures of de102

novo and random proteins without MD simulations (Figure S1 and Figure S2). This observation,103

supports the de novo status of our proteins, aligning with the notion that structure is more con-104

served than sequence [Illergård et al., 2009]. To investigate whether these de novo proteins can105

adopt known structures, we performed structural mapping of de novo proteins with experimentally106

validated structures in the Protein Data Bank (PDB) [Berman et al., 2000], using Foldseek. We107

then extracted the ECOD domain annotations for matches found in the PDB [Cheng et al., 2014].108

Out of the 1,468 de novo proteins analyzed, 42 showed structural alignment with proteins having an109

architecture annotation in ECOD (Figure 1C). Prior to MD simulation, 119 predicted structures were110

mappable to PDB structures (Figure S1). Figure 1D presents examples of these findings consisting111

of a structurally unalignable de novo protein, one similar to an SH3 fold, and another resembling an112

HTH fold. Both SH3 and HTH folds are considered highly conserved and ancient folds [Kishan and113

Agrawal, 2005, Alvarez-Carreño et al., 2021, Rosinski and Atchley, 1999, Grishin, 2000]. These114

three example proteins have emerged less than 5 million years ago (mya) [Heames et al., 2020].115

Overall, our structure search analysis shows that, while most de novo proteins are likely to have116
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novel or uncommon structures, a minority of them can indeed adopt well known protein structures.117
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Figure 1: Structural diversity of de novo evolved proteins. (A) Distribution of the average root
mean square deviation (RMSD, horizontal axis) per MD simulation trajectory. We display the
average RMSD of three MD simulation replicates per de novo protein, only for proteins with i) less
than 30% disorder predicted by flDPnn, and ii) less than 95% of their residues annotated as
α-helices via DSSP (1468 of 2510 proteins). (B) Distribution of the TM-score (horizontal axis) for
the mapping of de novo proteins (MD-refined structures) to the most similar protein structure in
the AlphaFold database (AFDB50), excluding proteins from Drosophila. TM-scores below 0.5
indicate no similarity to any protein structure in the AlphaFold database. (C) Structural
classification of de novo proteins. We assigned a structural class to each of the 1468 de novo
proteins based on the DSSP annotations of their predicted structures (inner circle). To identify
annotated protein domains in de novo proteins, we aligned their MD refined structures to
structures in the PDB. We assigned each de novo protein with the ECOD domain of its highest
scoring hit from the PDB, given the TM-score was greater than 0.5 and the alignment covered at
least 80% of the PDB target. We assigned the 42 de novo proteins, that qualified the above
criteria, with an ECOD domain from multiple domain architectures (outer circle). (C) Examples of
de novo proteins without structural similarity to proteins in the AlphaFold database (Droso_1087),
or with similar structure to an ECOD X-group (Droso_1446 & Droso_4840; aligned with their
closest hit in the PDB).
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Some de novo proteins may bind to nucleic acids, and are predicted to have118

enzymatic activities119

Information on biological activities and functions, is available for only a handful of de novo proteins120

[Bornberg-Bauer et al., 2021, Weisman, 2022]. The existence and gain of biological activity would121

be critical factor determining the evolutionary fixation of de novo proteins. However, the lack of122

homology, makes functional annotation challenging. Therefore, we used DeepFRI to functionally123

annotate de novo proteins with Gene Ontology (GO) terms. Unlike homology based techniques,124

DeepFRI combines a protein language model, trained on the sequences of PFAM domains, and a125

graph convolutional network that represents amino acid interactions derived from protein structure126

[Gligorijević et al., 2021]. DeepFRI is also trained on the GO terms associated with different struc-127

tures. We did not filter protein sequences according to any structural criteria, because DeepFRI128

can de-noise predicted protein structures [Gligorijević et al., 2021]. We summarized and clustered129

the predicted GO terms based on their semantic similarity, and projected them in a 2-dimensional130

semantic space using REVIGO [Supek et al., 2011] (Figure 2A & B). We identified these GO term131

clusters visually and manually annotated them based on the GO terms within the cluster. We per-132

formed this analysis for both de novo and random proteins. With our analysis, we found that a small133

fraction of de novo and random proteins could be confidently annotated with GO terms for all the134

three GO classes (Molecular Function, Biological Process, and Cellular Component; Figure 2C).135

The GO term class Cellular Component had the highest fraction of confident predictions with ≈31%136

and≈17% for de novo and random proteins, respectively. However, we could not find any overarch-137

ing GO terms within the cellular component category, for both de novo and random proteins. This138

suggests that both these kind of proteins can localize to many different cellular compartments.139

