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Abstract 14 

Tailored enzymes hold great potential to accelerate the transition to a sustainable bioeconomy. Yet, 15 
enzyme engineering remains challenging as it relies largely on serendipity and is, therefore, highly 16 
laborious and prone to failure. The efficiency and success rates of engineering campaigns may be 17 
improved substantially by applying machine learning to construct a comprehensive representation of 18 
the sequence-activity landscape from small sets of experimental data. However, it often proves 19 
challenging to reliably model a large protein sequence space while keeping the experimental effort 20 
tractable. To address this challenge, we present an integrated pipeline combining large-scale screening 21 
with active machine learning and model-guided library design. We applied this strategy to efficiently 22 
engineer an artificial metalloenzyme (ArM) catalysing a new-to-nature hydroamination reaction. By 23 
combining lab automation and next-generation sequencing, we acquired sequence-activity data for 24 
several thousand ArM variants. We then used Gaussian process regression to model the activity 25 
landscape and guide further screening rounds according to user-defined objectives. Crucial 26 
characteristics of our enhanced enzyme engineering pipeline include i) the cost-effective generation 27 
of information-rich experimental data sets, ii) the integration of an explorative round to improve the 28 
performance of the model, as well as iii) the consideration of experimental noise during modelling. 29 
Our approach led to an order-of-magnitude boost in the hit rate of screening while making efficient 30 
use of experimental resources. Smart search strategies like this should find broad utility in enzyme 31 
engineering and accelerate the development of novel biocatalysts.  32 
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Introduction 33 
Biocatalysis and metabolic engineering offer sustainable production routes for many compounds of 34 
interest and thus hold the potential to transform various industries. However, extensive enzyme 35 
engineering is typically required to obtain a suitable biocatalyst for a desired application. This is often 36 
a time-consuming, empirical process whose outcome is subject to chance, as classical methods are 37 
agnostic to the topology of the underlying sequence-activity landscape. Engineering strategies that 38 
incorporate machine learning to model this landscape could render enzyme engineering more efficient 39 
and increase the likelihood of identifying an optimal solution. Accordingly, machine learning-assisted 40 
directed evolution (MLDE) has attracted significant attention in recent years1–3.  41 

In general, MLDE starts with an initial screening round in which both sequence and activity are 42 
recorded for a number of enzyme variants. These sequence-activity data are then used to train a 43 
machine learning model, with the objective of predicting the activity of untested variants directly from 44 
their sequence. If successful, such models can suggest variants that are likely to be highly active and 45 
thus support further screening rounds by in silico library design1. Further, the model can be iteratively 46 
updated with new data to improve its predictive performance, a strategy referred to as active learning. 47 
While several studies have demonstrated the general feasibility of such approaches4–12, there are still 48 
various challenges that need to be addressed to maximize the success rate and efficiency of MLDE and 49 
enable its widespread implementation. This pertains to various aspects such as library design, 50 
experimental data acquisition, model development, and the strategy for sampling the sequence space.  51 

With regard to library design, the crucial challenge is to create a library that is as information-dense as 52 
possible to allow for the development of accurate models while keeping the screening effort 53 
manageable. In the initial stages of model development, this calls for libraries that exhibit a high degree 54 
of sequence diversity to provide adequate information on the underlying sequence space, while at the 55 
same time containing a sufficient number of active mutants13. These requirements can be difficult to 56 
reconcile, as simultaneous randomization of multiple residues commonly results in a large fraction of 57 
inactive mutants, from which little to no meaningful information for model training can be extracted.  58 

