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Summary 16 

Studies implicated peripheral organs involvement in the development of Lewy body disease 17 

(LBD), a spectrum of neurodegenerative diagnoses that include Parkinson’s Disease (PD) 18 

without or with dementia (PDD) and dementia with Lewy bodies (DLB). This study characterized 19 

peripheral immune responses unique to LBD at single-cell resolution. Peripheral mononuclear 20 

cell (PBMC) samples were collected from sites across the U.S. The diagnosis groups comprise 21 

healthy controls (HC, n=164), LBD (n=132), Alzheimer’s disease dementia (ADD, n=98), other 22 

neurodegenerative disease controls (NDC, n=21), and immune disease controls (IDC, n=14). 23 

PBMCs were activated with three stimulants, stained by surface and intracellular signal 24 

markers, and analyzed by flow cytometry, generating 1,184 immune features. Our model 25 

classified LBD from HC with an AUROC of 0.90±0.06. The same model distinguished LBD from 26 

ADD, NDC, IDC, or other common conditions associated with LBD. Model predictions were 27 

driven by pPLCγ2, p38, and pSTAT5 signals from specific cell populations and activations. 28 
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Introduction 31 

Lewy Body Disease (LBD) comprises a spectrum of clinically and pathologically overlapping 32 

conditions: Dementia with Lewy Bodies (DLB) and Parkinson's Disease (PD) with or without 33 

Dementia (PDD)1–5. Human genetic, biochemical, and pathological evidence, as well as 34 

experimental models, support involvement not only by neuroinflammation6–8 but also a 35 

peripheral immune response in the initiation and/or progression of LBD6,9–13. While there is 36 

intense interest in the systemic origins of pathologic alpha-synuclein, the role of the peripheral 37 

immune system in LBD remains unclear. One possibility is that subsets of peripheral immune 38 

cells migrate into the brain and consequently play a direct role in neurodegeneration14. 39 

Alternatively, peripheral immune cells may serve as biomarkers of an inherited or acquired trait 40 

shared by both peripheral and brain immune cells without peripheral cells directly contributing to 41 

neurodegeneration. Past research has explored peripheral blood mononuclear cells (PBMCs) 42 

as a platform to gain insights into the development of LBD with a focus on changes in the 43 

proportion of specific cell types15–20 or concentration of intercellular signals such as interleukins 44 

(ILs)21–24. While alteration of intracellular signaling in PBMCs of cognitively impaired or 45 

Alzheimer’s Disease (AD) patients has been explored previously25–29, only a handful of studies 46 

have profiled PBMC intracellular signaling for LBD30–32. Moreover, most of these investigations 47 

of PBMCs in LBD have been limited by small sample sizes, single cohorts, bulk analysis, and 48 

lack of disease controls to determine non-specific changes related to neurodegenerative 49 

diseases or immune-mediated diseases. 50 

 51 

This study sought to address several of these limitations through a rigorous profiling of 52 

peripheral immune responses by PBMCs from 429 age- and sex-matched multisite research 53 

participants diagnosed with LBD, other neurodegenerative diseases (NDC), or healthy controls 54 

(HC). Fourteen additional samples also were obtained from patients at a single site who were 55 
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diagnosed with autoimmune disease. Samples were unstimulated or activated with three 56 

different canonical immune stimulants to gain functional insight and then assayed with a panel 57 

of markers that resolved 37 different cell types and the intracellular signaling pathways that 58 

were selected to encompass those previously implicated by genetic risk and their associated 59 

pathways33–36.  60 

Results 61 

Overview of the Cohort and Immune Features 62 

Samples were from individuals with one of these clinical diagnoses: healthy controls (HC), LBD, 63 

ADD, other neurodegenerative disease controls (NDC), or autoimmune disease controls (IDC). 64 

All diagnosis groups were exclusive, e.g. no patients were diagnosed with both LBD and AD. 65 

Each individual’s PBMCs were stimulated with LPS, IFNa, IL6, or unstimulated, followed by 66 

staining and measurement of cell type-specific abundance and intracellular signaling (see 67 

