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Kevin Rupp ∗1, 2, 3, Andreas Lösch ∗1, Y. Linda Hu ∗1, Chenxi Nie2, Rudolf Schill1, 2, 3, Maren Klever4,
Simon Pfahler5, Lars Grasedyck4, Tilo Wettig5, Niko Beerenwinkel †2, 3 , Rainer Spang †1

1Faculty of Informatics and Data Science - Statistical Bioinformatics Group, University of Regensburg, Am Biopark 9, 93053
Regensburg, Germany

2Department of Biosystems and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
3SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland

4Institute for Geometry and Applied Mathematics, RWTH Aachen, Templergraben 55, 52062 Aachen, Germany
5Faculty of Physics, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany

Abstract

Metastasis formation is a hallmark of cancer lethality. Yet, metastases are generally unobservable during their early
stages of dissemination and spread to distant organs. Genomic datasets of matched primary tumors and metastases
may offer insights into the underpinnings and the dynamics of metastasis formation. We present metMHN, a cancer
progression model designed to deduce the joint progression of primary tumors and metastases using cross-sectional
cancer genomics data. The model elucidates the statistical dependencies among genomic events, the formation of
metastasis, and the clinical emergence of both primary tumors and their metastatic counterparts. metMHN enables
the chronological reconstruction of mutational sequences and facilitates estimation of the timing of metastatic seeding.
In a study of nearly 5000 lung adenocarcinomas, metMHN pinpointed TP53 and EGFR as mediators of metastasis
formation. Furthermore, the study revealed that post-seeding adaptation is predominantly influenced by frequent copy
number alterations. All datasets and code are available on GitHub at https://github.com/cbg-ethz/metMHN.

1 Introduction

Metastasis is the primary cause of cancer-related death. It occurs as tumors evolve, when the primary lesion extends
beyond its initial boundaries, invading adjacent healthy tissues, lymph nodes, and blood vessels. Cancer cells can then
enter the bloodstream and spread to different locations within the body. At these new sites, the disseminated cells face
novel selective pressures, leading to the elimination of many, but not all, cells. The survivors adapt and eventually colonize
these foreign tissues, forming metastases [23].The development of cancer, or tumorigenesis, is predominantly driven by the
progressive accumulation of genomic alterations, including somatic mutations and copy number alterations in cancer driver
genes [40]. These alterations often result in divergent genotypes between a primary tumor and its associated metastasis.
Extensive clinical sequencing efforts like the MSK-MET study [26] recently compiled genomic data from primary tumors
and metastases. In principle, such datasets may inform about the timing and genetic mechanisms of metastasis formation,
but revealing these pieces of information is challenging.

Cancer progression models aim to infer interactions between genomic alterations based on their co-occurrence patterns
in cross-sectional data. Such models can then be used to both predict the future progression of tumors as well as to
explain the past by inferring the order in which observed alterations accumulated. These models have their roots in the
pioneering work of Fearon and Vogelstein [14]. Since then, a variety of models and algorithms have emerged to refine and
expand upon this concept. They include Conjunctive Bayesian Networks [2], CAPRI [31], Network Aberration Models
[19], HyperTraPS [18] and Mutual Hazard Networks [33]. All of these models only consider the progression of a single
sequence and thus can not capture the divergent, branching patterns characteristic of metastatic disease progression.
Therefore none of the above mentioned models can leverage the information provided by matched primary tumor and
metastasis samples from the same patient. Methods like REVOLVER [7] or TreeMHN [24] can account for this branching
behaviour as they model evolution of tumors on a clonal level. However, they require phylogenetic data and are not
explicitly designed to model metastatic branching.

