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Highlights 

• Advanced proteomics analysis reveals personalized signatures of insulin resistance 
 

• Fasting muscle proteome and phosphoproteome predicts whole-body insulin sensitivity 
 

• Insulin-stimulated phosphoproteome reveals selective insulin resistance signatures 
 
• Phosphoproteome and proteome atlas explains sex-specific muscle metabolism 
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Abstract 

Insulin resistance is a hallmark of type 2 diabetes, which is a highly heterogeneous disease 

with diverse pathology. Understanding the molecular signatures of insulin resistance and its 

association with individual phenotypic traits is crucial for advancing precision medicine in 

type 2 diabetes. Utilizing cutting-edge proteomics technology, we mapped the proteome and 

phosphoproteome of skeletal muscle from >120 men and women with normal glucose 

tolerance or type 2 diabetes, with varying degrees of insulin sensitivity. Leveraging deep in 

vivo phenotyping, we reveal that fasting proteome and phosphoproteome signatures strongly 

predict insulin sensitivity. Furthermore, the insulin-stimulated phosphoproteome revealed 

both dysregulated and preserved signaling nodes - even in individuals with severe insulin 

resistance. While substantial sex-specific differences in the proteome and phosphoproteome 

were identified, molecular signatures of insulin resistance remained largely similar between 

men and women. These findings underscore the need for precision medicine approaches in 

type 2 diabetes care, acknowledging disease heterogeneity. 
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Introduction   

Type 2 diabetes is a growing global health challenge, with over 500 million cases worldwide 

(IDF Diabetes Atlas, 2023). Type 2 diabetes is characterized by elevated fasting or post-

prandial blood glucose levels and peripheral insulin resistance, which affects liver, adipose 

tissue, and skeletal muscle. Thus, the pathogenesis of type 2 diabetes is remarkably 

heterogeneous, with disease progression influenced by both genetic and environmental 

factors1. Deep phenotyping and sub-group stratification have revealed that different clusters 

of type 2 diabetes are associated with clinical outcomes2. This complexity underscores the 

need for precision medicine approaches, in which individual differences are accounted for in 

the diagnosis, prevention, and treatment paradigms1. 

 

Major advances have been made over the last decades to deduce the mechanism by which 

insulin regulates glucose uptake, as well as sites of resistance in type 2 diabetes3. Clinical 

studies utilizing the euglycemic-hyperinsulinemic clamp technique have established that 

skeletal muscle is quantitatively the main tissue involved in insulin-stimulated glucose 

uptake, and a major site of insulin resistance in type 2 diabetes4–6. Impaired insulin-

stimulated glucose uptake has been attributed to a post-receptor defect, involving post-

translational modifications and insufficient recruitment of GLUT4 to the plasma 

membrane7,8, rather than reduced abundance of signaling molecules or glucose transporters9–

11. While targeted approaches have identified aberrant insulin signaling of selected molecules 

in skeletal muscle of people with type 2 diabetes12–15, a comprehensive system-wide 

investigation has yet to be performed. Furthermore, the extent to which individual variation 

in insulin signaling contributes to the heterogeneity of type 2 diabetes remains a knowledge 

gap.  
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Mass spectrometry-based proteomics has emerged as a powerful tool to elucidate 

mechanisms controlling cellular signaling and disease pathogenesis. This approach has been 

leveraged in cancer research and diagnostics, supporting the utility of proteomics and 

phosphoproteomics in precision medicine16–18. However, the lack of well-powered 

proteomics-focused studies of relevant tissues for insulin-resistance have hindered the 

implementation of precision medicine in type 2 diabetes. To understand the intricate 

heterogeneity within type 2 diabetes, a paradigm shift is required. By exploring variations in 

phenotypic traits, proteome and phosphoproteome signatures, and the responses to diverse 

environmental stimuli, alteration in causative proteins and pathways can be predicted, thereby 

enabling tailored approaches19–22. 

 

Here we reveal features of skeletal muscle insulin resistance, previously unapparent using 

conventional comparative approaches. State-of-the-art proteomics technology and deep in 

vivo phenotyping were leveraged to map personalized diabetogenic traits with the skeletal 

muscle protein landscape in a cohort of >120 men and women with normal glucose tolerance 

or type 2 diabetes. We identify critical molecular pathways associated with insulin resistance. 

The molecular signature of skeletal muscle is strongly associated with clinical markers of 

insulin sensitivity, rather than fasting glucose control. Strikingly, the proteome and 

phosphoproteome landscape of skeletal muscle in the fasted state are critical determinants of 

whole-body insulin sensitivity. Furthermore, despite fundamental differences in substrate 

handling between men and women, the insulin resistant signatures are remarkably similar 

between sexes. These clinically focused data highlight the need to consider heterogeneity 

within disease classifications and advocate for a precision medicine approach to type 2 

diabetes care. 
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Results 

The proteome and phosphoproteome of human skeletal muscle are critical determinants 

of whole-body insulin sensitivity 

To explore the molecular landscape of insulin resistance and type 2 diabetes, we recruited 77 

participants (discovery cohort); consisting of 34 people living with type 2 diabetes (38% 

females) and 33 individuals with normal glucose tolerance (51% females). To validate our 

observations, we accessed samples from a published study23, of a further 46 participants 

(validation cohort); consisting of 34 people with type 2 diabetes (38% females) and 12 

individuals with normal glucose tolerance (42% females) (Figure 1A). Clinical and 

physiological parameters for these cohorts are presented (Suppl. Table 1). Each cohort 

underwent deep in vivo glycemic-phenotyping using clinically relevant diagnostics, such as 

fasting glucose and HbA1c (measures of acute and chronic blood glucose control), as well as 

fasting insulin, HOMA1-IR (an estimation of insulin resistance derived from fasted insulin 

and glucose), and the hyperinsulinemic-euglycemic clamp derived M-value (a sensitive 

measure of insulin sensitivity). Skeletal muscle biopsies were collected both before and 

during the hyperinsulinemic-euglycemic clamp, allowing for the assessment of proteomic and 

phosphoproteomic molecular signatures within individuals in the fasted state, as well as the 

dynamics of acute insulin signaling. 

 

Fasting glucose, HbA1C, fasting insulin and HOMA1-IR were elevated in people with type 2 

diabetes (Figure S1A-B), while whole-body insulin sensitivity was reduced, as indicated by 

lower M-values (Figures 1B & S1B). Despite group differences, there was substantial 

heterogeneity in insulin sensitivity across the cohorts (Figures 1C & S1C), with M-values 
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spanning a 36-fold difference in the discovery cohort (normal glucose tolerant individuals = 

5.6-fold range, people with type 2 diabetes =16.7-fold range). Some individuals with type 2 

diabetes even exhibited higher insulin sensitivity than some individuals with normal glucose 

tolerance (Figure 1C). 

  

Intrigued by the observed heterogeneity in whole-body insulin sensitivity, we developed a 

high-throughput, semi-automated sample preparation workflow and analyzed the proteome 

and phosphoproteome of skeletal muscle using high-sensitivity mass spectrometry (Figure 

1D). Leveraging recent advancements in short-gradient liquid chromatography coupled with 

the timsTOF pro2 in DIA-PASEF mode24, we efficiently measured the proteome and 

phosphoproteome from 77 individuals and 46 individuals in the discovery and validation 

cohort, respectively (a total of 492 mass spectrometry runs). This approach markedly 

advances capabilities beyond previous studies involving skeletal muscle phosphoproteomics. 

The phosphoproteomics screen covered 29,165 phosphosites (localization probability > 0.75, 

detected in at least 5 samples) on 3,000 phosphoproteins (Figure 1E). The proteomic analysis 

led to the quantification of 3,038 proteins (detected in at least 5 samples). After filtering for 

25% valid values in each dataset, we quantified ~3,000 proteins and ~15,000 phosphosites 

within skeletal muscle, forming the basis for downstream bioinformatics analysis (Suppl. 