Methods Section), including Lamp2, p38, pPLCγ2, pS6, pSTAT1, pSTAT5, and Rab5. After 68 

cell type gating, there were 1,184 immune features total in each of the 429 individual PBMC 69 

samples (Fig. 1A). 70 

 71 

The immune feature landscape (Fig. 1B) indicates that, regardless of stimulation and cell type, 72 

features from the same intracellular signals tended to be highly correlated with each other, 73 

aligning with known intracellular signaling cascades. A subset of pSTAT1, pSTAT5, and 74 

pPLCγ2 were highly correlated, whereas pS6 was the least correlated to other signals. A t-SNE 75 

plot for patient landscape colored by site indicated that batch correction was effective as there 76 

was no apparent site-specific cluster (Fig. 1C left). While there could be other confounding 77 
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factors other than sites, Fig. 1C shows that all diagnosis groups were well distributed, hence 78 

allaying concerns of any strong effects introduced by confounders. 79 

Immune Features Differentiate LBD from HC and Other Diseases 80 

The machine learning model (LGBM) exhibited strong performance for separating LBD from HC 81 

(Area Under the Receiver Operating Curve [AUROC]=0.90±0.06, Area Under Precision-Recall 82 

Curve [AUPRC]=0.86±0.06; Fig. 2A), while predictions were essentially random for HC vs. ADD 83 

(AUROC=0.52±0.06, AUPRC=0.42±0.05). It should be noted that random guess would yield an 84 

AUROC of 0.50, and an AUPRC equivalent to the prevalence of the positive class, which is 85 

displayed as patterned gray bars in all figures. The uneven distribution of LBD among sites 86 

could be concerning; however, even if the training and test set were split by site, instead of 87 

random cross-validation, or if only the Stanford cohort was included, the model still achieved 88 

high performance for HC vs. LBD (AUROC=0.77 in Fig. 2B; AUROC=0.82±0.08 in Fig. S2). 89 

This indicates that there was a generalizable pattern of PBMC response for participants with 90 

LBD regardless of clinical subgrouping. To ensure that these immune features were unique to 91 

LBD, the same HC vs. LBD model was used to predict ADD vs. LBD, NDC vs. LBD, and IDC vs. 92 

LBD without retraining. All of these comparisons resulted in high performance with all AUROC 93 

above 0.85 (Fig. 2C). Corresponding to these AUROC performances, Fig. 2D shows that the 94 

predicted values for LBD in the test set were significantly different from all other diagnoses. 95 

Moreover, the residual of the model predictions (Fig. 2E) was not significantly correlated with 96 

sex, age, APOE epsilon 4 allele status, Levodopa dosage, or subgroup diagnosis of PD vs. 97 

PDD; however, the model’s residuals were significantly correlated with DLB vs. PD/PDD, 98 

indicating that the model performed equally well across these major variables except diagnosis 99 

group DLB compared to PD/PDD. 100 

 101 
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Model reduction indicated that only the top 4 immune features were necessary to achieve a 102 

satisfactory prediction performance, and 32 features would yield similar performance as using 103 

all 1,184 immune features (Fig. 2F). The top 4 immune features for LBD were highlighted in the 104 

immune feature correlation network (Fig. 2G). They include reduced pPLCγ2 response from 105 

LPS-stimulated CD14+ CD16+ monocytes, elevated p38 response from unstimulated CD69+ B 106 

cells, and frequency of IFNa and LPS-stimulated B cells.  107 

 108 

Due to the high correlations among immune features, the model may only select a few 109 

representative ones, and interpretation from the model alone may leave out other important 110 

biological features. For this reason, other immune features were investigated from a univariate 111 

perspective. Heatmaps of the correlations between the top intracellular signals and LBD 112 

diagnosis show cell type-specific signals, including: reduced expression of pPLCγ2 in CD69+ 113 

NK cells, transitional monocytes (TM), and CD11b+HLA-DR+ TM; reduced expression of 114 

pSTAT5 in multiple CD4+ cells; and elevated expression of p38 in multiple CD4+ and CD8+ 115 

cells in patients with LBD compared to HC (Fig. 3A). Notably, these signals were significantly 116 

different between LBD vs. HC and LBD vs. ADD but not between LBD vs. NDC or LBD vs. IDC 117 