Here, we present Mutual Hazard Networks for metastatic disease (metMHN), a cancer progression model that captures
the branching progression observed in primary tumors and their metastatic offshoots. The model is designed to infer
interactions among genomic alterations and to assess their impact on the propensity for a tumor to seed a metastasis.
Additionally, it accounts for metastasis-specific effects on the rates at which genomic alterations accumulate. metMHN
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utilizes both cross-sectional data from matched primary tumors and metastases, and singular observations of only one of
the two. It also models how genomic changes affect tumor observability. We demonstrate the utility and robustness of
the metMHN model using the lung adenocarcinoma dataset (LUAD) provided by the provided by the Memorial Sloan-
Kettering Cancer Center through AACR GENIE [30].
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Figure 1: (a) Workflow of metMHN. In the top-left section, we show the types of input data that metMHN processes.
Each row corresponds to a patient, each column to an event in the primary tumor (blue) or the metastasis (red). Events
are represented by symbols and their status is encoded with a ’1’ for present, ’0’ for absent, or left blank if a tumor is
unobserved. On the right, we present the primary output of metMHN: A network of interactions between events in matrix
form. In the lower section, we show the most probable chronological ordering in which events accumulated in observed
data points as inferred by metMHN. The progression trajectory of the primary tumor is indicated by blue arrows, while
the trajectory of the metastasis is marked by red arrows. (b) The metMHN process and its state space: Black-bordered
squares represent full states: the two compartments on the left detail the status of the primary tumor, the two on the
right correspond to the metastasis, and the central diamond symbolizes the seeding event. The diagram is divided into
two subspaces, with the left half constituting the subspace S0 and the right half comprising the subspace S1. Transitions
between states that occur at non-zero rates are shown as solid black arrows. Transitions that are not possible in S0 but
are possible in S1 are indicated by greyed-out arrows. Dotted arrows highlight transitions that influence the seeding event
specifically.

2 Methods

metMHN extends the Mutual Hazard Network (MHN) framework, originally introduced by Schill et al. in 2020 [33] and
further developed by Schill et al. in 2023 [34], which models the progression of primary tumors. We first establish the
notation employed by MHNs and then introduce metMHN.

2.1 Mutual Hazard Networks

MHNs [33] model the evolution of primary tumors as a continuous-time Markov chain (CTMC) {X(t), t ≥ 0} on the
binary state space {0, 1}n. A state x ∈ {0, 1}n corresponds to a set of progression events, such as mutations or copy
number alterations, where xi = 1 indicates that event i ∈ {1, ..., n} is present, whereas xi = 0 indicates its absence.
Let p(t) ∈ [0, 1]2

n

denote the probability distribution over states at time t, where the states are ordered lexicographically.
The evolution of the probability distribution over time is governed by the Kolmogorov forward equation

d

dt
p(t) = Qp(0) solved by

p(t) = exp(tQ)p(0) . (1)

Here p(0) denotes the distribution over states at the start of the progression. It is assumed that all tumors start in a
wild type state, where no event has occurred yet, thus p(0) = (1, 0, . . . , 0)T . Q ∈ R2n×2n denotes the transition rate
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matrix on the state space. Events are assumed to accumulate irreversibly and one at a time. Therefore, the only non-zero
off-diagonal entries of Q are the transition rates from states x = (. . . , xi−1, 0, xi+1, . . .) to x+i = (. . . , xi−1, 1, xi+1, . . .)
that differ by exactly one event i. The transition rates are parameterized by a much smaller matrix Θ ∈ Rn×n

≥0 as

Qx+i,x = Θi,i

∏
xj=1

Θi,j . (2)

Here Θi,i denotes the base rate with which event i spontaneously occurs in a tumor and Θi,j the multiplicative effect of
the presence of event j on the rate of event i. The age of a tumor at the time of its diagnosis is unknown. In [33] it is
assumed to be exponentially distributed with mean 1 and independent of the state of the tumor. Marginalizing over t in
Equation (1) yields the time-marginal distribution

p :=

ˆ ∞

0

exp(tQ)p(0)dt = (I −Q)−1p(0) , (3)

where I denotes the identity matrix. Let px denote the probability of observing a tumor in state x. Then the average
log-likelihood for a dataset D of tumor states is defined as

lD(Θ) =
1

|D|
∑
x∈D

logpx . (4)

The matrix Q does not need to be stored explicitly, because it can be written as a sum of tensor products. By using tensor
operations, p can be calculated efficiently and Θ can be learned with a time and space complexity only exponential in the
number of events that have occurred for each tumor in the dataset, rather than exponential in 2n [32, 5]. Recently [22,
16, 28] reduced the complexity further to n3 using modern tensor formats and thus made MHN applicable to even larger
state spaces.

Clearly, a tumor can only appear in a dataset after it has been clinically detected. This detection, in turn, is influenced
by the tumor’s genotype, as certain mutations can induce growth or alter the tumor’s morphology. Such changes may
result in symptoms that lead to the tumor’s discovery, followed by its diagnosis, surgical removal, and eventual sequencing.
Therefore the rate of observation should be dependent on the state of the tumor. In [34], the observation of a tumor was
introduced as a separate event with its own set of parameters Ω ∈ Rn

>0. The observation of a state x happens at a rate
ux =

∏
xj=1 Ωj , where Ωj is a multiplicative effect of the presence of event j on the rate of observation. On the other

hand multiplicative effects of the observation on other events are set to 0. Thus, as soon as the observation event occurs,
progression is halted. States where the observation occurred are thus absorbing states of the Markov chain. Then the
probability distribution at observation is equal to the stationary distribution p(∞) and given by

p(∞) = U(U −Q)−1p(0) = (I −QU−1)−1p(0) , (5)

with U = diag((ux)x) ∈ R2n×2n

>0 and Q and p(0) defined as in Equation (3) [34].