Table 2-3). The phosphoproteome and proteome coverage for the validation cohort (96 

samples each) was comparable to the discovery cohort (Figure S1D, Supp. Table 3 & 4). The 

distribution of phosphosite residues revealed a prevalence of 62% for p-serine, 29% for p-

threonine, and a noteworthy 10% for p-tyrosine. The substantial proportion of phospho-

tyrosine (Y) residues emphasizes the unique phospho-tyrosine landscape for skeletal muscle 

compared to other tissues, which typically falls within the range of 0.1-2%25,26. The 

phosphoproteome exhibited greater inter-subject variability than the proteome (median = 
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35% vs median = 19%), suggesting a higher degree of heterogeneity at the phosphoproteome 

level (Figure 1F). 

 

To evaluate the contribution of the skeletal muscle proteome and phosphoproteome to 

glucose homeostasis, we correlated the phosphoproteome (fasted, insulin-stimulated) and 

proteome (fasted) with the glycemic traits and clinical parameters (Figure 1G & Suppl. Table 

6-8). Our findings revealed that the skeletal muscle proteome most strongly associates with 

insulin-dependent clinical measures, including fasting insulin, HOMA1-IR and M-value, 

whereas there was little to no association with fasting blood glucose and HbA1c. The 

phosphoproteome, both in the fasting state and during insulin-stimulation, exhibited more 

associations with the M-value than any other measures of insulin sensitivity, including 

HOMA1-IR. These data highlight the importance of skeletal muscle, and particularly 

phospho-signaling, in insulin-dependent glucose disposal. Furthermore, through visualization 

of the variance within the proteome and phosphoproteome, using a Principal Component 

Analysis (PCA), a continuum across different states of insulin sensitivity (M-value), rather 

than discrete grouping by diagnosis group, was observed (Figure 1H-I, Figure S1C-F). 

Categorical PCA loadings also highlighted diverse molecular drivers of separation, including 

biological sex. Thus, the human skeletal muscle proteome and phosphoproteome are linked to 

heterogeneity in whole-body insulin sensitivity, which may be dependent on sex.  
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Figure 1. The Proteome and Phosphoproteome of Human Skeletal Muscle are Critical Determinants of Whole-Body 
Insulin Sensitivity. Schematic of study design: We recruited 77 individuals with normal glucose tolerance (NGT) (n=43; 21 
male and 22 female) or type 2 diabetes (T2D) (n=34; 21 male and 13 female), and vastus lateralis muscle biopsies were 
collected pre and 30 minutes into an insulin clamp. A validation cohort of 46 individuals with NGT (n=12; 7 male and 5 
female) or T2D (n=34; 21 male and 13 female) were also recruited (A). Boxplot of glucose-infusion rate during the steady-
state period of the clamp, where the horizontal line indicates the median (B). A ranked bar plot demonstrating insulin 
sensitivity heterogeneity across all individuals (C). Reproducible and high-throughput (phospho)proteomics workflow on the 
KingFisher robot and evoseop-timsTOFpro liquid chromatography-tandem mass spectrometry setup. Samples were 
measured in DIA-PASEF mode and quantified in Spectronaut software (D). Number of proteins, phospho- proteins, peptides 
and sites quantified in at least 5 samples. Site phosphorylation distribution on serine, threonine and tyrosine residues (E). 
Inter-subject variation calculated as coefficient of variation across all individuals for proteome (baseline, fasting condition) 
and phosphoproteome (baseline and insulin) (F). Number of proteome (blue) and phosphoproteome (baseline = red, insulin = 
purple) associations with glycemic clinical measures. Venn diagrams depict overlap in associations between M-value and 
HOMA1-IR (G). Principal component analysis of proteome and phosphoproteome colored by M-value. Heatmap 
demonstrates z-scored PC loading contribution across disease, sex, and clamp (H-I). Insulin sensitivity associations were 
based on Kendall’s rank correlation with Benjamini-Hochberg corrected P values < 0.05 considered significant. GIR = 
Glucose infusion rate. NGT = Normal glucose tolerance. T2D = Type 2 diabetes. P < 0.001 = ***. All data presented in 
Figure 1 are from the discovery cohort. 
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Proteomic Signature of Insulin Sensitivity in Human Skeletal Muscle 

Capitalizing on the remarkable heterogeneity within the discovery cohort, we conducted a 

comprehensive analysis correlating protein levels with the M-value to elucidate the 

relationship between individual proteins and whole-body insulin sensitivity. This analysis 

yielded 136 associations (Kendall rank correlation, FDR < 5%) (Figure 2A & Suppl. Table 

6), with HSPA2 and BDH1 displaying strong negative and positive correlations with insulin 

sensitivity, respectively (Figures S2A-B). We recapitulated our observations in the validation 

cohort with 89% conserved directionality of change (Figure S2C). Remarkably, only 15 

proteins differed between people with type 2 diabetes or normal glucose tolerance in a 

discrete comparison (Figure S2D). This result highlights the pronounced variation in the 

proteomic landscape within the diagnosis groups and reinforces the need for precision 

diagnostics and therapeutics. 

 

Proteins positively correlated with insulin sensitivity are linked to metabolic pathways such 

as oxidative phosphorylation and fatty acid degradation, commonly associated with insulin 

resistance and type 2 diabetes27–29 . In contrast, the negatively correlated proteins are 

involved in processes that are generally underexplored in relation to insulin resistance, 

including proteasome and ubiquitin-mediated proteolysis, as well as Wnt- and adrenergic 

signaling. This suggests that altered protein degradation/turnover may contribute to the 

development of insulin resistance. Our investigation found no significant difference in 

mitochondrial protein abundance between the diagnosis groups (Figure 2C). However, 

mitochondrial protein abundance correlated with insulin sensitivity (Figure 2D), leading us to 

conclude that skeletal muscle mitochondrial abundance is not an inherent feature of type 2 

diabetes, but rather related to insulin sensitivity. Notably, when adjusted for variations in 

mitochondrial abundance, the ATP-synthase complex (complex V) displayed the strongest 
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correlation with insulin sensitivity among all the electron chain transport complexes (Figure 

2E). 

 

Lactate is an important metabolic intermediary in the transition between glycolytic and 

oxidative metabolism. The lactate dehydrogenase isoforms are functionally distinct and 

catalyze opposing reactions in the interconversion of lactate and pyruvate, with LDHA 

favoring the production of lactate (and therefore glycolytic metabolism) and LDHB favoring 

the production of pyruvate and entry of carbon intermediates into the TCA cycle for oxidative 

metabolism (Figure S2I). We found that the two isoforms of lactate dehydrogenase were 

regulated in opposing directions between the diagnosis groups, while LDH isoforms also had 

opposing associations with insulin sensitivity (Figure 2A & S2D-E). However, no difference 

was observed in the two major lactate transporters, monocarboxylate transporter 1 and 4, 

between groups (Figure S2F). The LDHA/LDHB proportion was strongly associated with 

insulin sensitivity (Figure 2F & S2G-H), which was more pronounced than the isoforms in 

isolation. This finding highlights the additional insight gained from examining stoichiometric 

relationships beyond the absolute abundance of individual proteins. To further dissect the 

metabolic machinery in skeletal muscle health, we calculated the total abundance for proteins 

involved in oxidative phosphorylation (TCA + electron transport chain) and glycolytic 

processes. We observed a clear increase in the abundance of oxidative phosphorylation 

proteins, from 7 - 10% comparing individuals with low to high insulin sensitivity (Figure 

2G). Conversely, there was a reduction in the proportion of glycolytic proteins, indicating a 

shift in metabolic profile with increased insulin sensitivity. Moreover, we observed a negative 

correlation between the ratio of glycolytic/oxidative proteins and insulin sensitivity, 

indicating significant differences in the metabolic protein architecture across a spectrum of 

metabolic stages (Figure 2H). 
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Figure 2. Proteomic Signature of Insulin Sensitive and Resistant Skeletal Muscle. Volcano plot of Kendall’s rank 
correlation coefficient (τ) of skeletal muscle proteome and insulin sensitivity associations (A). KEGG-pathway enrichment 
based on τ-ranked coefficients in positive and negative directions (adj.P < 0.05) (B). The proportion of summed 
mitochondrial protein abundance related to the whole proteome between individuals with NGT or T2D (C). Kendall’s rank 
correlation of mitochondrial abundance with insulin sensitivity (D). Proportion of electron transport chain complexes and 
association with insulin sensitivity adjusted for absolute mitochondrial protein (E). Association between the LDHA/LDHB 
ratio and insulin sensitivity (Kendall’s rank correlation) (F). The proportion of oxidative (Electron transport chain and TCA 
proteins) and glycolytic (glycolysis pathway proteins) metabolism proteins across a range of insulin sensitivity (G). The ratio 
of glycolytic/oxidative metabolism in skeletal muscle is inversely correlated with insulin sensitivity (Kendall’s rank 
correlation) (H). All data presented in Figure 2 are from the discovery cohort. 