(Fig. 3B), highlighting the needs to integrate multiple immune features and non-linear models. 118 

Differential Signals Separating DLB, PD, and PD with Cognitive Impairment 119 

So far, we have determined a unique peripheral immune pattern for patients with LBD compared 120 

to HC, ADD, and other neurodegenerative or autoimmune disease controls. However, as noted 121 

above, patients with LBD are a mix of individuals with three different clinical diagnoses (PD, 122 

PDD, and DLB) that can be difficult to distinguish clinically with precision and that can merge 123 

over time. Our results show that each of these diagnostic subgroups of LBD can be separated 124 

from HC moderately well with HC vs. DLB exhibiting the lowest performance (AUROC=0.70-125 

0.93, AUPRC=0.35-0.87; Fig. 4A). Transferring these models without retraining to cross-predict 126 
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among themselves, e.g. PD vs. PDD or PDD vs. DLB, exhibited moderately low performance 127 

(AUROC=0.60-0.71; Fig. 4B). The moderate classification performance indicates that PD, PDD, 128 

and DLB share some critical PBMC immune responses in addition to the known shared 129 

neuropathological features. Interestingly, the model transfer to classify each LBD subgroup vs. 130 

ADD resulted in high AUROC (>0.89) for both PD and PDD (Fig. 4B) but not as high for ADD 131 

vs. DLB (AUROC=0.67), perhaps because of the well-described comorbidity between DLB and 132 

AD neurodegenerative change in the majority of people diagnosed clinically with DLB37. 133 

 134 

From a univariate perspective when compared with HC, PDD exhibited the highest number of 135 

statistically significant immune features (M.W.U. P<0.01), and only a handful of these was 136 

shared by PD and DLB (Fig. 4C). From the univariate intracellular signals for LBD in the 137 

previous section, elevated p38 responses were uniquely associated with a diagnosis of PD with 138 

or without dementia (Fig. 4D), while most of the reduced pPLCγ2 response and reduced 139 

expression of pSTAT5 were uniquely associated with PDD only. 140 

 141 

Cognitive exams in multiple domains are predictive of cognitive status in LBD38, and together 142 

with motor exams and clinicians’ judgment, were the source for deriving a clinical diagnosis. We 143 

also tested if the immune features can predict any of the 18 neuropsychological battery test 144 

scores in the cases where the data were available, such as trail making or MMSE, or any of the 145 

23 motor examinations from the Unified Parkinson's Disease Rating Scale (UPDRS) among 146 

patients with LBD. Our results show moderately low performance, indicating that the selected 147 

immune features were not specific to these measurements in LBD patients (Fig. S3 & S4). 148 
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The Biological Pathways from the Identified Biomarkers did not Overlap 149 

with Other Comorbidities 150 

Several diseases and conditions that are not primarily associated with neurodegeneration tend 151 

to increase or lower the risk of dementia and PD. Examples of these include arthritis39, 152 

diabetes40, hypercholesterolemia41, hypertension42, REM sleep disorder43, sleep apnea44, 153 

traumatic brain injury (TBI)45, and vitamin B12 deficiency (VB12DEF)46. This section aims to 154 

investigate whether the peripheral immune biomarkers discovered above had links with these 155 

common comorbidities. In the cases where comorbidities data were available in our sample set, 156 

individuals with these comorbidities were almost equally split among HC, ADD, or LBD (Fig 5A) 157 

except for diabetes, which only occurred in HC and AD, and REM sleep disorders, which only 158 

occurred in LBD. Models developed to test if the collected PBMC immune features were able to 159 

predict these comorbidities showed that none of the comorbidities could be predicted accurately 160 

with the marker panel selected for this study (Fig. 5B). Indeed, only TBI and VB12DEF 161 

achieved AUROC above 0.60. This is further supported by a univariate analysis showing that 162 

there was minimal overlap of significant features (M.W.U. P<0.01) between TBI, VB12DEF, and 163 

LBD (Fig. 5C). Together, these results suggest that the biomarkers identified were unique to 164 