2.2 metMHN

We now present metMHN, an extension of the original MHN framework, meticulously tailored to analyze the dynamics
of metastatic cancers.

2.2.1 Dynamics on the combined state space

With metMHN, we model the joint progression of primary tumors and metastases as a Markov process on the combined
event space of both tumor entities (see Figure 1b). Formally, we consider a CTMC {X(t), t ≥ 0} on the state space
S := {{0, 1} × {0, 1}}n × {0, 1}. A state x ∈ S is represented by a bit string of length 2n+ 1. Each of the n progression
events is encoded by two bits. The first bit xiP indicates the status of event i ∈ {1, . . . , n} in the primary tumor, and the
second bit xiM indicates the status of event i in the metastasis. We use the notations PT(x) = (xiP) and MT(x) = (xiM)
for i in {1, . . . , n} to refer to the genotypes of the primary tumor and the metastasis respectively. The (n+ 1)th event is
encoded by one bit only and indicates the status of the seeding event. In the model context, the seeding event denotes
that the progression of the metastasis has become decoupled from the progression of the primary tumor. Analogous to
MHN we parameterize all transition rates by a low-dimensional set of parameters Θ ∈ R(n+1)×(n+1), where Θi,i refers to
the base rate of event i and Θi,j to the effect of event j on the rate of event i. Before and after the seeding of a metastasis
we assume different transition dynamics, which we describe in the following paragraphs.

Prior to seeding, the (soon-to-be) metastasis is identical to the primary tumor. Thus, events occur simultaneously
in the primary tumor and the metastasis. Formally, we can describe these dynamics by a CTMC on the subspace
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S0 := {{0, 1}×{0, 1}}n×{0} ⊂ S with transition rate matrix Q0 ∈ R22n+1×22n+1

. Let x = (. . . , x(i−1)M , 0, 0, x(i+1)P , . . . , 0)
and x+iP+iM := (. . . , x(i−1)M , 1, 1, x(i+1)P , . . . , 0) be states that differ by exactly one event i. Transitions from states x to
states x+iP+iM happen at rate

Q0(Θ)x+iP+iM
,x = Θi,i

∏
xjP

=xjM
=1

j≤n

Θi,j . (6)

All other transitions within S0 are prohibited (rate 0).
After seeding, the primary tumor and the metastasis are separate tumors and we assume that both accumulate

mutations independently of each other. Formally, we describe the post-seeding dynamics by a CTMC on the sub-
space S1 = {{0, 1} × {0, 1}}n × {1} ⊂ S. We introduce two transition rate matrices QP and QM ∈ R22n+1×22n+1

.
QP holds the rates for transitions that change only the primary tumor part of a state x: Transitions from states x =
(. . . , x(i−1)M , 0, xiM , x(i+1)P , . . . , 1) to states x+iP = (. . . , x(i−1)M , 1, xiM , x(i+1)P , . . . , 1) occur at rate

QP(Θ)x+iP
,x = Θi,i

∏
xjP

=1
j≤n

Θi,j . (7)

Note that transition rates inQP only depend on the primary tumor genotype PT(x) and not on the full state x. Since events
must occur one at a time, all other transitions on S1 that affect the primary tumor occur at rate 0. QM holds the rates for
transitions that change only the metastasis part of a state x. We assume that metastatic tumors spread to foreign sites and
face novel selective pressures that can differ drastically from the original site. We account for this by explicitly modeling
effects from the seeding event on the progression events. Progression events occur in the metastasis at a rate given by the
product of their base rates, the effects of events that are present in the metastasis and the effect of the new environment.
Hence, transitions from states x = (. . . , x(i−1)M , xiP , 0, x(i+1)P , . . . , 1) to states x+iM = (. . . , x(i−1)M , xiP , 1, x(i+1)P , . . . , 1)
occur at rate

QM(Θ)x+iM
,x = Θi,i

( ∏
xjM

=1
j≤n

Θi,j

)
Θi,n+1 . (8)

All other transitions on S1 that affect the metastasis are prohibited (rate 0). The full transition rate matrix on S1 is then
given by the sum of QP and QM.