Specifically, we found that these proteins, can possibly localize to the following compartments:140

nucleus (GO:0005634), mitochondrion (GO:0005739), vesicles (GO:0031982), and membranes141

(GO:0016020).142

Both de novo proteins and random sequences both show a broad variety of GO terms in other two143

GO classes with only a few prominent clusters within the semantic space (Figure 2A & B). Inter-144

estingly, de novo proteins and random sequences appear to have similar molecular functions and145

to be involved in similar categories of biological processes. Regarding their molecular function,146

they both showed multiple GO terms in relation to “hydrolase activity”, “transferase activity”, and147

“nucleic acid binding”. The biological processes in which de novo proteins and random sequences148
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are both predicted to be involved were “stimuli response”, “regulation” and “transport”. Next, we149

analyzed the impact of evolutionary age on functional annotation using GO terms. As young de150

novo proteins were more frequent than older proteins in the dataset, we normalized the number of151

proteins with predicted GO terms to the number of proteins in the respective age group. In all three152

categories of GO terms, the oldest de novo proteins (emerged >30 Mya) were more often predicted153

with a GO term, than younger proteins (Figure 2D). Only for the GO term category Cellular Com-154

ponent, old de novo proteins were annotated more frequently than expected by chance (Pearson’s155

χ2-Test; P < 10−10).156
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Figure 2: GO terms of random and de novo proteins predicted with DeepFRI
We predicted GO terms of de novo proteins (A) and random sequences (B) with DeepFRI and
clustered them based on semantic similarity with REVIGO. We visually identified GO term
clusters manually annotated with a generic term that describes all the GO terms within the
respective cluster. (C) Fraction of de novo and random proteins (vertical axis) predicted with a
GO term per GO term category (horizontal axis). (D) Fraction of de novo proteins in different age
groups (vertical axis) with a predicted GO term (horizontal axis). Old de novo proteins were
significantly more often annotated with a GO term in the Cellular Component category than
expected by chance (Pearson’s χ2-Test; P < 10−10).
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Subset of de novo proteins may form biomolecular condensates157

Biomolecular condensates are membraneless compartments formed by proteins via liquid-liquid158

phase separation, and are involved in several biological processes such as stress response and159

regulation of transcription [Tsang et al., 2020, Hyman et al., 2014]. We observed that that GO160

terms concerning RNA binding, transferase activity, and hydrolase activity that predicted for de161

novo proteins (Figure 2), are also important features of condensate-forming proteins [Hadarovich162

et al., 2023]. Therefore, we predicted the propensity of de novo proteins for condensate-formation.163

To this end, we used another prediction tool called PICNIC [Hadarovich et al., 2023]. However, PIC-164

NIC uses AF2 predicted structures and a disorder prediction tool IUPred2A, to predict condensate165

formation propensity. It has been shown, that both AF2 and IUPred can make qualitatively discor-166

dant predictions of de novo proteins [Middendorf and Eicholt, 2024, Aubel et al., 2023]. Therefore,167

we performed additional analyses to ensure a high-confidence prediction of condensate-forming168

de novo proteins (Figure 3A). Specifically, we retrieved 175 known condensate-forming conserved169

proteins from the CD-CODE database [Rostam et al., 2023] and used them as a positive control170

dataset. For all these proteins, we calculated the sequence features that are associated with the171

biological function of their intrinsically disordered regions, e.g. amino acid homorepeats, sequence172

complexity, and net charge [Zarin et al., 2021]. We clustered sequences based on these sequence173

features using Uniform Manifold Approximation and Projection (UMAP) [McInnes et al., 2018], a174

commonly non-linear dimensionality reduction tool (in contrast to principal component analysis,175

which is linear; Figure 3B). We identified seven clusters of different sizes. Of these, cluster 1 and176

cluster 3 contained most proteins (88.6%) of the CD-CODE database that we used in our analy-177

sis (Figure 3C). The de novo proteins in cluster 1 and cluster 3 with a PICNIC score greater than178