The Fasting Phosphoproteome Landscape is a Critical Determinant of Insulin 

Sensitivity 

We next investigated the influence of the fasting/non-insulin-stimulated skeletal muscle 

phosphoproteome by performing a discrete comparison of skeletal muscle obtained from 

fasted individuals with type 2 diabetes or normal glucose tolerance. Our analysis revealed an 

alteration in 43 sites, including upregulation of VPS13B S206 and downregulation of ADD1 

S358, both proteins studied in the context of type 2 diabetes and insulin action30–32 (Figure 

S3A). Kinase-enrichment analysis of the significantly altered phosphosites, revealed a 

downregulation of kinases associated with insulin signaling such as AKT, AMPK, RPS6KB1 

(P70S6K), and RPS6KA2 (RSK-3) in individuals with type 2 diabetes. Conversely, kinases 

related to TGFβ and BMP signaling, including BMPR1A/B, CSNK2A2, TGFBR1, 
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CAMK2G, and GSK3A, were upregulated (Figure S3B). Elevated TGFβ signaling has been 

linked to the development of type 2 diabetes in rodents and humans33,34. 

 

Struck by the protein associations with insulin sensitivity in the fasting/basal state (Figure 2), 

we applied a similar approach to examine associations with protein-phosphorylation. We 

found 78 phosphosites correlating with insulin sensitivity exclusively in the fasted state, 

compared to 66 phosphosites exclusively in the insulin-stimulated state (Figure 3A & Suppl. 

Table 7). Additionally, 40 phosphosites sites correlated at both time points, indicating that 

these sites are already dysregulated at baseline, and therefore, the association with insulin 

sensitivity is independent of insulin stimulation (Figure 3A). Focusing on associations with 

insulin sensitivity, independent of insulin stimulation, we found that 93% of these 

associations displayed conservation of direction in the validation cohort (Figure S3C). These 

findings highlight the predictive power of the fasting phosphoproteome for whole-body 

insulin-stimulated glucose metabolism. As changes in total protein content can drive 

concurrent changes in post-translational modifications, we plotted phosphosite correlation 

coefficients alongside total protein quantification (Figure 3B). As expected, numerous 

phosphosites displayed concordant responses with the parent protein. However, a greater 

proportion of phosphosites were correlated with insulin sensitivity, even when the parent 

protein displayed no such correlation, indicating the importance of site occupancy in 

modulating the skeletal muscle signaling landscape. One example is GAPVD1 (also known 

as GAPEX-5) a known regulator of insulin-stimulated GLUT4 translocation in adipocytes35. 

Specifically, T390 on GAPVD1 was positively correlated with insulin sensitivity, while the 

parent protein did not correlate (Figure 3B). Identifying pathways and kinases associated with 

insulin sensitivity/insulin resistance is key in understanding the pathology of type 2 diabetes. 

Therefore, we performed a kinase-enrichment analysis on the phosphosites positively and 
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negatively correlated with insulin sensitivity. While no specific kinases were linked to insulin 

sensitivity, the enrichment analysis revealed activation of JNK and p38 family kinases were 

associated with insulin resistance (Figure 4C). Although the JNK-p38 pathway has been 

implicated in inflammatory responses and the development of insulin resistance and type 2 

diabetes36–38, our analysis identifies the JNK-p38 pathway as the main driver of aberrant 

skeletal muscle signaling in insulin resistance. 

 

The phosphosite with the strongest association with insulin resistance was S65 on the AMP-

activated kinase (AMPK) regulatory γ-subunit 3 (Figure 3B & D). This finding was 

confirmed in the validation cohort (Figure S3 C-D). The S65 residue is located in the N-

terminal tail of AMPKγ3, and this site is not present in the related γ1 and γ2 isoforms (Figure 

3E). We verified the existence of this phosphorylation site through immunoprecipitation of 

N- or C-terminal FLAG-tagged human AMPKγ3 from HEK293 cell lysates, followed by 

subsequent proteomics analysis. (Figure S3E-F). Strikingly, when we compared the 

conservation of AMPKγ3 S65 across species, we found that this site was unique to homo 

sapiens and not present in the closest related species Chimpanzee (Figure 3F). However, in 

Sus Scrofa, S65 is substituted with an aspartic acid (D), potentially serving as a biochemical 

or -physical mimic of constitutive phosphorylation. As AMPKγ3 is primarily a muscle-

specific isoform, and the S65 is unique to humans, we further validated this phosphorylation 

event in primary human skeletal muscle myotubes. When we analyzed the human sequence 

surrounding AMPKγ3 S65, the top predicted kinases were MAPKAPK2 (MK2) and the 

CAMK2-family kinases (Figure 3G). We treated primary human skeletal muscle myotubes 

with the MAPKAPK2 inhibitor CC-99677 (Figure 3H). In addition to the expected decrease 

in HSPB1 S15 phosphorylation, a known substrate of MAPKAPK2, AMPKγ3 S65 

phosphorylation was also reduced in response to CC-99677 treatment (Figure 4H). 
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MAPKAPK2 is a direct downstream target of p3839. Therefore, we propose that JNK-p38 

pathway activation promotes insulin resistance via the AMPKα2β2γ3 trimer complex by 

indirectly phosphorylating S65 on the AMPKγ3 subunit through MAPKAPK2 (Figure 3I). 

 

  

Figure 3. The Fasting Phosphoproteome Landscape is a Critical Determinant of Insulin Sensitivity. Phosphosite and 
insulin sensitivity associations at pre (fasting), 30 minutes into the insulin clamp (insulin-stimulated) and at both time points 
(A). Correlation coefficients of significantly correlated phosphosites with insulin sensitivity where the parent protein was 
quantified (B). The serine/threonine kinases that are predicted to be responsible for the phosphosites negatively correlated 
with insulin sensitivity in B (C). Baseline AMPKγ3 S65 phosphorylation with insulin sensitivity (D). Predicted alpha-fold 
structure of AMPKγ3 where the S65 residue is highlighted (E). Sequence alignment of AMPKγ3 residues 49-81 across 
species (F). Scoring of the ser/thr-kinome against the human AMPKγ3 S65 sequence (G). Log2 intensity of HSPB1 S15 and 
AMPKγ3 S65 phosphorylation from human skeletal muscle myotubes treated for 1 hour with DMSO or 1µM CC-99677 (H). 
Schematic of proposed signaling mechanism from inflammatory signals to AMPKγ3 S65 and to the regulation of skeletal 
muscle insulin sensitivity (I). The illustration was made in Biorender. MK2 = MAPKAPK2. All data presented in Figure 3 
are from the discovery cohort. 
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Preserved and Dysregulated Insulin Signaling Across States of Insulin Resistance 

Insulin signaling mediates a variety of metabolic and anabolic responses. Here we found 243 

phosphosites to be regulated after 30 minutes of insulin stimulation (Figure 4A & Suppl. 

Table 8). These included increased phosphorylation of canonical insulin signaling proteins, 

such as TBC1D4 S341, AKT1S1 T246, and TSC2 T1462, and less-explored proteins like 

PATL1 T194. The insulin-regulated sites were enriched for regulatory functions related to 

protein activation, inhibition, localization, protein-protein interaction, and associations with 

disease (Figure S4A). An unbiased kinase enrichment analysis revealed activation of 

canonical insulin-activated kinases related to insulin and autophagy signaling, including 

PDK1, mTOR, AKT, SGK1, S6K (RPS6KB1), RSK (RPS6KA1, -3, -6) (FDR <5%, Figure 

4B-C). In addition, several previously undescribed insulin-activated kinases were revealed, 

including DCLK1, CDK-2, -6, -16, and NEK11. 