By construction, the last event that occurs jointly and at the same time in a primary tumor and metastasis is the
seeding event. Let QS ∈ R22n+1×22n+1

denote the transition rate matrix that holds the rates for all transitions from
states x = (x1M , . . . , xnM

, 0) in S0 to their corresponding states x+S = (x1M , . . . , xnM
, 1) in S1. Such transitions occur at

rate
QS(Θ)x+S, x = Θn+1,n+1

∏
xjP

=xjM
=1

j≤n

Θn+1,j . (9)

See Figure 1b for an illustration of the state space for n = 2. The transition rate matrix on the full state space S is then

Q = Q0 +QS +QP +QM (10)

and we denote the probability distribution over states at time t by p(t). Following [22] we also provide formulas for the
matrices Q0, QS, QP, QM as sums of tensor products in the supplement. By using these tensor structures in conjunction
with the methods outlined in [32], the model parameters can be learned with a time and space complexity only exponential
in the number of events that have occurred for each sample in the dataset, rather than exponential in 2(2n+ 1).

2.2.2 Modeling consecutive observations

Following [34] we model the observation of tumors explicitly as events. Since we model two tumors that at some point
evolve independently and can also be observed separately, we have to include two distinct observation events. Thus we now
model a CTMC on the extended state space SD := S ×{0, 1}2. Let p̄(t) denote the probability distribution over states on
the extended state space at time t. We assume that each event has a multiplicative effect on the rate of observation of the
tumor it occurred in. Since the events that lead to the detection of a primary tumor can be vastly different from the effects
that lead to the detection of a metastasis, we introduce two separate parameter vectors ΩP,ΩM ∈ Rn+1

>0 that contain the
effects of progression events in the primary tumor and the metastasis on the rates of their respective observation event.
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The primary tumor and the metastasis observation rates are defined as

(uP)x =



∏
xjP

=1
j≤n

(ΩP)j , if xn+1 = 0 ,

(ΩP)n+1

∏
xjP

=1
j≤n

(ΩP)j , otherwise ,
(11)

(uM)x =


0 , if xn+1 = 0 ,

(ΩM)n+1

∏
xjm=1
j≤n

(ΩM)j , otherwise . (12)

Let UP, UM ∈ R22n+1×22n+1

denote the diagonal matrices that hold the observation rates for primary tumors and metastases
respectively and US = UP + UM. We define that a metastasis is not observable prior to the seeding. Therefore, we set
the rates of observation of metastases for such states to 0. We are interested in the distribution of the full system at the
time of first observation, which can be triggered by either primary tumor or metastasis. We calculate this analogously
to [34] as the stationary distribution p̄ on the extended state space SD where each of the observation events halts the
progression of the entire system. Each state where either observation occurred becomes an absorbing state. Thus the
entire probability mass is located on the sets of states OP = S × (1, 0) (primary tumor is observed) and OM = S × (0, 1)
(metastasis is observed). Analogous to Equation (5), we therefore have

p̄|OP
= UP(US −Q)−1p0 and (13)

p̄|OM
= UM(US −Q)−1p0 . (14)

In most cases, there is a considerable time lag between the observation of a primary tumor and the observation of its
metastatic offspring. To account for this, we model two consecutive observations. Consider the case where the primary
tumor is observed first with genotype xP ∈ {0, 1}n and the metastasis is only observed at a later point in time with
genotype xM ∈ {0, 1}n. In this case the metastasis is unobservable at the time of primary tumor observation, and thus
we are interested in the metastasis marginal probability p̄Po of only observing a primary tumor xP, given by

p̄Po
xP =

∑
x∈OP

PT(x)=xP

( p̄|OP
)x . (15)

Note that each tumor in a dataset is observed exactly once and no information about its subsequent progression is available.
Therefore we do not track the progression of the primary tumor after its observation. Instead from here on, we only model
the progression of the still unobserved metastasis. To do so, we first calculate the distribution of metastasis genotypes at
the time of primary tumor observation conditioned on the observed primary tumor genotype, which is given by

p̄M|Po
x =


(
p̄|OP

)
x

p̄Po
xP

, if PT(x) = xP ,

0 , otherwise .
(16)