LBD and were minimally influenced, if at all, by these comorbidities. 165 

Discussion 166 

Human genetic, pathologic, imaging, and biochemical data as well as results from experimental 167 

models have linked neuroinflammation with the initiation or progression of prevalent age-related 168 

neurodegenerative diseases. Among these, the LBD spectrum, PD, PDD, and DLB, have been 169 

most strongly linked to events in the periphery as potential contributing mechanisms that impact 170 

the brain47. Here we tested the hypothesis that cell-specific immune responses by PBMCs might 171 

be associated with LBD diagnosis, highlighting potential peripheral biomarkers and possibly 172 
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illuminating mechanisms of disease. Our multisite study design included PBMCs from 429 173 

participants from five diagnostic groups (HC, LBD, ADD, and NDC as controls for non-specific 174 

changes occurring with debilitation from neurodegenerative diseases, and IDC to control for 175 

non-specific changes occurring with immune-mediated diseases) that were investigated in basal 176 

state or following stimulation by canonical immune activators to generate 1,184 molecular 177 

features per individual. These rich immune response data were coupled with extensive clinical 178 

annotation and analyzed by machine learning techniques.  179 

 180 

Our major finding was that, within the context of our stimulants and multiplex panel, only 4 181 

immune features were necessary to achieve similar prediction performance for LBD as all 182 

immune features; these were: reduced pPLCγ2 response from LPS-stimulated transitional 183 

monocytes, elevated p38 response from unstimulated CD69+ B cells, and increased frequency 184 

of IFNa and LPS stimulated B cells. Together these data suggest a broad alteration in 185 

peripheral immune response in patients with LBD that is distinct from other neurodegenerative 186 

and autoimmune diseases, and that involves monocytes and lymphocytes. Although these 187 

findings establish relevance to the human condition, determining the mechanisms by which 188 

these stimulant- and cell-specific immune responses may or may not directly contribute to LBD-189 

type neurodegeneration will require means of selectively manipulating each in isolation or 190 

combinations in model systems that faithfully reflect the human immune system and 191 

mechanisms of neurodegeneration in LBD. 192 

 193 

On top of identified features from the model, univariate statistical analysis results highlight three 194 

immune response features that are strongly characteristic of PBMCs from people diagnosed 195 

with LBD: reduced pSTAT5 in CD4+ subset and reduced pPLCγ2 response and elevated p38 196 

response in subsets of NK cells and TM cells. Our localization of elevated p38 response to 197 

lymphocytes in people with LBD suggests that this may be a feature of a subset of lymphocytes 198 
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that traffic into the brain as immune master regulators47. Additionally, p38 is extensively related 199 

to gut immunity, inflammation, and aging48–50; gut physiology has been implicated by many 200 

studies as a potential contributor to LBD51. PLCg2 is highly expressed in immune cells including 201 

microglia, and gain-of-function mutations in PLCG2 cause autoimmune diseases52–55. A 202 

nonsynonymous variant in PLCG2 is associated with reduced risk of ADD, DLB, and 203 

frontotemporal dementia, suggesting a broad influence on the mechanisms of 204 

neurodegeneration, most likely neuroinflammation33,56. Our results showed reduced 205 

phosphorylation of PLCg2, the molecular mechanism of its activation, in peripheral monocytes 206 

and other PBMCs of patients with LBD, thereby aligning with genetic data associating less 207 

active PLCg2 with increased risk of LBD. In a previous single-site study we identified reduced 208 

pPLCγ2 in a small group of ADD participants25; however this result did not generalize to the 209 

current multisite study with 4 times more ADD samples. Together, these findings suggest a 210 

broad influence of PLCg2 activation in peripheral immunocompetent cells in multiple forms of 211 

neurodegenerative disease but most robustly in LBD. 212 

 213 

The medical and pathological distinctiveness of the LBD subgroups, PD, PDD, and LBD, is a 214 

decades-long debate5. We sought to determine the extent to which peripheral immune 215 

responses as measured here may potentially point to LBD subgroup-specific features. We 216 

observed low model prediction performance among PD, PDD, and DLB suggesting that at least 217 

as determined by our multiplex panel, PBMC immune responses are similar among the three 218 

subgroups. Further univariate analysis suggested that increased signaling through pPLCγ2 and 219 