 

To extract deeper insight into phosphosite function, we associated insulin-stimulated 

phosphosite levels with insulin sensitivity. Using a stratified approach, we identified 5 

clusters of phosphosites related to insulin sensitivity, the largest of which displayed a 

stepwise increase in insulin-stimulated phosphorylation with increasing insulin sensitivity 

(Figure 4D). At a personalized level, 66 phosphosites correlated with insulin sensitivity in 

response to insulin stimulation, with 54 and 12 sites positively and negatively correlated, 

respectively (Figure 4E). Notably, the phosphorylation of TNS2 (also known as TENC2 or 

C1-TEN) at S120 was positively correlated with insulin sensitivity only after insulin 

stimulation (Figure 4F & S4C). TNS2 is a tyrosine-phosphatase with a known role in 

counteracting INSR-induced IRS1 Y612 phosphorylation, muscle anabolic signaling, and 

GLUT4 regulation40,41. The positive correlation of AMPKα2 S377 (Figure 4E) and RPTOR 

S863, both mTOR substrate sites, suggests a role for mTOR in the insulin-dependent 
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response to skeletal muscle glucose metabolism, consistent with a previous observation of 

skeletal muscle from young healthy men22. Furthermore, the phosphorylation of these sites in 

the fasting state did not correlate with insulin sensitivity, indicating that the dynamic response 

is specifically associated with insulin stimulation (Fig S4B-C).  

 

Insulin-stimulated phosphosites displayed a large variability in the association to insulin 

sensitivity (Figure 4G). In fact, many sites with a large response to insulin were not 

associated with insulin sensitivity (-0.1 < τ < 0.1). These data indicate selective components 

of the insulin signaling pathway are preserved in states of insulin resistance. AKT and 

downstream substrates (e.g., TBC1D4) have been assayed as biomarkers of skeletal muscle 

insulin sensitivity. While phosphorylation of AKT2 S474, which is required for full 

activation of AKT, was associated with insulin sensitivity (Figure S4D), most of the bona 

fide AKT substrates displayed poor associations with insulin sensitivity (including GSK3B 

S9 and TBC1D4 T642) (Figure 4G-H). In contrast, mTOR substrates (e.g., EIF4EBP1 T70, 

RPTOR S863) were highly coupled to insulin sensitivity despite having diverse cellular 

functions in growth, translation, and autophagy42–44 (Figure 4G & I). These data highlight the 

need for a fundamental shift in the understanding of dysregulated signaling pathways during 

insulin resistance.  
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Figure 4. Preserved and Dysregulated Insulin Signaling Across States of Insulin Resistance. Volcano plot of insulin-
regulated phosphosites (Limma main effect insulin, FDR <5%) (A). Unbiased prediction of skeletal muscle-expressed 
insulin-activated kinases. Enrichment was performed on all insulin-regulated phosphosites and whole unregulated 
phosphoproteome was used as background (B). Schematic network of insulin-activated kinases and overrepresentation 
enrichment analysis of signaling pathways (FDR < 5%) (C). Stratified insulin response across a range of insulin sensitivity. 
Unsupervised hierarchical clustering of insulin-regulated phosphosites was performed (D). Personalized insulin – phenotype 
associations. The 30 min phosphoproteome was correlated with individual insulin sensitivity (Kendalls rank correlation) (E). 
AMPKα2 S377 and TNS2 S120 phosphosite intensity association with insulin sensitivity (Kendalls rank correlation) (F). 
Insulin signaling-dependent and -independent associations with insulin sensitivity. Annotated AKT and mTOR sites are 
highlighted in red and blue, respectively. A Wilcoxon GeneSet test on insulin sensitivity correlation coefficient was 
performed to assess kinase enrichment (G). Examples of preserved AKT substrate phosphorylation (H) and insulin-
sensitivity dependent mTOR substrate phosphorylation (I) across states of insulin sensitivity. All data presented in Figure 4 
are from the discovery cohort. 
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The sex-specific molecular signature reveals shared and distinct features of metabolism  

Hormonal and genetic factors influence skeletal muscle metabolism. Notably, the skeletal 

muscle transcriptome differs between males and females45–47, yet whether this is reflected at 

the protein level remains unclear. Herein, we illuminated the distinct molecular signatures of 

skeletal muscle from men versus women, providing a comprehensive sex-resolved atlas of 

the proteome and phosphoproteome (Suppl. Table 2 & 3). The women studied in this cohort 

were all post/peri menopausal, thus reducing possible cyclical effects of sex hormones. 

Principal component analysis showed a clear separation between males and females in the 

phosphoproteome and proteome (Figure S5A-B). Indeed, 110 proteins and 343 phosphosites 

were differentially regulated between sexes (Figure 5A-B). These major differences were 

recapitulated in our validation cohort, where 92% and 81% of the sex-specific proteins and 

phosphosites, respectively, shared the same directionality of change (Figure S5C-D). 

Differences in protein abundance included metabolically important proteins such as 

ALDH1A1 and DDAH1, as well as proteins targeted by FDA-approved drugs (Figure 5A & 

S5E). Systematic differences in substrate handling enzymes were also observed. Proteins 

related to glucose metabolism and oxidative phosphorylation were enriched in males, while 

proteins related to lipid uptake/storage were higher in females, consistent with increased 

plasma free fatty acids (FFAs) (Figure 5C & S S5F-G). The sex-associated phosphosites were 

located on signaling proteins with known site-regulatory functions in a multitude of 

biological processes. An example of this is the phosphorylation of S57 on Polyubiquitin-B 

(UBB), which was markedly higher in females. Phosphorylation of UBB S57 is a key event 

accelerating PARKIN-dependent mitophagy, suggesting a higher mitochondrial turnover in 

females48,49 (Figure S5H). Moreover, global analysis of the phosphoproteome revealed sex-

specific enrichment for kinases, suggesting distinct activation of signaling (Figure 5D). These 
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results highlight the importance of considering sex as a biological variable in study design 

and clinical trials. 

 

A small proportion of the sex-specific proteins and phosphoproteins are located on the X-

chromosome (Figure 5E), with some reported to escape female X-chromosome inactivation50. 

Intriguingly, several X-chromosome encoded proteins were higher in skeletal muscle from 

males, suggesting complete X-chromosome inactivation in females. For instance, HSD17B10 

had a higher expression in skeletal muscle from males. HSD17B10 is a key regulator of 17-β-

estradiol and androgen metabolism, likely modulating the potency and balance of sex 

hormone action in skeletal muscle51,52. Only seven of the 110 differentially expressed 

proteins were X-chromosome encoded, suggesting that sex differences largely depend on 

autosomal and hormonal regulation. This finding is consistent with the observation that few 

sex-chromosome expressed proteins modulate autosomal gene expression53. 

 

Given the substantial sex-specific differences in proteins and phosphosites regulating 

metabolism, we investigated whether biological sex modulates insulin signaling or the insulin 

resistant signature in skeletal muscle. For the vast majority of insulin-responsive 

phosphosites, the response to insulin was comparable between males and females (Figure 

5F). Furthermore, sex was not a substantial modifying factor in the association between either 

proteins or phosphosites with insulin sensitivity (Figure S5I-J). In particular, the abundance 

of oxidative and glycolytic enzymes was highly coupled to insulin sensitivity in both males 

and females, despite differences in the abundance of these enzymes between sexes (Figure 

S5K). Thus, despite major differences in the proteome and phosphoproteome of skeletal 

muscle, the molecular transducers of insulin action and insulin resistance within skeletal 

muscle are similar between males and females.  
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Figure 5. The Sex-Specific Molecular Signature Reveals Shared and Distinct Feature of Metabolism. Volcano plot of 
differentially expressed proteins (A) and phosphosites (B) between males and females (Limma, main effect < 5% FDR). 
Significantly regulated proteins related to substrate metabolism including lipid oxidation, fatty acid (FA) synthesis, lipid 
uptake/storage and glycogen metabolism. # indicates a protein with an FDR value between 5-10% (C). Kinase activity 
prediction in males and females. Enrichment was performed on all significantly regulated phosphosite (Female vs Male) and 
the whole phosphoproteome was used as background (D). X-chromosome encoded proteins and phosphoproteins 
differentially expressed between males (red) and females (blue) (E). Insulin responsiveness in males and females. Kendall's 
rank correlation was applied on male, female and shared significant phosphosites regulated by insulin stimulation (F). All 
data presented in Figure 5 are from the discovery cohort. 