In words, we set the probability of all states where the primary tumor genotype is not equal to the observation to 0, and
then renormalize the resulting vector to obtain the desired conditional distribution. Next analogously to [34] we propagate
the distribution of unobserved metastases forward in time, until the metastasis is observed. This yields

p̄Mo|Po = UM(UM −QM)−1p̄M|Po . (17)

Finally, the probability to observe a primary tumor and metastasis pair in state x, given that the primary tumor was
observed first is

p̄Po>Mo
x = p̄Mo|Po

x p̄Po
xP . (18)

By an analogous calculation the probability to observe a primary tumor and metastasis pair in state x, given that the
metastasis was observed first is given by

p̄Mo>Po
x = p̄Po|Mo

x p̄Mo
xM . (19)

If the order of observation is not recorded then we evaluate the total probability to observe state x as

p̄tot
x = p̄Po>Mo

x + p̄Mo>Po
x . (20)
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Equations (18), (19), (20) give the probabilities of observing pairs of genotypes. However, often only a single genotype
is available, whereas the other is missing. Such individual data points are incorporated by first calculating the full joint
distributions over all states and then by marginalizing over the missing genotypes. First consider the case, where only a
primary tumor is observed with genotype xP, then marginalization over the unobserved metastasis genotypes yields

p̄Mm
xP =

∑
y∈S×(1,1)

PT(y)=xP

p̄tot
y . (21)

If a metastasis was observed but not sequenced, then we do not need to sum over all states, but only over states in S1.
Conversely, if evidence for the complete absence of metastases is available, then we only need to sum over states in S0.
Next, consider the case where only a metastasis is observed with genotype xM, then marginalizing over the unobserved
primary tumor genotypes yields

p̄Pm
xM =

∑
y∈S1×(1,1)

MT(y)=xM

p̄tot
y . (22)

Since a metastasis is observed, we know that seeding must have occurred and therefore we only need to sum over states
in S1.

2.2.3 Parameter estimation

The average log-likelihood of a dataset D containing primary tumor and metastasis pairs as well as single genotypes is
given by

lD(Θ,ΩM ,ΩP ) =
1

|D|
∑
d∈D

log(pd) (23)

where

pd =



p̄Mm
d , if d is a single primary tumor ,

p̄Pm
d , if d is a single metastasis ,

p̄Po>Mo
d , if d is paired, primary obs. first ,

p̄Mo>Po
d , if d is paired, metastasis obs. first ,

p̄tot
d , if d is paired, obs. order unknown .

(24)

We infer the parameters Θ,ΩM,ΩP from data via maximum likelihood estimation. We follow [34] and utilize the penal-
ization

penal(Θ,ΩM,ΩP) =
n+1∑
i ̸=j

√
θ2i,j + θ2j,i − θi,jθj,i

+
n+1∑
j=1

(
|(ωP)j |+ |(ωM)j |

)
(25)

with θi,j = log(Θi,j), (ωM)j = log((ΩM)j), (ωP)j = log((ΩP)j). The penalty promotes sparsity as the logarithmic
parameters are shrunk to 0. Additionally, it promotes symmetry as effects between events i and j are grouped and
selected together. We then optimize

lD(Θ,ΩM ,ΩP )− λpenal(Θ,ΩM ,ΩP ) (26)

via gradient ascent. The hyper parameter λ is selected via 5-fold cross validation.

3 Results

To further our understanding of metastatic spread in lung adenocarcinomas, we trained metMHN on 4,852 paired and
unpaired samples from the LUAD cohort of the MSK-IMPACT study. Next, we describe the dataset and then present
our key findings.
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3.1 Data preparation

We retrieved the AACR GENIE 14.1 data release [30] through synapse.org [12]. Our selection included all samples assayed
at the Memorial Sloan-Kettering Cancer Center annotated with the ONCOTREE code ‘LUAD’ (Lung Adenocarcinoma).
For primary tumors without corresponding metastasis samples, we retrieved information about their metastatic status
from [26] and excluded samples where the status of the metastasis was unknown. The final dataset consisted of 453 matched
primary tumor (PT)/metastasis (MT) samples, 2,127 unpaired MT samples, 595 PT samples without corresponding
metastases (seeding=0), and 1,677 PT samples with metastases that were not sequenced (seeding=1). The three most
highly mutated paired samples were excluded from our analysis due to computational challenges in processing them with
metMHN. In total, our study included 2,725 PT and 2,580 MT samples from 4,852 patients. Metadata for each sample
also included the age of the corresponding patient at which the sample was reported. This data informs the model about
the order of observation of primary tumors and metastases in the same patients. When multiple PT or MT samples were
present, we chose the PT sample with the youngest sampling age and the MT sample with the oldest sampling age.