Once a library has been generated, it is often challenging to measure a sufficiently large set of 59 
sequence-activity data. In some cases, high-throughput assays such as fluorescence-activated cell 60 
sorting can be combined with deep sequencing to obtain very large data sets14,15. However, most 61 
enzymatic reactions of industrial relevance require more laborious analytical procedures to obtain a 62 
readout for activity. Moreover, the need to also obtain sequence information on all tested variants can 63 
lead to prohibitive costs if conventional Sanger sequencing is used. Consequently, most studies to date 64 
have relied on small data sets (101-102 variants)4–10. While this has led to several successful 65 
demonstrations of MLDE, larger data sets are likely to lead to more accurate machine learning models 66 
and improve the chances of identifying variants with the desired properties11, particularly as the search 67 
space increases in size. 68 

Beyond these experimental considerations, several critical decisions have to be made regarding the 69 
machine learning strategy. Prominent examples in this regard include the encoding strategy for the 70 
protein sequences and the choice of a suitable machine learning algorithm. Many encoding strategies 71 
have been suggested for creating a meaningful representation of protein variants, ranging from simple 72 
one-hot encoding and descriptors based on amino acid properties16–18 to structure-based 73 
descriptors19,20 and learned embeddings21,22. Similarly, various machine learning algorithms have been 74 
employed or suggested for MLDE, including linear regression23–25, Gaussian processes4,7–9,25,26, and 75 
neural networks12. While the best strategy depends on the data set and task at hand, Gaussian 76 
processes have repeatedly revealed their utility for active learning8,9,25. 77 
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Less attention has been devoted to other aspects of the machine learning process, such as the handling 78 
of experimental noise or the sampling strategy during ML-guided screening rounds, both of which are 79 
critical to the success and efficiency of MLDE. With regard to the sampling strategy, many studies have 80 
relied on a single training phase followed by greedy sampling of the top predictions of the resulting 81 
model. Due to inevitable biases in library generation and the limitations in generating sufficient 82 
sequence-activity data, this is unlikely to result in a comprehensive and accurate representation of the 83 
sequence-activity landscape. Consequently, such models may be “blind” for promising regions of the 84 
sequence space, leading to suboptimal outcomes such as low hit rates. Active learning strategies that 85 
improve the model in iterative cycles of experiments and machine learning may help to develop a 86 
better representation of the sequence-activity landscape, as these can converge to the optimal 87 
solution over time27. However, the aforementioned bottleneck in experimental data generation makes 88 
performing many iterations undesirable. Thus, resources invested into model improvement (i.e., 89 
exploration) must be carefully weighed against the focus on regions of the sequence space that are 90 
likely to contain active variants but might only comprise local optima (exploitation). In addition, activity 91 
may not be the only selection criterion during exploitation. Instead, it is often desirable to sample 92 
various potential optima to obtain a diverse set of variants, which requires more elaborate approaches 93 
than simple greedy selection of top predictions28. Hence, smart sampling strategies for active learning 94 
are required to maximize the chances of success at a given experimental budget.  95 

In this study, we introduce an integrated experimental and computational pipeline that addresses 96 
critical limitations in the MLDE of enzymes. Specifically, we combine informed library design with large-97 
scale screening and a novel active machine-learning strategy. As an impactful testbed, we selected an 98 
artificial metalloenzyme (ArM) for gold-catalysed hydroamination, a new-to-nature reaction for atom-99 
economical C-N bond formation. We simultaneously engineered five crucial amino acid residues in this 100 
ArM, corresponding to a search space of 3,200,000 possible variants. To sample this space, we 101 
combined lab automation with a cost-efficient next-generation sequencing (NGS) strategy, which 102 
allowed us to acquire sequence-activity data on more than 2,000 ArM variants. Furthermore, we 103 
developed a machine learning model based on Gaussian process regression that incorporates 104 
optimized descriptors and estimates of experimental noise to efficiently navigate the sequence space. 105 
Guided by the model’s uncertainty estimates, we performed a second screening round focused on 106 
exploration and model refinement. Importantly, our results demonstrate that this targeted exploration 107 
substantially improved the model’s performance. The optimized model reliably proposed highly active 108 
ArM variants in a final exploitation round, as illustrated by a 12-fold increased hit rate compared to 109 
the initial library.  110 