 

Discussion 

Individuals with type 2 diabetes exhibit impaired whole-body glucose homeostasis, 

underpinned by reduced insulin-stimulated glucose uptake into skeletal muscle. Despite this 

knowledge, there are currently no pharmacological therapeutic strategies to specifically target 

skeletal muscle insulin sensitivity. Furthermore, the detailed molecular atlas explaining 

insulin action in skeletal muscle, and how this landscape alters during the development of 

insulin resistance, has been elusive. Resolution of this biology may offer inroads into diabetes 

treatment strategies, but this has been a challenge owing both to technological limitations and 

the inherent heterogeneity within type 2 diabetes. Here, we present an advanced proteomics 
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workflow that has enabled the analysis of the proteome and phosphoproteome in an 

unprecedented number of individuals. Because of this innovation, alongside deep clinical 

phenotyping, we reveal the personalized molecular signatures of insulin resistance and type 2 

diabetes. By interrogating these molecular signatures, alongside measures of diabetogenic 

traits, we deconvolute the signaling mechanisms coupled to aberrant insulin action in skeletal 

muscle across varying degrees of insulin sensitivity. 

 

By conducting stratified and personalized proteome phenotype associations, distinct patterns 

were apparent across a continuum of insulin sensitivity. The role of mitochondria in the 

development of type 2 diabetes remains contentious54–56. Our proteome-phenotype 

associations reveal that mitochondrial protein content is tightly correlated with whole-body 

insulin sensitivity, but this signature is not a distinct feature of type 2 diabetes per se. 

Conversely, the abundance of glycolytic enzymes is negatively correlated with insulin 

sensitivity. Collectively, these data highlight how the molecular landscape of skeletal muscle 

can determine type 2 diabetes pathophysiology independently of disease diagnosis. By taking 

direct measures of insulin sensitivity into account, our proteomic analysis has unmasked 

associations, which are of clinical and therapeutic relevance.  

 

We identified several phosphosites associated with insulin resistance in the fasted state. This 

was an unexpected discovery because the field has largely focused on the response of target 

tissues to insulin. Thus, the systemic milieu also appears to provide an environment that 

triggers changes in the phosphoproteome between diagnosis groups. Hormones and 

metabolites associated with the diabetogenic state, even under fasting conditions, may 

provide a permissive stimulus that affects the phosphoproteome and predicts insulin 

sensitivity. Notably, an unbiased kinase prediction analysis for these phosphosites revealed 
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hyperactivation of the JNK-p38 pathway in insulin-resistant muscle. This phosphoproteomic 

signature may reflect an altered immunological tone around the skeletal muscle in people 

with insulin resistance57. Strikingly, the phosphosite with the strongest association with 

insulin sensitivity was on AMPKγ3 S65, a site uniquely found in homo sapiens. AMPKγ3 is 

exclusively expressed in skeletal muscle and is crucial in regulating glycogen metabolism, as 

well as post-exercise glucose uptake and insulin sensitivity in humans58–60. We speculate that 

S65 could serve as a human-specific rheostat for the regulation of insulin sensitivity. Our data 

suggest MAPKAPK2 as an upstream kinase for AMPKγ3 S65. Thus, the p38/JNK-

MAPKAPK2-AMPKγ3 axis may be a promising therapeutic avenue to improve skeletal 

muscle insulin sensitivity. Given that AMPKγ3 is muscle-specific, the S65 site could be a 

potential therapeutic target for the development of skeletal muscle insulin sensitizers, 

reducing the risk of adverse side-effects in other tissues. 

 

While the fasting phosphoproteomic signature was highly associated with whole body insulin 

sensitivity, a key feature of type 2 diabetes is an impaired insulin-response within skeletal 

muscle8,61. Indeed, numerous phosphosite-phenotype associations were only apparent in the 

insulin-stimulated state. For example, several mTORC1 substrates were strongly associated 

with insulin sensitivity under insulin stimulation, highlighting a node of insulin resistance in 

type 2 diabetes. Conversely, considerable insulin-stimulated phospho-signaling was apparent 

even in individuals with the lowest insulin sensitivity. For instance, insulin stimulated the 

phosphorylation of substrates of AKT, a canonical insulin signaling node62 , to a comparable 

degree irrespective of whole-body insulin sensitivity (e.g., GSK3β S9 and TBC1D4 T642). 

While AKT signaling has been highlighted as essential for GLUT4 translocation63–66 and 

found to be impaired in insulin resistant skeletal muscle13,67, this is not a consistent 

finding68,69. Our data indicate that insulin-stimulated AKT activity is preserved in states of 
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insulin resistance or alternatively, a compensatory action of unknown kinases or phosphatases 

may modulate the phosphorylation of AKT substrates. These observations underscore the 

emerging appreciation that there is selective insulin resistance along some, but not all 

signaling nodes70–72, warranting a shift in our understanding of dysregulated signaling 

pathways during insulin resistance. This selective insulin resistance further reinforces the 

need for comprehensive studies of insulin signaling in vivo across diverse states of insulin 

sensitivity. 

 

Finally, our analysis revealed striking differences in the proteome and phosphoproteome 

between males and females. Large sex-specific distinctions in the proteome were apparent, 

with females exhibiting a greater reliance on lipid metabolism, in contrast to males who 

showed a higher propensity for glucose metabolism, consistent with previous research73. 

Surprisingly, few regulated proteins/phosphoproteins were encoded on the X-chromosome, 

suggesting a more substantial role for hormonal, whole-body, and autosomal gene regulation 

in shaping the skeletal muscle molecular landscape. Indeed, cell-autonomous sex differences 

in the phosphoproteome have been noted in cultured human skeletal muscle cells74. However, 

we did not observe any difference in the molecular signaling of insulin action or the 

molecular drivers of insulin resistance between the sexes. These data indicate that, despite 

major differences in metabolism, the mechanisms of insulin resistance are similar between 

males and females. 

 

Through the application of personalized proteomics, our study leverages heterogeneity in 

type 2 diabetes pathophysiology to disentangle insulin resistance. We illuminate hidden 

features of skeletal muscle insulin resistance, unapparent using conventional comparative 

approaches. In doing so we identify critical molecular pathways associated with insulin 
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resistance. Collectively, these data highlight the need to consider heterogeneity within disease 

classifications and advocate for a precision medicine approach to type 2 diabetes care. 

Methods 

Human clinical studies 

Discovery cohort 

Individuals with normal glucose tolerance (NGT), as determined by oral glucose tolerance test 

(OGTT), or type 2 diabetes (T2D), were included in the study. Clinical and transcriptomic 

data from a subset of males from this cohort has previously been studied75. All participants 

had declared written informed consent, and the study protocol was approved by the regional 

ethics board (Stockholm, Sweden). Participants were also instructed to avoid physical activity 

for 48 hours before the experimental day. On the morning of the study, following an overnight 

fast, anthropometry measures and blood were collected for clinical biochemistry. A biopsy 

was taken at rest from the vastus lateralis muscle using a Weil-Blakesley conchotome 

instrument (Agnthos, Sweden) under local anesthesia (10 mg/ml; mepivacaine hydrochloride, 

AstraZeneca, Cambridge, UK). Four-five minutes after resting in a supine position, 

participants underwent a hyperinsulinemic-euglycemic clamp. Initially, participants received a 

bolus of insulin (1600 mU/m2 body surface area) followed by a constant intravenous insulin 

infusion at 40 mU/m2/min for 2 hours. Simultaneously, an intravenous infusion of glucose was 

given and adjusted to maintain euglycemia (4.5-5.5 mM). Another muscle biopsy was 

collected 30 minutes into the clamp. The last 60 minutes of the clamp was considered a 

steady-state of the glucose infusion rate (GIR) and used to calculate whole-body insulin 

sensitivity (M-value).  