Genomic data consisted of somatic mutation data and segmented log R ratio (LRR) copy number data derived from
single-region bulk sequencing using the targeted MSK-IMPACT panel [11]. We annotated mutation data using OncoKB [8]
and filtered for variants likely to be functional, as outlined in [34]. Our analysis was restricted to genes consistently included
in all versions of the MSK-IMPACT panel [12]. Specifically, we examined mutations in the top 20 most frequently mutated
genes. In the case of copy number alterations, we initially normalized segmented copy number data using mecan4CNA
[15]. Amplifications were identified with LRR values corresponding to relative copy number gains ≥ 0.5. Conversely,
deletions were marked by LRR values corresponding to relative copy number losses ≤ −0.5. We determined the precise
minimal intervals necessary for a copy number event classification in 8 instances, based on the minimal commonly altered
regions per chromosome arm and gene extents. For amplifications, we required full gene extents to be covered by an
alteration, whereas for deletions we allowed for shorter intervals. In total, our study considered 28 distinct genomic
events, including mutational events (‘M’), copy number amplification (‘Amp’) and deletion (‘Del’) events. Binary event
input data, alongside exact interval definitions for copy number events, records of the selected patients and samples and
preparation scripts are accessible at https://github.com/cbg-ethz/metMHN.

3.2 Effects between genomic events and seeding

On the dataset described above, we fit metMHN and tuned the hyperparameter λ in a 5-fold cross-validation (Figure 2).
Reassuringly, the LUAD model confirms several interactions well-documented in the literature. Specifically, it identifies
the strong, antagonistic relationship (evidenced by a bidirectional negative edge) between the principal drivers KRAS (M)
and EGFR (M) [37, 35]. Our model infers that EGFR suppresses further mutational co-drivers, which suggests that
it might often be sufficient for progression. Instead, EGFR-driven LUADs frequently exhibit disruption of cell cycle
regulation through copy number losses in RB1 and CDKN2A, two patterns also described in [25].

The model further highlights synergistic interactions that reflect established oncogenic processes, such as the rate
increases observed between STK11 (M) and KEAP1 (M), and between TP53 (M) and RB1 (M) [41, 6, 27]. metMHN
also infers multiple positive interactions between gene mutations and corresponding copy number alterations, exemplified
by the interaction between EGFR (M) and amplification of EGFR/7p, as well as between STK11 (M) and deletion of
STK11/19p — a pattern commonly seen across various cancers [1]. Additionally, the model reflects that several mutational
events capable of activating the (RTK)-RAS-RAF-MEK signaling pathway—namely, KRAS (M), EGFR (M), NF1 (M),
BRAF (M), and MET (M)—tend to promote the observation of primary tumors and suppress each other’s occurrence
[20].

3.3 metMHN identifies drivers of metastasis

We next examined the interactions between genomic events and metastatic seeding. The outgoing edges from the seeding
event (rightmost column in Figure 2) represent the cancer cell’s adaptive response to the changing selective pressures
encountered during its journey from the primary tumor to the metastatic site. The incoming edges into the seeding event
(bottom row in Figure 2) indicate how particular mutations within the primary tumor may accelerate or impede the
metastatic seeding rate, thereby pinpointing genetic elements that either drive or hinder metastasis development.

metMHN identifies mutations and amplifications in EGFR, along with TP53 mutations and deletions, and MET
mutations, as accelerators of metastasis formation, as indicated by positive edges (i.e., promoting effects) from these
events to the seeding event (Figure 2). These findings are substantiated by experimental evidence which indicate that
activation of EGFR [36, 10], inactivation of TP53 [38, 29], and activation of MET [42, 9] enhance the metastatic capacity
of lung cancer cells. Beyond these events, metMHN also revealed that various other copy number alterations positively
influence the seeding process. Although widespread aneuploidy is typically regarded as a hallmark of advanced cancer
stages [3], specific copy number changes, like CDKN2A deletions, have been documented to sometimes occur early in
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Figure 2: Interactions between progression events in lung adenocarcinomas. The log-effects on observation (clinical
detection) of the primary tumor and metastasis ωP and ωM are plotted in the first two rows, the remaining matrix shows
the log-interaction strengths among genomic events θ. The base rates of all events are plotted on the left (in blue). The
effects an event i exerts on other events j are collected in the ith column (outgoing edges). Vice versa the effects, that
events j exert on event i are collected in the ith row (incoming edges). Effects of genomic events on seeding are shown in
the bottom row. Vice versa effects from seeding on genomic events are shown in the rightmost column.
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lung adenocarcinoma development [25, 39]. In this context we also note metMHN’s inference that copy number events
generally do not substantially affect the primary tumor observation rate but indeed promote metastasis observability.