0.5 can be considered high-confidence condensate forming proteins, because they are not only179

predicted by PICNIC according to its own criteria, but they also have a similar sequence com-180

position as experimentally validated condensate-forming proteins. In total, we identified 63 such181

high-confidence condensate-forming de novo proteins. We next analysed the age groups of these182

condensate forming de novo proteins. When normalized by the number of proteins per age group,183

we found intermediate and old de novo proteins to be 5.9- and 6.6-fold more often predicted to184

form condensates than young de novo proteins, respectively (Figure 3D). Furthermore, interme-185

diate and old de novo proteins contained significantly more high-confidence condensate-forming186

proteins than expected by chance (Pearson’s χ2-Test; P < 5 × 10−54).187
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Figure 3: Identification of condensate-forming de novo proteins.
(A) Workflow for the identification of condensate-forming de novo proteins. We predicted
condensate-forming potential of de novo proteins and known condensate-forming proteins from
the CD-CODE database with PICNIC. For both groups of proteins, we calculated the sequence
features associated with the functions of intrinsically disordered regions were calculated.
Subsequently, we clustered all proteins based on these sequence features using hdbscan, and
the analyzed the clusters for their constituent proteins. (B) Clusters of de novo proteins and
known condensate-forming proteins based on sequence features associated with the function of
intrinsically disordered proteins. (C) Constitution of the identified clusters based on protein type.
We classified the 63 de novo proteins from clusters 1 and 3 were as high-confidence
condensate-forming proteins. (D) Fraction of de novo proteins from the respective age groups
that were classified as high-confidence condensate-forming proteins. The age groups
Intermediate and Old contained significantly more high-confidence condensate-forming proteins
than expected by chance (Pearson’s χ2-Test; P < 5 × 10−54).
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Protein language models show that de novo and conserved proteins occupy188

distinct regions of the sequence space189

Although we found that some de novo proteins may be structurally similar to known proteins, we190

don’t yet know if evolutionary origin indeed determines the structural properties of a protein. Indeed,191

many studies have compared a handful of features such as structural disorder, protein composition,192

and aggregation propensity between de novo and conserved proteins [Knowles and McLysaght,193

2009, Ekman and Elofsson, 2010, Landry et al., 2015, Wilson et al., 2017, Vakirlis et al., 2018,194

Klasberg et al., 2018, Schmitz et al., 2018, Heames et al., 2020, 2023, Peng and Zhao, 2023, Mid-195

dendorf and Eicholt, 2024]. However, these analyses may not provide reliable inferences because196

they use tools depending on limited data (e.g. TANGO/IUPred) [Fernandez-Escamilla et al., 2004,197

Erdős et al., 2021], and because the different features are analysed in isolation. Language models198

use machine learning to analyse several hidden parameters (and their interactions) simultaneously199

using sequence information alone. Indeed, protein language models have proved extremely adept200

at predicting and designing protein structures [Heinzinger et al., 2019, Madani et al., 2023, Al-201

ley et al., 2019, Chowdhury et al., 2022, Ferruz and Höcker, 2022, Ferruz et al., 2023, Lin et al.,202

2023].Therefore, we used the ESM2 protein language model to compare the three different kinds203

of protein sequences in our dataset (random, de novo and conserved proteins). Specifically, we204

generated a numerical vector for each protein sequence using the ESM2 language model with205

650 million parameters (ESM2-650M) [Lin et al., 2023]. Each vector contains 1280 elements, that206

denote an abstraction of different sequence features predicted by the model. We used UMAP207

[McInnes et al., 2018] to visualize the protein sequences in sequence space, and found that de208

novo, random, and conserved proteins indeed occupy distinct regions in the sequence space (Fig-209

ure 4). To quantify these observations, we calculated the Manhattan distance (or L1 norm) between210

every pair of protein numerical sequences, a method particularly effective for multidimensional data211

with potential extreme outliers [Barrodale, 1968]. Our findings indicate that the distances between212

de novo and conserved proteins are generally larger than those between sequences within each of213

these categories (one-sided Mann-Whitney U test; P < 10−99). We also found that the distances214

between the de novo and conserved proteins are generally larger than the distances between the215

de novo and the random proteins (one-sided Mann-Whitney U test; P < 10−99). The generated216

random proteins were based on the same length and amino acid distributions as the de novo pro-217

teins [Middendorf and Eicholt, 2024, Heames et al., 2023]. Therefore, the nearness between these218
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two sets of protein sequences could be an artifact of our method. To verify if this is the case, we219

generated random protein sequences with same distribution of composition as our conserved se-220

quences. We found that de novo proteins were closer to these new random proteins than with221

conserved proteins (one-sided Mann-Whitney U test; P < 10−99; Figure S4). Overall our analyses222

suggest that despite certain structural similarities, de novo proteins are, distinct from conserved223

proteins at the sequence level, and bear a closer resemblance to random sequences.224

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577933doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577933
http://creativecommons.org/licenses/by/4.0/