 

Validation cohort 
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The validation cohort consisted of 34 individuals diagnosed with type 2 diabetes from the 

"IDA" study and 12 matched subjects exhibiting normal glucose tolerance (NGT), all paired 

according to sex, body mass index (BMI), age, and smoking status as reported earlier23. Prior 

to their involvement, informed consent was secured from each participant. The ethical 

oversight for this study was provided by the Regional Scientific Ethical Committees for 

Southern Denmark, following the principles outlined in the Helsinki Declaration (Project-ID: 

S-20120186). Preliminary health screening, including blood tests and electrocardiograms 

(ECG), confirmed the normal health status of all participants. The hyperinsulinemic-

euglycemic clamp was performed in the morning after an overnight fast. Participants were 

instructed to refrain from physical activity for 48 hours before the hyperinsulinemic-

euglycemic clamp. For all participants, any glucose, lipid, and blood pressure medications 

were withdrawn one week in advance of the clamp procedure. The clamp was initiated with a 

2-hour basal period involving the infusion of a primed, constant quantity of [3-3H]-tritiated 

glucose to achieve tracer equilibrium. Subsequently, a 4-hour period of insulin stimulation 

started, employing an insulin infusion rate of 40 mU/m2/min. Glucose was infused to 

maintain euglycemia (5.0- 5.5 mmol/l). Muscle biopsies were sampled from the vastus 

lateralis muscle both prior and at the end of the insulin infusion by a modified Bergström 

needle technique under local anesthesia (lidocaine)76. 

 

Biopsies 

Visible fat, connective tissue, and blood vessels were removed from the muscle biopsies 

immediately after sampling and frozen in liquid nitrogen. All samples were stored at −80°C 

until proteomic analysis. 

 

Cell culture 
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Human skeletal muscle primary cells were obtained from ATCC (PCS-950-010) and grown 

in growth media (ATCC PCS-500-030 supplemented with ATCC PCS-950-040) 

supplemented with 1% penicillin and streptomycin until 80% confluent. Cells were split into 

matrix-gel coated 6-well plates. Differentiation was initiated at 90% confluence in 

differentiation media (ATCC PCS-950-050). At day 6 of differentiation, cells were serum-

starved for 4 hours before treated with DMSO or 1µM CC-99677 for 1 hour. 

 

Immunoprecipitation 

Two days after seeding HEK293T cells in a 6-well plate, they were transfected with 1800 ng 

of plasmid containing either N- or C-terminal tagged GFP-AMPKγ3 using TransITx2 

transfection reagent (Mirus Bio, cat no. MIR 6000) and then lysed 48 hours later (lysis buffer 

– 50 mM Tris, 1% Triton X-100, 0.27 M sucrose, 1 mM EDTA, 1 mM EGTA, 20 mM 

glycerol-2-phosphate disodium, 50 mM sodium fluoride, 5 mM tetrasodium pyrophosphate + 

protease inhibitor cocktail, pH 7.4). GFP tagged AMPKγ3 was then immunoprecipitated by 

incubating 400 µg of protein with 1 µg of anti-GFP antibody (Chromotek, cat no. 3H9) and 

15 µl of protein G sepharose beads (Cytiva, cat no. 17061802) overnight at 4°C on an over-

end rotator. The next day the beads were washed two times in lysis buffer followed by three 

times in TBS. Proteins were eluted and digested in 2 M urea, 50 mM Tris pH = 8.5, 1 m M 

DTT with 0.5 µg trypsin for 1 hour at 37°C. The supernatant was collected into a new tube 

and alkylated in 5 mM Iodo-acetamide (IAA), and digestion continued overnight. The next 

day, digestion was stopped by bringing samples to 1% TFA and 1/5th of eluate loaded onto 

equilibrated evotips. 

 

Sample preparation 

Discovery cohort sample processing 
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Powdered muscle biopsies were lysed in 4% sodium dodecyl sulfate (SDS), 100 mM Tris pH 

= 8.5 with an Ultra Turrax homogenizer (IKA) for 2x 10s on ice. Homogenate was 

immediately boiled at 95°C for 5 minutes at 800 revolutions per minute (RPM). Samples 

were then sonicated for 30 s (1 s on/off, 50% amplitude) with a tip-probe sonicator before 

centrifugation for 10 minutes at 16,000g. The supernatant was collected, and protein 

concentration was determined by the DC assay (Thermo Fischer). Protein lysate was then 

reduced with 10 mM pH-neutral Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and 

alkylated with 40 mM Chloroacetamide (CAA) at 40°C for 5 minutes. Protein aggregation 

capture was performed on 300 µg protein of SDS lysate per sample in a 2 mL deep 96-well 

plate on a KingFisher Flex robot (Thermo)77,78. Briefly, plate 1 (sample plate) consisted of 

hydroxyl beads (1:4 protein:bead ratio) (MagResyn, Resyn Biosciences), lysate, and 70% 

acetonitrile (ACN). Plate 2+3 (wash 1-2) consisted of 100% ACN. Plate 4 (digestion plate) 

consisted of trypsin (1:100 enzyme: protein) + lysC (1:500 enzyme: protein) in 100 mM Tris 

pH = 8.5. Plate 1 was mixed for 1 minute, followed by a 10-minute pause for proteins to 

aggregate to beads. Then, beads were washed 2 times for 2.5 minutes with gentle mixing 

before being transferred to a digestion plate for overnight digestion at 37°C with medium 

mixing. The following day, samples were eluted in 1% TFA in two rounds of 10-minute 

medium mixing. Samples were transferred to 1.5 mL tubes and centrifuged for 10 minutes at 

20,000g. Peptides were desalted on equilibrated 50 mg C18 cartridges (Sep-Pak, Waters) and 

eluted into 1.5 mL tubes. An aliquot for proteomics was transferred to a 96-well plate, dried 

completely in a speed vacuum centrifuge, and resuspended in 5% ACN, 0.1% TFA. The 

peptide concentration was measured on a nanodrop and 200 ng was loaded onto equilibrated 

evotips. 
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For analysis of the human skeletal muscle myotube phosphoproteome, cells were lysed in 2% 

SDS, 50 mM Tris pH=8.5 and immediately boiled at 95 for 5 minutes. The lysate was then 

sonicated (bioruptor) with 10 cycles of 30 s on/off and followed by centrifugation (20.000g, 

10 minutes). Protein lysate (75 µg) was then added to kingfisher 2 mL deep-well plate, 

reduced, alkylated, and digested via the protein aggregation capture protocol as described 

above.  

 

Validation cohort sample processing 

SDS protein lysate was obtained as above and precipitated overnight at -20°C with four times 

volume of acetone. The next day, protein pellet was washed and resuspended in 4% sodium 

deoxycholate (SDC), 100 mM Tris pH = 8.5 with 15 minutes of 30 s on/off sonication. 

Reduction and alkylation were performed with 10 mM pH-neutral TCEP and 40 mM CAA 

and incubated for 5 minutes at 40°C. Protein was digested overnight at 37°C with 1:100 and 

1:500 trypsin and lysC, respectively. The following day, digestion was stopped by bringing 

samples to 1% TFA. SDC precipitate was cleared by centrifugation (20,000g, 15 minutes), 

and the supernatant was desalted on equilibrated 50 mg cartridges (Sep-Pak, Waters). The 

elution was done in 50% acetonitrile and concentrated with a speed vacuum drier. The 

peptide concentration was measured on a nanodrop. 100 µg of peptide was used as input for 

phosphopeptide enrichment as described below. 