pSTAT might be a peripheral immune feature specific to PDD and not PD or DLB. Interestingly, 220 

despite being predictive of LBD and its subgroups, peripheral immune responses were not 221 

strongly predictive of performance on neuropsychological tests or consensus motor evaluation, 222 

nor were they associated with other medical conditions shown to modulate the risk of LBD. We 223 

speculate that the detected peripheral immune response in LBD subgroups may be a 224 
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consequence of LBD-type neurodegeneration or may reveal an underlying inherited or acquired 225 

trait that renders a person more vulnerable to developing LBD without being directly involved in 226 

the extent of neurodegeneration. 227 

 228 

Our study has limitations. While the overall sample size is adequate, some of the LBD subgroup 229 

sizes were small and lacked neuroimaging, biomarkers, or pathologic validation of clinical 230 

diagnosis. For these reasons, LBD subgroup comparisons should be considered preliminary. 231 

Also, the multisite samples were majority Caucasian or Asian representing a national deficit in 232 

sample diversity among these diseases that is currently being addressed. With these limitations 233 

in mind, our quantification of PBMC immune response from multisite research participants 234 

yielded a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, 235 

and autoimmune diseases thereby highlighting potential biomarkers and insights into 236 

mechanisms of LBD. 237 
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Figure Legends 265 

Figure 1. Overall Experiment and Resulting Immune Landscape. (A) Diagram of the 266 

experiment. PBMCs were collected from diagnosis groups at Stanford ADRC, Stanford BIG, and 267 

NCRAD, which in itself aggregated samples from multiple sites. This was followed by 268 

stimulating the PBMCs with one of three different canonical immune activators or vehicle 269 

control, immunolabelling for surface and intracellular markers, and measuring the cell-specific 270 

signals using flow cytometry. Single-cell signals were manually gated to different cell types, 271 

resulting in 1,184 immune features for each PBMC sample that were then used by machine 272 

learning for the identification of biomarkers. (B) A correlation network (edges represent 273 

Pearson’s R > 0.7) indicates that the immune landscape was mostly determined by the 274 

intracellular signals, i.e. the same intracellular signals tend to be correlated to each other 275 

despite different cell types and stimulating conditions. (C) The t-SNE plots suggest that there 276 

was not a strong effect by the site of sample collection (left), and that samples from different 277 

diagnosis groups were well distributed overall (right). 278 

 279 

Figure 2. Models developed from multi-site data suggest peripheral biomarkers for LBD. 280 

(A) The model performance suggested good separation for HC vs. LBD, but not for HC vs. 281 

ADD. Note that a random guess baseline would yield an AUROC of 0.50 and an AUPRC 282 

equivalent to the prevalence of the positive class in the sample group, which are shown as 283 

patterned gray bars. (B) Performance using cross-site splitting instead of random cross-284 

validation suggests the generalizability of the biomarkers. (C) Transferring the HC vs. LBD 285 

model (without retraining) to classify LBD from disease controls, including ADD, NDC, and IDC, 286 

yielded similarly high performance. (D) The predicted values from the HC vs. LBD model for all 287 

diagnosis groups show that the model is LBD-specific. (E) Model residual (errors from each 288 

prediction) did not significantly (M.W.U. P<0.05) vary with sex, age, Levodopa dosage, APOE 289 
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e4 status, or PD vs. PDD. This indicates that the model performed equally well across these 290 

variables. In contrast, the model’s residual varied for the DLB vs. PD/PDD group, suggesting 291 

that the performance of the DLB group differed from the PD/PDD group. (F) The required 292 

number of top immune features needed to achieve similar performance as all 1,184 features. 293 

(G) Correlation network highlighting the top features and the immune features with which they 294 

are correlated.  295 

 296 

Figure 3. Strong signals for HC vs. LBD were cell-type specific. (A) The heatmap of 297 

selected intracellular signals (or frequency) from all cell types shows the cell types with the 298 

strongest correlations to LBD. (B) Examples of the top univariate immune features. 299 

 300 

Figure 4. All subgroups within LBD can be separated from HC, but not among 301 

themselves. (A) Model performance of three separate models each developed for classifying 302 