Results  111 

Design of an information-dense ArM library 112 
ArMs are hybrid catalysts that promise to significantly increase the number of reactions available in 113 
biocatalysis by equipping enzymes with the catalytic versatility of abiotic transition metal cofactors29. 114 
ArMs have been created for a variety of natural and non-natural reactions30–35, and some have 115 
demonstrated catalytic prowess comparable to that of natural enzymes36–39. However, most ArMs 116 
initially display a low activity, and extensive protein engineering is required to identify catalytically 117 
proficient variants. This engineering is typically a labour-intensive and slow process. Therefore, ArMs 118 
represent an impactful yet challenging use case for MLDE. 119 

A particularly versatile strategy for creating ArMs is to incorporate an organometallic cofactor into the 120 
tetrameric protein streptavidin (Sav) using a biotin moiety as the anchor. Using this approach, we have 121 
previously engineered an ArM for gold-catalysed hydroamination by exhaustively screening a library 122 
of 400 Sav double mutants (Sav S112X K121X) using a whole-cell assay in 96-well plates40. While this 123 
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represents an attractive starting point, extending the search space to more positions offers the 124 
opportunity to achieve further improvements, which will be crucial for adapting ArMs for real-world 125 
applications. However, exhaustive screening quickly becomes intractable in this case, and smart 126 
heuristics for the efficient exploration of the underlying sequence-activity landscape are essential41. 127 

To navigate the sequence-activity landscape of the ArM, we devised an iterative active learning cycle 128 
involving library design, cloning, screening, and machine learning (Fig. 1a). With regard to library 129 
design, the first step is to choose the target residues and a randomization scheme. To maximize the 130 
potential impact of the screening campaign, we aimed to find important positions in Sav besides the 131 
previously identified residues S112 and K12140. Thus, we individually randomized the 20 residues 132 
closest to the biotinylated gold cofactor in Sav S112F K121Q, which is the most active variant we had 133 
observed before40 (referred to as “reference variant” herein). Randomization was performed using 134 
degenerate NDT (N = A, C, G or T; D = A, G or T) codons, which encode 12 amino acids covering all 135 
chemical classes of amino acids, a strategy that has revealed high success rates at a reduced screening 136 
effort40. Subsequently, we measured hydroamination activity using our previously established protocol 137 
relying on periplasmic catalysis in Escherichia coli (Fig. 1b)40. We tested 36 clones per randomized 138 
position to achieve a statistical library coverage of approximately 95 %42. As expected, most variants 139 
displayed reduced activity compared to the reference variant (Fig. 1c). Notably, positions 111, 118, and 140 
119 revealed the highest potential for improvement upon mutagenesis, with several variants 141 
outperforming the reference variant. Consequently, we selected these positions for further 142 
engineering. In addition, we chose to also randomize positions 112 and 121 again, as our observations 143 
had indicated that epistatic effects play an important role in highly active ArM mutants40. 144 