Figure 4: Location of our protein sequences in the sequence space
We used the protein language model ESM2-650M to generate a numerical representation of the
de novo, random and conserved proteins sequences. We projected and plotted these numerical
sequences into a two dimensional space using UMAP.
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Discussion225

Most proteins can be grouped into families based on their sequence similarity, evolutionary ances-226

try, structural folds, and biochemical functions [Chothia, 1992]. De novo proteins are exceptions227

as they do not belong to any established protein family, because they not only originate from non-228

genic DNA sequences (lack of ancestry), but also lack sequence and structural homology to other229

proteins [Bornberg-Bauer et al., 2021, Schlötterer, 2015]. This makes it challenging to annotate230

functions to de novo proteins based on our knowledge of conserved proteins. Despite their dis-231

similarity with known proteins, de novo proteins have been shown to perform biological functions232

and improve the survival and fitness of the organisms that express them [McLysaght and Guerzoni,233

2015, Li et al., 2009, Cai et al., 2008, Chen et al., 2010a, Gubala et al., 2017, Lange et al., 2021,234

Zhuang et al., 2019, Reinhardt et al., 2013, Heinen et al., 2009, Li et al., 2010a, Xie et al., 2019,235

Li et al., 2014, Chen et al., 2010b]. Advanced computational methods using deep learning have236

been able to solve problems at an unprecedented scale. For example, AlphaFold2 resulted in an237

exponential increase in the number of computationally predicted protein structures [Varadi et al.,238

2021] Therefore, we applied some of these deep learning based tools to elucidate the possible239

structure and function of de novo proteins.240

First, we searched for conserved proteins that may be structurally similar to de novo proteins using241

Foldseek. Most de novo proteins did not bear a significant resemblance to known protein structures,242

in accordance with their non-genic evolutionary origin, and distinctiveness of their sequence and243

biophysical properties as shown by previous studies [Heames et al., 2023, Aubel et al., 2024].244

This lack of resemblance could exist because de novo proteins are highly disordered [Middendorf245

and Eicholt, 2024, Peng and Zhao, 2023], and can contain rare secondary structures like 310- or246

π-helices [Chen et al., 2023], that could make structural alignment complicated.247

While we attempted to refine AF2 predicted structures of de novo proteins through molecular dy-248

namics (MD) simulations, it is important to note that many de novo proteins may reside in non-249

aqueous environments such as cell membranes (Figure Figure 2) [Vakirlis et al., 2020b], may only250

fold upon interaction with other proteins [Chen et al., 2023], and may be part of multimers [Lynch,251

2012, Schulz et al., 2022, Jayaraman et al., 2022, Malik et al., 2024]. We did not consider all these252

possibilities in our MD simulations due to computational limitations. Nonetheless, the majority of253

individual de novo proteins were predicted to be disordered or, if structured, to predominantly form254

simple α-helices [Heames et al., 2023, Middendorf and Eicholt, 2024, Aubel et al., 2024, Peng and255
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Zhao, 2023], a trend attributed to many de novo proteins being too short to form globular structures256

[Aubel et al., 2024, Shen et al., 2005]. Our current study corroborates these observations. The257

frequent emergence of single α-helices in de novo proteins can be attributed to the lower stereo-258

chemical and thermodynamical requirements of α-helices [Barlow and Thornton, 1988, Greenwald259

and Riek, 2012]. On rare occasions where de novo proteins exhibit structural configurations beyond260

single α-helices, they can resemble common and ancient folds such as SH3 or HTH (Figure 1D).261

This observation implies that these widespread evolutionary folds, which are evolutionary success-262

ful and easily tolerated by cells, are more accessible in sequence space [Taverna and Goldstein,263

2000, Shakhnovich et al., 2005, Goldstein, 2008], even for sequences that have not been shaped264

by millions of generations of evolution. Despite identifying some de novo proteins with structural265

homology to existing structures, we did not find any novel folds among our candidate proteins, un-266

like other studies that investigated a much larger set of proteins [Durairaj et al., 2023] (Figure 1B267

& D).268

By employing the deep learning based functional annotation tool, DeepFRI [Gligorijević et al.,269

2021], we found that de novo proteins are associated with a wide array of Gene Ontology (GO)270

terms, spanning all three GO categories, with several distinct clusters emerging within the seman-271

tic field. We show that de novo proteins, despite their recent emergence and lack of evolutionary272

ancestry, are more often predicted to be functional than a comparable random set of sequences273