HC from each of the subgroups within LBD, including DLB, PDD, and PD. (B) The performance 303 

of the same models (without retraining) classifying among each of the subgroups and all of them 304 

vs. AD. (C) The Venn diagrams of significant immune features for each group (M.W.U. P<0.01) 305 

indicated small overlapping features among them. (D) The correlation network shows which 306 

immune features were unique to or overlapping between DLB, PDD, and PD. 307 

 308 

Figure 5. The identified LBD biomarkers did not have overlapping biological pathways 309 

with common non-neurodegenerative comorbidities. (A) A chord diagram displaying LBD, 310 

ADD, or HC co-occurrence with other comorbidities. Note that TBI was also included but due to 311 

a low number of cases (n=6), it is now shown in the plot. (B) Model performances (AUROC) for 312 

all comorbidities were below 0.60 except for TBI and vitamin B12 deficiency (VB12DEF). (C) 313 

The Venn diagrams of significant immune features for each group (M.W.U. P<0.01) indicated no 314 

overlapping features among them.  315 
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Methods 316 

Study Design 317 

This study aimed to determine whether differences in peripheral immune responses between 318 

healthy controls (HC) and research participants with LBD (PD, PDD, and DLB) are detectable 319 

by flow cytometry analysis of PBMCs. In addition, we included samples from other research 320 

participants for neurodegenerative disease controls (NDC) and patients with autoimmune 321 

diseases for immune disease controls (IDC) to control for nonspecific effects of debilitation from 322 

neurodegeneration and immune-mediated diseases. Participants were research volunteers at 323 

Stanford Alzheimer’s Disease Research Center or the Pacific Udall Center (Stanford ADRC), 324 

Stanford BIG Project (BIG), and many other Alzheimer’s Disease Research Centers (ADRCs), 325 

whose samples were aggregated and distributed by the National Centralized Repository for 326 

Alzheimer's Disease and Related Dementias (NCRAD). All participants provided written 327 

informed consent to participate in the study, which followed protocols approved by the Stanford 328 

Institutional Review Board. Clinical diagnosis was made by consensus criteria. 329 

 330 

Blood was collected from a total of 429 volunteers stratified into seven diagnosis groups: HC 331 

(n=164), LBD (total n=132 including 67 PD without dementia, 47 PD with dementia (PDD), and 332 

18 DLB), Alzheimer’s disease dementia (ADD, n=98), other neurodegenerative disease controls 333 

(NDC; n=21), and immune disease controls (IDC; n=14). The diseases included in NDC were 334 

multiple system atrophy, primary supranuclear palsy, corticobasal degeneration, frontotemporal 335 

lobar degeneration, behavioral frontotemporal dementia, primary progressive aphasia, vascular 336 

brain injury, prion disease, and traumatic brain injury. HCs were individuals who were not 337 

diagnosed with any neurological disease and had no cognitive impairment. AD, LBD 338 

(PD/PDD/DLB), and NDC participants had a single clinical diagnosis without clinical 339 
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comorbidity. The sex distribution of each group is shown in Fig. 1A, and the average age was 340 

73±6 for HC, 75±8 for AD, 71±7 for PD, 73±7 for PDD, 73±7 for DLB, 74±7 for NDC, and 67±3 341 

for IDC. The race distribution of participants who contributed to our sample set was 86% White, 342 

12% Asian, 1% Black or African American, and 1% Others. The percent contribution of each 343 

diagnosis group from each site was 35% Stanford ADRC and 65% NCRAD for HC, 36% 344 

Stanford ADRC and 64% NCRAD for ADD, 93% Stanford ADRC and 7% NCRAD for LBD, 345 

100% NCRAD for NDC, 100% BIG for IDC. The protocol for PBMC collection and storage by 346 

each site can be found in the Supplementary Materials. 347 

Flow Cytometry Experiment 348 

PBMCs were isolated by density-gradient centrifugation and cryopreserved. Post-thaw, cells 349 

were washed in a complete RPMI medium with benzonase. Cell viability as measured by Vi-Cell 350 