 

Phosphopeptide enrichment 

Phosphopeptide enrichment was performed on KingFisher flex robot79. Peptide (50 µg) was 

concentrated and loaded into IMAC loading buffer (80% ACN, 5% TFA, 0.1 M glycolic 

acid) in a deep 96-well plate (sample plate). An equal mixture (15 µL each) of Ti-IMAC-HP 

and Zr-IMAC-HP beads (MagResyn, Resyn Biosciences) were washed and equilibrated in 

IMAC loading buffer. The tip plate was located in position #1. The IMAC-bead plate was in 
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position #2. The IMAC-bead washing solution (loading buffer) was placed in position #3, 

where the sample plate was in position #4. The three washing plates (wash 1: loading buffer, 

wash 2: 80% ACN, 1% TFA and wash 3: 10% ACN, 0.2% TFA) were placed in positions #5-

7, respectively. The Elution plate consisting of 1% NH4OH (freshly prepared) was placed in 

position #8. The protocol goes as follows: Beads were washed for 5 minutes in IMAC 

loading (medium speed) buffer followed by 20 minutes of mixing (medium speed) in the 

sample plate. Beads were then washed once in each washing buffer for 2 minutes (medium 

speed), followed by 10 minutes of elution in 1% NH4OH. Eluted peptides were then acidified 

by TFA and loaded directly onto equilibrated evotips. 

 

For phosphoproteomics of primary human muscle cells, resulting tryptic peptides from 

protein aggregation capture were loaded directly onto an equilibrated C18 96-well plate (Sep-

Pak, Waters), washed and eluted in 80% ACN. An aliquot was saved for proteome 

measurement. Afterwards, phosphopeptide enrichment buffer was added to get the samples to 

75% ACN, 5% TFA, and 0.1M GA and enrichment was performed as described above. 

 

High-pH fractionation 

The library generation (phospho only) was performed by fractionation of 4 µg of 

phosphopeptides from a pool of all samples via high-pH Reverse-Phase Chromatography 

utilizing a Kinetex 2.6 µm EVO C18 100Å, 150 x 0.3 mm column (Phenomenex) on an 

EASY-nLC 1200 system (Thermo) with a flow rate of 1.5 µL/min. The separation was 

achieved over a 62-minute linear gradient ranging from 3% to 60% of solvent B (10 mM 

TEAB in 80% acetonitrile) against solvent A (10 mM TEAB in water), with a total run time 

of 98 minutes, including wash and column equilibration phases. Peptides were eluted into 1.5 

µL fractions at a rate of one fraction per 60 seconds resulting in a total of 96 fractions. 
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Fractions were then concatenated into 48 fractions. Peptides from each fraction were then 

loaded onto equilibrated Evotips (Evosep). 

 

Liquid chromatography mass spectrometry 

For the proteome analysis, peptides were separated using a 15-cm column with a 150-μm 

inner diameter, packed with 1.5 μm C18 beads (Pepsep), on an Evosep ONE HPLC system 

set to the 30-SPD (30 samples per day) protocol. The column temperature was maintained at 

50°C. Eluted peptides were then directed into a timsTOF Pro 2 mass spectrometer (Bruker), 

using a CaptiveSpray source and a 20-μm emitter, operating in DIA-PASEF mode. For the 

proteome profiling of non-enriched samples, mass spectrometry data were captured across a 

100-1700 m/z spectrum. In the MS/MS stage, each DIA-PASEF cycle lasted 1.8 seconds, 

spanning an ion mobility spectrum from 1.6 to 0.6 1/K0. Ion mobility calibration was 

achieved using three specific ions from the Agilent ESI-L Tuning Mix (m/z 622.0289, 

922.0097, 1221.9906). The DIA-PASEF utilized a prolonged-gradient method, incorporating 

16 DIA-PASEF scans with dual 25 Da windows per ramp, covering a mass range of 400.0-

1201.0 Da and an ion mobility range of 1.43-0.60 1/K0. The collision energy decreased 

linearly from 59 eV at an ion mobility of 1/K0 = 1.3 to 20 eV at 1/K0 = 0.85 Vs cm^2, with 

both the accumulation and PASEF ramp times fixed at 100 ms. 

 

For the phospho-enriched samples, the DIA-PASEF approach was refined using the 

py_diAID (Python package for DIA with an automated isolation design)24. The mass 

spectrometry data spanned a 100-1700 m/z range. Within the MS/MS dimension, 20 DIA-

PASEF scans covered a 404-1450 m/z spectrum. Each DIA-PASEF scan, with a cycle 

duration of 2.23 seconds, incorporated two ion mobility windows with variable isolation 

widths adjusted to precursor densities, setting the mobility spectrum from 1.45 to 0.75 V 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.06.578994doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.578994
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

cm^−2. Collision energy was modulated based on the ion mobility, decreasing from 59 eV at 

1/K0 = 1.6 V cm^−2 to 20 eV at 1/K0 = 0.6 V cm^−2, calibrated using three ions from the 

Agilent ESI Tuning Mix (m/z 622.02, 922.01, and 1221.99), with both accumulation and 

PASEF ramp times maintained at 100 ms. 

 

Data analysis 

The phosphoproteome raw files were quantified in Spectronaut v.17.6 in directDIA+ mode 

against the reviewed FASTA (Homo sapiens, 2023 January) with default settings. 

Phospho(STY) was added as a variable modification and the PTM workflow was enabled 

with localization probability set to 0. A project-specific phospholibrary was added as a search 

archive to increase identifications. The phosphosite table was then exported and collapsed in 

Perseus software, where the site localization probability was set to 0.7580,81. The collapsed 

phosphosite table was then loaded into R studio. The proteome files were quantified in 

Spectronaut v.18 in directDIA+ with default settings and the output report was directly 

loaded into R studio. 

 

For the phosphoproteome experiments in human primary myotubes, DIA raw files were 

processed in directDIA+ mode as above in v.18.6. 

 

For AMPKγ3 pulldown experiments, the raw DDA-files and following MS/MS spectra were 

quantified and extracted from Fragpipe v20.082. The search was performed with default 

parameters and with the reviewed human FASTA file (Homo sapiens, 2023 January). 

 

Bioinformatics analysis 
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All bioinformatics analyses were performed in the R studio software and graphs were made 

by using ggplot2. Batch-effects were removed with the limma package and data median 

normalized83. For the proteome data, seven samples were identified as outliers (low IDs) and 

removed from the data set. Phosphosites and proteins quantified in at least 25% (39 or 37 

samples, respectively) of all samples were included in downstream analysis. Inter-subject 

variation was calculated on raw intensities per protein/phosphosite (fasted and insulin 

stimulated) across samples as the coefficient of variation. Principal component analysis was 

performed with the prcomp function (stats package) on the complete quantified 

protein/phosphosite matrix. Centroid distances of sex, disease and clamp covariates for PC1-

15 were calculated, and then z-scored per covariate and plotted as a heatmap. 

 

Differentially regulated proteins and phosposites 

To identify differentially regulated proteins/phosphosites, we applied the lmFit function with 

eBayes smoothening (limma package)83. Disease state (normal glucose tolerance, type 2 

diabetes), clamp (Pre, Post) and sex were added as covariates with blocking for subjects. 

Phosphosites or proteins with a Benjamini-Hockberg (BH) corrected P-value < 0.05 was 

considered significant. To compare the insulin response between males and females, a 

separate male/female analysis was performed with disease and clamp added as covariates to 

the linear model. For analysis of human skeletal muscle myotubes, log2-transformed data was 

median normalized and HSPB1 S15 and AMPKγ3 S65 site information was extracted. A 

student's two-sided t-test was used to test for statistical difference between treatment with 

DMSO and CC-99677. 

 

Correlation analyses 

The cor.test function was used to calculate Kendall's rank correlation between diabetogenic 

parameters and protein/phosphosite intensities. All analysis were performed across 
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independent samples (i.e. pre and 30-minute time points were analyzed separately). P-values 

were corrected with the Benjamini-Hochberg method. To compare the proteome and 

phosphoproteome correlation with insulin sensitivity between males and females, data was 

split based on sex and separate Kendall’s rank correlations were performed. 

 

Summed protein intensities 

UseMart and getBM functions were used to retrieve pathway/compartment specific 

information (biomaRt package)84. Proteins related to mitochondria were retrieved with the 

code GO:000573985. Glycolysis proteins (GO:0006096) were manually filtered for enzymes 

only part of glycolysis pathway (glucose-pyruvate). Proteins related to the TCA cycle were 

obtained from the code GO:0006099. Proteins part of mitochondrial complex I-V were 

retrieved from HUGO Gene Nomenclature Committee (HGNC) database86. Oxidative 

enzymes were defined as TCA and electron-transport chain proteins, whereas glycolytic was 

defined as enzymes part of the glycolysis pathway. Proportions were calculated based on 

summed raw intensities.  