(Figure 2C). Their involvement in a range of molecular functions (like hydrolase activity, transferase274

activity, and nucleic acid binding) and biological processes (such as stimuli response, regulation,275

and transport) underscores their potential impact on the cellular physiology. Interestingly, the simi-276

larity in molecular functions and involvement in biological processes between de novo proteins and277

random sequences could imply a certain level of functional redundancy in the sequence space.278

This observation might suggest that the emergence of function from novel proteins, even through279

random sequences, could be a more probable phenomena than previously thought. Finally we280

emphasize that, while efforts to deduce protein function based on structural similarity is ongoing281

[Nomburg et al., 2024, Gligorijević et al., 2021], numerous instances exist where proteins with simi-282

lar structures perform different functions, and vice versa [Finkelstein et al., 1993, Govindarajan and283

Goldstein, 1996, Galperin et al., 1998, Martin et al., 1998].284

The association of de novo proteins with biophysical reactions such as RNA binding, and biochemi-285

cal reactions similar to transferases, and hydrolases, presents an intriguing avenue for understand-286

ing their functional capacities and evolutionary significance. This is especially interesting because287

18

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577933doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577933
http://creativecommons.org/licenses/by/4.0/


RNA binding and hydrolase-activity are thought to be conferred even by primordial folds [Seal et al.,288

2022, Weil-Ktorza et al., 2023, Vyas et al., 2021, Longo et al., 2022], and could possibly been im-289

portant during origin of life. Both these molecular activities, and a highly disordered structure, are290

also exhibited by condensate-forming proteins [Hadarovich et al., 2023]. Therefore, we investi-291

gated the possibility of de novo proteins to be involved in formation of biomolecular condensates.292

Biomolecular condensates, formed through liquid-liquid phase separation by proteins, are critical in293

various biological processes and such a propensity exists even for proteins with ancient and simple294

folds [Longo et al., 2020]. The use of PICNIC [Hadarovich et al., 2023] to predict the involvement of295

de novo proteins in biomolecular condensates represents an innovative approach, albeit with limi-296

tations. The reliance on AlphaFold2 predictions and IUPred2A as input requirements, introduces a297

degree of uncertainty, especially given the discordant predictions of these tools between de novo298

and conserved proteins [Middendorf and Eicholt, 2024]. This necessitated further analysis to es-299

tablish a high-confidence set of condensate-forming de novo proteins, leveraging the CD-CODE300

database [Rostam et al., 2023] as a reference.301

The identification of clusters based on sequence features associated with intrinsically disordered302

regions of proteins is particularly noteworthy. The fact that clusters 1 and 3, which have a high303

fraction of members from the CD-CODE database, include ≈12% of all de novo proteins with a304

PICNIC score greater than 0.5, is compelling. It suggests that these de novo proteins not only305

have the potential to form condensates but also share sequence composition with experimentally306

validated condensate-forming proteins. The discovery of 63 high-confidence condensate-forming307

de novo proteins contributes to our understanding of the functional diversity of these proteins. This308

finding expands the realm of de novo protein functionality beyond traditional views, indicating their309

potential involvement in complex cellular mechanisms like phase separation. Considering that310

phase separation is involved in spermatogenesis [Kang et al., 2022, Parvinen, 2005], and that de311

novo proteins show biased expression in testis [Levine et al., 2006, Heames et al., 2020, Zhao312

et al., 2014, Palmieri et al., 2014, Peng and Zhao, 2023, Nyberg and Carthew, 2017, Kondo et al.,313

2017, Neme and Tautz, 2013], being involved in biomolecular condensates suggests a possible314

mechanism by which de novo proteins could play a role in spermatogenesis [Lange et al., 2021,315

Gubala et al., 2017, Rivard et al., 2021]. Moreover, our analysis of the age groups of these de novo316

proteins revealed that intermediate and old de novo proteins are significantly more likely to form317

condensates than their younger counterparts. This observation is intriguing as it could imply two318

scenarios. First, as de novo protein evolve and mature, they acquire and refine their ability to par-319
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ticipate in cellular processes like biomolecular condensation and thereby their function. Under this320

scenario, the de novo proteins could be positively selected. Second, the ability to form biomolecu-321

lar condensates could minimize toxic protein aggregation, and could protect de novo proteins from322

being purged by negative selection.323

To understand if de novo proteins can indeed be a source of evolutionary novelty, we analyzed324

their distribution in the protein sequence space relative to that of conserved and random pro-325

teins, using the protein language model ESM2-650M. Our analysis shows that de novo proteins,326

arisen from non-coding sequences, have unique sequence characteristics that distinguish them327

from conserved proteins, but more similar to random proteins, as hypothesized before [Bornberg-328