Interestingly, the effects promoting metastasis were relatively modest when compared to the base rate of seeding.
This observation suggests that certain genetic or non-genetic drivers of the metastatic process might not be accounted
for in the model. Alternatively, this could also indicate that primary tumor cells may inherently possess a propensity to
metastasize, as suggested by [21]. Lastly, metMHN suggests that upon the seeding of metastases, the accumulation rates
of many mutational events tend to decrease. This pattern could imply that once the metastatic process is initiated and in
progress, there is diminished pressure for further mutational driver alterations, compared to the initial stages of primary
tumorigenesis [13].

3.4 Relative timing of progression events and seeding

We computed the most likely chronological sequences of events for 313 paired data points and 2,127 unpaired metastases,
where we limited our analysis to cases where calculations were feasible. For the paired data points the orderings are
branched, as exemplified in Figure 3a. Prior to seeding, events happen jointly in the primary tumor. Upon seeding, the
trajectory splits into a primary tumor branch and a metastasis branch (blue lower and red upper branches in Figure 3a,
respectively). The unpaired metastases’ orderings are linear.

Next, we analyzed the distribution of event positions, relative to trajectory lengths (Figure 3b): The plots show for
every event how often it occurred for each relative time point, where the left end of the axes corresponds to the beginning
and the right to the end of progression. Well-established and highly frequent mutational drivers of LUAD progression,
such as KRAS (M), EGFR (M) and TP53 (M) appear consistently early as initiating events. We find similar patterns
for less frequent mutational events, such as MET (M) and SETD2 (M). Some events rarely appear as initiators, but still
mostly occur in the early half of any sequence, such as STK11 (M) and BRAF (M). For example, RB1 (M) rarely happens
spontaneously, which is reflected by its low base rate. However, it is promoted by both EGFR (M) and TP53 (M) and
thus tends to happen subsequently, see Figure 2 and Figure 3d. Crucially, metastatic seeding was observed to happen at
varying stages, with the majority of trajectories showing genomic progression both before and after seeding. On the late
end of the spectrum we mainly find copy number events. After the first such event happens, it usually promotes other
copy number events (see Figure 2), leading to compounding rate increases for copy number events towards the end of a
typical trajectory, possibly reflecting genomic instability in late stage cancers [3].

Next, we stratified the inferred metastasis trajectories by the 3 most prevalent initial events. Specifically, trajectories
starting with TP53 (M), KRAS (M) and EGFR (M) at the first position accounted for 1,766 patients or 72.38% of the
analyzed metastases (Figure 3d). Remarkably, the subset of trajectories initiated by TP53 (M) (left side) included a
significant number of tumors which seeded immediately after. These tumors then predominantly acquired copy number
events. In a minority of cases, additional mutation events such as STK11 (M) and KEAP1 (M) occurred before seeding.
Trajectories that began with KRAS (M) (center) generally showed later seeding, frequently after the accumulation of other
mutational co-drivers, including TP53 (M), STK11 (M), KEAP1 (M), RBM10 (M), and ATM (M). These trajectories
too typically concluded with a series of copy number events. Conversely, trajectories initiated by EGFR (M) (right
side) exhibited distinctly different progression patterns. Contrary to those beginning with KRAS (M), these trajectories
rarely accumulated additional mutational events before seeding, with TP53 (M) being an exception. Post-seeding, the
progression was once again dominated by copy number changes. However, these events followed characteristic sequences,
often starting with EGFR/7p (Amp) and CDKN2A/9p (Del), then proceeding to TP53/17p (Del) and STK11/19p (Del),
and culminating with the clinical detection of the tumor.