(Beckman Coulter) for all samples was above 90%. After resting for 2h at 37oC, PBMCs were 351 

either left unstimulated or stimulated with a panel of cytokines: IFNα (10,000 units/ml), IL-2 (50 352 

ng/ml), IL-6 (50 ng/ml) and LPS (200 ng/ml) for 15 min, at 37oC. Stimulation was stopped by 353 

fixing cells with paraformaldehyde for 10 minutes at room temperature. After washing cells with 354 

PBS, samples were stained with LIVE/DEAD™ Fixable Blue Dead Cell Stain Kit, for UV 355 

excitation (from Invitrogen) for 15 min at room temperature. After live dead staining, cells were 356 

washed with wash buffer (Phosphate buffered saline, 2% Fetal bovine serum, 0.1% sodium 357 

azide), followed by surface staining with anti- CD4(BUV805), CD7 (AF780), CD8 (AF700), 358 

CD11b (BUV395), CD14 (BUV737), CD16 (BV750), CD19 (PerCP-Cy5.5), CD27 (BV711), 359 

CD56 (BUV563), CD69 (BUV661), HLA-DR (BV480) (antibodies from BD Biosciences), CD3 360 

(BV605) and CD45RA (BV570) (antibodies from BioLegend). Staining was done at room 361 

temperature for 30 min. After 2 washes, cells were permeabilized with ice-cold methanol and 362 

were stored overnight at -80°C. Post permeabilization, cells were washed again, and 363 

intracellular staining was done with anti-pSTAT1 (AF488), pSTAT5 (PE-Cy7), pP38 (PE), 364 
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pPLCγ2 (APC), pS6 (BV421), CD107b/Lamp2 (BV786), (antibodies from BD Biosciences) and 365 

Rab5 (PE-CF594) (from Santa Cruz Biotechnology) at room temperature for 30 min. After two 366 

further washes, the acquisition was performed on a BD Symphony A5 flow cytometer with a 367 

High Throughput Sampler (HTS) and analyzed using FlowJo software where median 368 

expressions were collected for each gated cell type. The reagents and the gating scheme can 369 

be found in Table S1 and Fig. S1. Lastly, Combat57 was used to correct site effects. 370 

Data Analysis 371 

Machine learning is a common tool for extracting insight from high-dimensional cytometry 372 

data58,59. Here, light gradient-boosting machine (LGBM)60 was used as it outperformed other 373 

machine learning models, including logistic linear, random forest, and feed-forward neural 374 

network models, in our dataset. To maximize generalizability, the performance was evaluated 375 

using 10 repeated 4-fold cross-validation where the model is trained on a randomized train set 376 

and tested on unseen samples. For the classification of the three main groups, HC and IDC 377 

were merged and labeled 0, and the disease group (LBD or ADD) was labeled 1. The test set 378 

prediction values were used for subsequent analyses and visualizations. The model 379 

performance metrics include the Area Under the Receiving Operating Curve (AUROC) and the 380 

Area Under the Precision-Recall Curve (AUPRC). For differential predictions, e.g. ADD vs. LBD 381 

or NDC vs. LBD, the primary model trained for HC vs. LBD was used without retraining. For the 382 

prediction of LBD subgroups (PD, PDD, DLB), comorbidities, and motor examinations, LGBM 383 

was also used with the same cross-validation setup except that a subsampling technique was 384 

used to ensure balanced age and sex ratios between case and controls. Methods for model 385 

reduction and correlation networks can be found in the Supplementary Materials. 386 

 387 
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Supplemental Information 388 

Data availability: Singlet live cell data (.fcs format), gated median value data (.csv format), the 389 

associated metadata (.csv format), and the data dictionary are made publicly available at DOI: 390 

https://datadryad.org/stash/share/LT4qx1N_pGC5WlOo24QNDt7R61BglFXnxuK7qgjvTpE.. 391 
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TM = Transitional or intermediate monocytes (CD14+CD16+)
NCM = Non-classical monocytes (CD14dimCD16+)
DC = Dendritic cells

γ
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Intersection of Significant 
Immune Features in LBD
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Performance from the Trained 
Transferred Model (no retraining)
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Co-occurrence with Other 
Co-morbidities

A Selected Immune Panel Does 
not Predict Comorbidities

B Non-overlapping Important 
Features Among Comorbidities
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