Bauer et al., 2021]. Nevertheless, some de novo proteins indeed had a conserved protein, closely329

located to them in the sequence space (Figure 4). Together with our Foldseek analysis, this ob-330

servation indicates an inherent capacity of amino acid sequences to adopt structures, and that331

a broad spectrum of sequence space is capable of evolving into foldable proteins [Tretyachenko332

et al., 2017, Heames et al., 2023, Aubel et al., 2024].333

Our analysis is based on computational tools, which are always prone to some level of erroneous334

predictions. Furthermore, many of the deep learning based tools have not been trained on de novo335

proteins and can possibly make biased predictions [Middendorf and Eicholt, 2024]. Therefore,336

our study may not provide exact and perfect answers to the different open questions about de337

novo proteins. All computational predictions need experimental validation. Experimental studies,338

especially on de novo proteins are bottlenecked by serendipity, and labor intensive techniques339

that are not fully optimized for proteins with such an unusual biochemistry [Eicholt et al., 2022].340

However, our exhaustive approach can help guide focused experimental studies, and can reduce341

the need for trial and error, and accidental discoveries. For example, the candidate de novo proteins342

with a possible structure, a specific molecular function (like hydrolysis, or RNA binding), and a343

propensity to form condensates, can be experimentally probed for these specific properties. Our344

sequence space analysis can also identify de novo proteins that are likely to adopt more conserved-345

protein-like properties, as a consequence of evolution. Overall, our study not only broadens our346

understanding of the dynamic nature of protein evolution but also serves as a guidebook for future347

experimental studies.348
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Materials & Methods349

Dataset curation350

We used the sequence datasets from our previous study [Middendorf and Eicholt, 2024]. Specifi-351

cally, we first obtained 6716 orphan protein sequences from the Drosophila clade, and their corre-352

sponding evolutionary age, from Heames et al. [2020]. From this dataset, we discarded sequences353

that were annotated with the same FlyBase ID. Next, we extracted the sequences whose emer-354

gence origin was annotated as "denovo" (intergenic de novo protein) or "denovo-intron" (intronic de355

novo protein) by Heames et al. [2020], for further analysis. Out of the 2510 proteins sequences thus356

obtained, 1481 were annotated as "denovo," while 1029 were described as "denovo-intron". Based357

on their date of emergence, the de novo proteins were classified as young (<5 mya), intermediate358

(5-30 mya), and old (>30 mya) proteins [Heames et al., 2020, Middendorf and Eicholt, 2024]. In359

our filtered dataset, the three age groups consisted of 2205, 110, and 195 proteins, respectively.360

We generated 2507 random sequences with the same distributions of amino acid composition361

and sequence length, as the 2510 de novo sequences set, using a technique used in previous362

studies [Heames et al., 2023, Middendorf and Eicholt, 2024]. We generated a set of conserved363

protein sequences with the same sequence length distribution as the de novo proteins, by randomly364

sampling protein sequences from the combined proteome of 12 Drosophila species. After removing365

sequences that were duplicated or were redundant with our set of de novo proteins, we obtained a366

set of 2235 unique conserved proteins.367

We performed structure predictions using AlphaFold2 [v2.1.1, Jumper et al., 2021] on the High368

Performance Computing Cluster, PALMA II (University of Muenster). We used the predictions369

with the highest mean pLDDT for further analysis. We downloaded AlphaFold2 based structure370

predictions of conserved Drosophila proteins from the AlphaFold Protein Structure database [Varadi371

et al., 2021] for our initial analyses.372

Molecular Dynamics simulations to refine structure predictions373

To analyze the stability of the predicted structures of de novo proteins, we performed molecular374

dynamics (MD) simulations using a previously described method [Ferruz et al., 2022], with minor375

modifications. We only simulated protein structures with i) less than 30% disorder predicted by376

flDPnn [Hu et al., 2021], and ii) less than 95% of their residues predicted as α-helices by DSSP377
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[Kabsch and Sander, 1983] (1468 unique proteins). We constructed the MD model and performed378

the simulations using the HTMD python package [Doerr et al., 2016]. The model systems were built379

to form solvated all-atom cubic boxes. We centered our proteins at the origin of the simulation box380

coordinates. We used water as the solvent, and added NaCl ions to neutralize the system. We used381

the AMBER 14SB force field [Maier et al., 2015] for all simulations. We minimized, equilibirated,382

and simulated each system for 100 ns, using the ACEMD engine [Harvey et al., 2009] with the383

default settings in triplicates. We evaluated the simulations with the HTMD [Doerr et al., 2016] and384