3.5 metMHN is consistent with clonality information

A key quality of metMHN is its ability to quantify the timing of seeding relative to other progression events. To validate
this, we compared it with an orthogonal readout of metastatic development relative to mutational events: A mutation
that predates the seeding of a primary tumor clone is expected to be clonal, i.e., exhibit a high variant allele frequency
(VAF, close to 0.5) in subsequent metastases [4]. In contrast, mutations arising post-seeding in metastases are more likely
to be subclonal and thus exhibit lower VAFs. Therefore, we used per-gene mean VAFs in metastasis samples as a proxy
for the relative timing (pre- or post-seeding) of the occurrence of mutations in the respective gene. To account for a
bias in VAF distributions, we restricted VAF measurements to cases in which the respective gene was not copy number
altered. We compared for each mutation its mean VAF with the model-derived probability that the event occurred prior
to seeding. To this end, we approximated this probability through simulations using Gillespie’s algorithm [17]. We found
that mutational events with high pre-seeding probabilities in metastases corresponded to elevated VAFs in metastasis
samples as evidenced by a Pearson correlation coefficient of 0.55 (p = 0.01) see Figure 3c and Figure 1 in the supplement.
In summary, while metMHN builds on co-occurrence patters and does not leverage VAF information, they nevertheless
produce results consistent with clonality information.
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Figure 3: (a) Event orders for 5 patients as inferred by metMHN. Events accumulate from left to right. Blue edges represent
the primary tumor development, red edges the one of the metastasis. Distances between events do not correspond to real or
estimated time. (b) Distribution of relative positions in trajectories. The left end of the axes corresponds to the beginning,
and the right to the end of progression. (c) Pre-seeding probabilities estimated by metMHN and empirical evidence from
paired samples. The first and second column show the pre-seeding probabilities estimated by metMHN conditioned on
the event being observed in the primary tumor (column 1) or the metastasis (column 2). Column 3 shows the number
of occurrences for each event in the paired data, column 4 shows the proportions of shared versus private occurrences for
each event in the paired data. Columns 5 and 6 show the mean variant allele frequencies in the primary tumor and the
metastasis respectively. (d) Most probable event orderings for observed metastases genotypes as inferred by metMHN,
stratified by TP53 (M) (left), KRAS (M) (middle) and EGFR (M) (right) as their first event. Each branch extending
out from a tree’s root represents a group of metastases for which the events were inferred to occur in the order of the
branch. Edge widths scale proportionally to the dataset’s count of metastases commencing with that particular sequence
of events, and branches are trimmed at an edge threshold of 3. Black-bordered nodes indicate observed genotypes.
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4 Discussion

We have presented metMHN, an efficient analytical model for cancer progression, specifically designed to investigate
the forking progression paths of primary tumors and their metastatic offspring. Distinguishing itself from specialized
phylogenetic methods operating on rare multi-region sequencing data, metMHN capitalizes on the extensive cross-sectional
data available from clinical targeted sequencing and is able to infer relationships between events that are shared across
individual samples. Our comprehensive analysis, encompassing data from nearly 5000 lung cancer patients, corroborates
well-established relationships among key genomic drivers. In addition, metMHN successfully identifies specific events in
primary tumors that may accelerate the development of metastases and quantifies how the dynamics of event accumulation
change upon metastatic branching. Moreover, metMHN allows for the reconstruction as well as for the simulation of disease
histories yielding further insight into the dynamics of metastatic cancers. This dual capability of metMHN not only deepens
our comprehension of the key events that propel cancer progression but also provides a quantitative perspective on how
these interactions manifest into distinct histories of tumor progression.

Every model’s efficacy is inherently tied to the quality of its training data. While metMHN uses comprehensive
cross-sectional data from bulk tissue, this approach has its limitations, particularly in resolving the clonal structures of
heterogeneous tumors. In metMHN, binary states represent the tumor as a whole. Consequently, two tumors with identical
mutations will be interpreted identically by the model, even if, in one case, the mutations exist within the same clone, and
in the other, they are in separate clones. Another challenge arises when the training data does not accurately represent
the patient population. For instance, an under-representation of metastatic tumors in the training data could lead to an
underestimation of the base rate for the seeding event, falsely suggesting they occur later in the progression than they
actually do, while an over-representation of these cases would have the opposite effect. In contrast, phylogenetic methods,
which reconstruct tumor evolution on an individual basis, are less susceptible to biases in datasets. These methods
also offer the advantage of resolving clonal structures, presenting a more detailed picture of tumor evolution. However,
the scarcity of data, especially in multi-region sequencing studies, limits their ability to represent patient populations
comprehensively.

In summary, metMHN complements phylogenetic analyses and stands out as the only cancer progression models capable
of fully utilizing the largest clinical genomic datasets currently available. metMHN models offer a distinct advantage: They
provide a quantitative and dynamic description of metastatic cancer progression. This unique approach enables them to
contribute valuable insights into the complexities of metastatic spread, enriching our understanding of cancer progression
with their analytical perspective.
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