 

Gene enrichment analyses 

GeneSet enrichment analysis was performed with the gseGO/gseKEGG function with default 

settings (clusterProfiler package)87. Benjamini-Hochberg corrected P-values < 0.05 were 

considered significant. For analysis of AKT and mTOR kinase enrichment, the 

phosphositeplus (PSP) database of annotated kinase-substrate relationships was used. A 

Wilcoxon GeneSet enrichment analysis was used to test for kinase insulin sensitivity 

association (limma package). To assess enrichment of insulin-regulated pathways, a KEGG 

pathway overrepresentation analysis was performed at the phosphoprotein level. The whole 

phosphoproteome was used as the background. 
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Clustering analysis 

Hierarchical clustering of insulin-regulated phosphosites were performed on z-scored values 

across groups of insulin sensitivity with the hclust function (stats package). Euclidean 

distance and average linkage were used as default parameters. The optimal number of clusters 

was determined using the silhouette analysis. Specifically, the average silhouette width was 

calculated for cluster solutions ranging from 2 to 10 clusters, and the results were visualized 

to identify the number of clusters yielding the highest silhouette score. 

 

AMPKγ3 structure, gene mapping and FDA-approved drug targets. 

The structure of AMPKγ3 (Protein ID: Q9UGI9) was obtained from AlphaFold and the S65 

residue was manually highlighted88. Multiple sequence alignment of N-terminal AMPKγ3 

was performed by the online tool “CLUSTALW” (GenomeNet). Gene-chromosome mapping 

was performed with the biomaRt and karyoploteR packages84,89. The list of FDA-approved 

drug targets was retrieved from the human protein atlas (based on the Drugbank database)90. 

 

Kinase and regulatory site enrichment 

Kinase enrichment analysis was performed as described91 from the in vitro substrate-Ser/Thr 

human kinome screen92. In brief, we filtered for Ser/Thr-kinases expressed within skeletal 

muscle at the transcript level90. Peptide sequences of significant phosphosites were used as 

foreground dataset (5% FDR), where the whole phosphoproteome was used as background 

dataset. For insulin-resistance associated kinases, only the sites where the parent protein was 

quantified were used. The Ser/Thr-kinase score of the AMPKγ3 S65 site was also based on 

the in vitro the human kinome screen92. Regulatory- and disease associated sites information 

was obtained from the PhosphositesPlus database93. A two-sided Fishers exact test was used 

to test for overrepresentation of regulatory or disease-associated phosphosites. 
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Data availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE94 partner repository with the dataset identifier PXD049129 
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Supplemental Figures   
 

 

Figure S1. The Proteome and Phosphoproteome of Human Skeletal Muscle are Critical Determinants of Whole-body 
Insulin Sensitivity. Clinical parameters (fasting glucose, HbA1c, fasting insulin, HOMA1-IR, M-value) for the discovery 
cohort (A) and validation cohort (B). Insulin sensitivity heterogeneity in the validation cohort (C). Proteomics and 
phosphoproteomics coverage of proteins, phosphoproteins, phosphopeptides and class 1 (localization probability > 0.75) 
phosphosites for the validation cohort. Phosphorylation residue distribution between tyrosine, threonine and serine is 
displayed (D). Principal component analysis proteome (E) and phosphoproteome (F) for the discovery cohort with discrete 
NGT/T2D group coloring. Principal component analysis of proteome (G) and phosphoproteome (H) for the validation cohort 
colored by the M-value. A Wilcoxon rank sum test was used in A and B to assess group differences.  
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Figure S2. Proteomic Signature of Insulin Sensitive and Resistant Skeletal Muscle. Kendall's rank correlation of insulin 
sensitivity (M-value) with baseline protein abundance of HSPA2 (A), BDH1 (B), LDHA (G) and LDHB (H) in the 
discovery cohort. Correlation of protein phenotype associations between discovery and validation cohort (C). Significantly 
expressed proteins in a discrete comparison between the T2D and NGT group (Limma main effect, FDR < 5%: discovery 
cohort) (D). The proportion of Lactate Dehydrogenase (LDH) isoforms across individuals in the discovery cohort (E). 
Discrete comparison of proteins within pyruvate and lactate metabolism between T2D and NGT group (Limma main effect, 
FDR < 5%) in the discovery cohort (F). Schematic illustration of pyruvate and lactate metabolism in skeletal muscle (I). 
Illustration was made in Biorender.  
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Figure S3. The Fasting Phosphoproteome Landscape is a Critical Determinant of Insulin Sensitivity. Significant 
regulated phosphosites in a discrete comparison between the T2D and NGT group in the discovery cohort (Limma main 
effect, FDR < 5%) (A). Kinase activity prediction down (green) and up (blue) in T2D (discovery cohort) (B). Correlation 
of phosphosite phenotype associations between discovery and validation cohort (C). Kendall’s rank correlation of insulin 
sensitivity (M value) and AMPKγ3 S65 at 30-minute time point in the discovery cohort (D). Human AMPKγ3-transfected 
HEK293 cells and subsequent tryptic digestion of AMPKγ3 pull down by N-terminal (E) or C-terminal (F) flag-tag. Peptides 
were analyzed in data-dependent acquisition mode.  
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Figure S4. Preserved and Dysregulated Insulin Signaling Across States of Insulin Resistance. (A). PhosphoSitePlus 
regulatory- or disease-associated sites (two-sided Fishers exact test) (A). Kendall’s rank correlation of insulin sensitivity (M 
value) and fasting AMPKα2 S377 (B), fasting TNS2 S120 (C) and insulin-stimulated AKT2 S474 log2 intensities (D). OD = 
Odds Ratio. All data presented in Figure S4 are from the discovery cohort. 
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Figure S5, The Sex-specific Molecular Signature Reveals Shared and Distinct Feature of Metabolism. Principal 
component analysis proteome (A) and phosphoproteome (B) with discrete male/female coloring (discovery cohort). 
Correlation of female/male logFC differences for proteome (C) and phosphoproteome (D) between discovery and validation 
cohort. Overlap of sex-specific protein regulation in the discovery cohort and reported FDA-approved drug targets. # 
indicates proteins that were significant only when combining both the discovery and validation cohort (E). Plasma free fatty 
acids (FFAs) levels in participants from the discovery cohort. A two-way-ANOVA was used to assess group and sex 
differences (F). GeneSet enrichment analysis of gene ontology biological processes (GOBP) and cellular components 
(GOCC) based on logFC differences between females and males in the discovery cohort (G). Boxplots of individual 
phosphosite log2 intensities in males (red) and females (blue) for Polyubiquitin-B (UBB) S57 in the discovery cohort. The 
horizontal line indicates the median (H). Insulin sensitivity (M-value) association with baseline proteome (I) and 
phosphoproteome (J) in males and females from the discovery cohort. The association of glycolytic/oxidative metabolism 
and insulin sensitivity in males (red) and females (blue) in the discovery cohort. Proteins related to glycolysis and oxidative 
metabolism (TCA and electron transport chain) were summed and the glycolytic/oxidative ratio was calculated (K). For all 
correlation analyses, Kendall's rank correlation was used.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.06.578994doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.578994
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

 

Table S1 Clinical parameters for the discovery and validation cohort 

Table S2 Working matrix for phosphoproteome in the discovery cohort 

Table S3 Working matrix for proteome in the discovery cohort 

Table S4 Working matrix for phosphoproteome in the validation cohort 

Table S5 Working matrix for proteome in the validaiton cohort 

Table S6 Proteome associations with clinical parameters in the discovery cohort 

Table S7 Basal phosphoproteome associations with clinical parameters in the discovery 

cohort 

Table S8 Insulin-stimulated phosphoproteome associations with clinical parameters in the 

discovery cohort 

Table S9 Proteome associations with the M-value in the validation cohort 

Table S10 Baseline phosphoproteome associations with the M-value in the validation cohort 
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