MDAnalysis [Michaud-Agrawal et al., 2011] python packages. We calculated the average RMSD385

value per trajectory for every replicate simulation for a protein, and in turn calculated a single386

averaged value from three replicates.387

Identifying similar protein structures using Foldseek388

We searched the AlphaFold Protein Structure database [Varadi et al., 2021] clustered at 50% se-389

quence identity (AFDB50), for structures similar to the predicted structures of our de novo, random,390

and conserved proteins, using Foldseek [v.8.ef4e960, van Kempen et al., 2023]. We applied the391

same filtering criteria our query proteins that we used for the MD simulations. For de novo proteins,392

we used the protein structures refined after 100ns of MD simulation. We downloaded pre-computed393

AFDB50 database via Foldseek’s database module. We searched for similar structures using the394

“easy-search” module of Foldseek with the default settings. We did not filter the results or queries395

based on the pLDDT values. We discarded all hits to proteins within the Drosophila clade, to ex-396

clude hits to orthologous de novo proteins.397

To identify and annotate potential known protein structural domains in the de novo proteins, we398

searched the protein data bank database [PDB, January 2024; Berman et al., 2000] for structures399

that were similar to that of de novo proteins (MD-refined). We used Foldseek for this analysis with400

the same settings as we did before for AFDB50. We discarded hits with a TM-score less than 0.5401

[Xu and Zhang, 2010]. We retrieved the annotated ECOD domains of the highest scoring hits, from402

the ECOD database [Release: 20230309, Cheng et al., 2014] if the structural alignment of the de403

novo protein covered at least 80% of the target structure from the PDB. In all cases, we only used404

the highest scoring hit out of the three MD replicates for further analysis.405
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Predicting protein function using DeepFri406

To understand the potential function of de novo, and random proteins, we predicted their gene407

ontology (GO) terms using DeepFRI [Gligorijević et al., 2021]. We used their AlphaFold2 predicted408

3D-structures as the input and identified hits with a score ≥ 0.5. We summarized the predicted GO409

terms to a small list of terms using using REVIGO [Supek et al., 2011], and measured semantic410

similarity using SimRel [Sæbø et al., 2015]. We visually, identified clusters within the semantic411

space and annotated them with a term that summarizes the GO terms within them.412

Analysis of de novo proteins that form biomolecular condensates413

We predicted the potential of de novo proteins to form biomolecular condensates, using PICNIC414

[Hadarovich et al., 2023]. Because PICNIC makes predictions based on metrics derived from415

AlphaFold2 and IUPred2A predictions, we applied further filtering steps of the results in order to416

obtain a set of high-confidence condensate-forming de novo proteins. To this end, we retrieved all417

the proteins from the CD-CODE database [Rostam et al., 2023], that were experimentally shown418

from biomolecular condensates in cellulo or in vivo. This set of 175 proteins served as our positive419

control. Next, we retrieved sequence features associated with the biological functions of intrinsically420

disordered regions of proteins [Zarin et al., 2021], using the scripts provided in the idr.mol.feats421

GitHub repository. We discarded the specific features – aromatic_spacing, omega_aromatic*, and422

kappa*, and features that count the appearance of specific binding motifs. We normalized all423

the features that are directly influenced by the sequence length (e.g. amino acid counts), to the424

sequence length of the corresponding proteins. We subsequently clustered the sequences based425

on the computed features using hdbscan [McInnes et al., 2017] with a minimal cluster size of 100426

the min_samples parameter set to a value of 50. We considered a de novo protein to be a high-427

confidence condensate-forming protein, if it shared a cluster with a large fraction of proteins from428

the CD-CODE database, and had a PICNIC score ≥ 0.5.429

Mapping protein sequences to a numerical space using protein language430

model431

To understand how de novo and random protein sequences are located within the protein sequence432

space relative to conserved proteins, we used the protein language model ESM2 with 650 million433

parameters (ESM2-650M) [Lin et al., 2023]. Specifically, we used the language model to convert434
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each sequence to a numerical vector with 1280 elements. More specifically, ESM2-650M assigns435

each amino acid residue in a protein sequence, a 1280-dimensional vector of “embeddings”. For436

each protein we calculated the multivariate mean of the embedding vectors from every amino acid437

residue. We calculated the Manhattan distance (or L1 norm) between the numerical sequences438

of every pair of proteins in our combined dataset of de novo, random and conserved proteins. We439

applied Mann-Whitney test to the pairwise distances to analyse if proteins of one class (e.g. de440

novo) are farther from that of another class (e.g. conserved), than with each other. For proteins of441

one class, we also used the pairwise distances to identify the nearest neighboring protein from the442

other class. To visualize the location of different proteins in the sequence space, we used UMAP443

to project and visualize the proteins (numerical sequence) in a two dimensional space [V 0.5.3,444

McInnes et al., 2018]. We used UMAP with the default settings (n_neigbours = 15, min_distance445

= 0.1), except for choosing Manhattan distance as the distance metric and optimizing the low di-446

mensional embedding for 5000 instead of 200 epochs.447

Data & statistical analysis448

We analyzed most data with Python programming language (v3.9.18) [Van Rossum and Drake,449

2009], using the following packages: Pandas (v1.5.3) [Reback et al., 2022], NumPy (v1.26) [Harris450

et al., 2020], SciPy (v1.11.3) [Virtanen et al., 2020], and BioPython (v1.80) [Cock et al., 2009]. We451

generated the plots using Matplolib (v3.4.3) [Hunter, 2007]. We performed the Pearson’s χ2-tests452

using the "chisquare" from the scipy.stats package. We analyzed protein sequence space with453

Julia programming language using the packages Distances.jl (v0.10.11) and HypothesisTests.jl (v454

0.11.0)455

24

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577933doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577933
http://creativecommons.org/licenses/by/4.0/


Acknowledgements456

We thank Alun Jones for his advice on statistical tests.457

Supporting information458

Supporting information is available on Zenodo 10.5281/zenodo.10557890.459

Code and Data Availability460

Datasets are publicly available on Zenodo. All scripts are freely available on GitHub:461

https://github.com/LasseMiddendorf/SequenceAndFunctionalSpaceOfDrosophilaDeNovoProteins462

25

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577933doi: bioRxiv preprint 

10.5281/zenodo.10557890
10.5281/zenodo.10557890
https://github.com/LasseMiddendorf/SequenceAndFunctionalSpaceOfDrosophilaDeNovoProteins
https://doi.org/10.1101/2024.01.30.577933
http://creativecommons.org/licenses/by/4.0/


Supplementary Material463

Figure S1: Structural diversity of de novo proteins, before MD refinement. The predicted
protein structures of randomly generated sequences (A), de novo protein (B), and conserved
proteins (C) were queried against the AlphaFold database (AFDB50) excluding proteins from
Drosophila. Only proteins with less than 30% of their residues being predicted to be disordered
and less than 95% with a DSSP annotation of being α-helical were considered for the analysis.
Shown is the distribution of the highest TM-score found for each protein in the three datasets. (D)
Overview of the structural classes and ECOD architectures of de novo proteins. The protein class
(inner circle) was assigned to all de novo proteins queried against the AFDB50 based on the
DSSP annotations of the predicted protein structures. Proteins containing no residues annotated
as α-helices or β-sheets were classified as all b or all a, respectively. Protein structures containing
residues annotated as α-helices and β-sheets were classified as Mixed. For the annotation of
ECOD architectures in the predicted structures of de novo protein, the structures were queried
against the PDB and assigned with the ECOD domain of the highest ranking hit if the alignment
covered at least 80% of the target structure.
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Figure S2: Structural similarity of high-pLDDT protein structures to AlphaFold database
Similar structures in the AlphaFold database for high-pLDDT structure predictions only TM-Score
distribution of predicted protein structures of (A) random, (B) de novo, and (C) conserved proteins
with a pLDDT value >= 70 queried against the AlphaFold database (AFDB50) using Foldseek.
The hit with the highest TM-score was chosen for each protein.

Figure S3: RMSD trajectories of selected de novo proteins Root mean square deviation
(RMSD) of Droso_1087, Droso_1446, and Droso_4480 over 100 ns of molecular dynamics
simulations. Simulations were performed as triplicates for all proteins.

27

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577933doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577933
http://creativecommons.org/licenses/by/4.0/


Figure S4: De novo proteins are closer to random sequences than conserved proteins. We
used the protein language model ESM2-650M to represent the sequences of de novo, conserved,
and random proteins as numerical vectors. In addition to random proteins that were generated to
share the same amino acid distribution as de novo proteins (Random Proteins (DN)), we included
a set of randomly generated sequences based on the properties of conserved proteins (Random
Proteins (C)). We projected the representations into two dimensions using UMAP. The
localization in sequence space shows that de novo proteins are closer to random proteins than
conserved ones, regardless of the origin of the random sequences.
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