Next, we sought to create a combinatorial library of the five selected positions (111, 112, 118, 119, 145 
and 121, Fig. 1d), which, upon full randomization, corresponds to a search space of 205  = 3,200,000 146 
variants. This greatly exceeds the capacity of typical activity assays and well plate-based screenings. 147 
Thus, navigating the underlying sequence-activity landscape represents a significant challenge. In 148 
order to model this space for MLDE, it is crucial to design a library that offers a good coverage of the 149 
targeted sequence space and at the same time maintains a sufficient proportion of active variants13. 150 
While simultaneous randomization of all five residues would fulfil the first criterion, we anticipated 151 
that the high mutational load would likely lead to a large fraction of inactive variants. This would not 152 
only diminish the chances of identifying improved variants but, importantly, would be uninformative 153 
for machine learning. Upon initial tests, we indeed observed a marked drop in the activity distribution 154 
when randomizing more than three of the five positions simultaneously (Fig. 1e). Accordingly, we set 155 
out to construct a library with three to four mutations distributed across the five target residues as a 156 
good compromise between high sequence-diversity and sufficient residual activity. In other words, the 157 
constructed library covers all five target positions, but individual variants contain at most four amino 158 
acid substitutions relative to the reference variant Sav S112F K121Q, which served as the parent of the 159 
library (Supplementary Fig. 1). This was achieved by site-directed mutagenesis PCR using various sets 160 
of primers containing degenerate NNK (K = G or T) codons at different positions and subsequent mixing 161 
of the resulting sub-libraries (see Methods).  162 
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163 
Fig. 1 | Engineering strategy and library design for ArMs catalysing hydroamination. a, Illustration of the active 164 
learning strategy for ArM engineering. An iterative process of library design, cloning, large-scale screening and 165 
machine learning was used to model the sequence-activity landscape and identify improved ArMs. Crucial steps 166 
and considerations are highlighted and are explained in the main text.  b, Illustration of whole-cell biocatalysis 167 
using an ArM in the periplasm of E. coli. Sav is exported to the periplasm by means of an N-terminal OmpA signal 168 
peptide, where it binds the biotinylated cofactor (Biot-NHC)Au1. The resulting ArM converts 2-ethynylaniline to 169 
indole in a new-to-nature hydroamination reaction. Indole can subsequently be quantified using a colorimetric 170 
assay. c, Single site-saturation mutagenesis to identify influential amino acid residues with respect to ArM 171 
activity. Starting from the reference variant Sav S112F K121Q, 20 residues in Sav were individually mutated using 172 
degenerate NDT codons. The activity of the resulting variants is displayed relative to the mean activity of the 173 
reference variant (“ref”). Dashed lines indicate one standard deviation around the mean activity of the reference 174 
variant, which was measured in triplicate in each 96-well plate. A strain lacking Sav, i.e., containing an empty 175 
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vector (“ev”), was included as a control (n = 3 per 96-well plate). The five positions selected for combinatorial 176 
randomization are highlighted in bold. Note that no improvement was expected at positions 112 and 121, as the 177 
reference variant had already been optimized with regard to these positions40. d, Residues selected for 178 
randomization (highlighted in orange) in a ribbon model of Sav harbouring a metathesis catalyst (PDB 5IRA). For 179 
clarity, only two biotin-binding sites of two opposing Sav monomers (a so-called functional dimer) are displayed. 180 
e, Effect of different multi-site randomization strategies on the activity distribution of ArM libraries. Starting from 181 
the reference variant, either two, three, four or five residues amongst positions 111, 112, 118, 119, and 121 were 182 
randomized simultaneously. Hydroamination activity is displayed relative to the average activity of the reference 183 
variant (“ref“, n = 3 per 96-well plate) for 90 variants from each library. A strain containing an empty vector (“ev”) 184 
was included as a control (n = 3 per 96-well plate). 185 

Large-scale acquisition of sequence-activity data 186 
Our previously established whole-cell screening protocol for ArMs relied on periplasmic Sav 187 
expression, ArM assembly and catalysis in 96-well plate format. By combining this protocol with 188 
conventional Sanger sequencing, we were able to obtain sequence-activity data for a few hundred 189 
variants40. Although this platform was more flexible and simpler than comparable screening strategies 190 
involving protein purification, it still required considerable manual labour, particularly for product 191 
quantification. Additionally, when larger data sets are required, Sanger sequencing rapidly leads to 192 
prohibitively high sequencing costs. To facilitate the generation of larger data sets for MLDE, we thus 193 
sought to minimize manual intervention in the activity assay and develop more cost-efficient means 194 
of obtaining the sequence information for each functionally characterised variant. 195 

First, we automated all steps in the assay protocol that are labour-intensive (and thus limiting in terms 196 
of throughput) or critical for reproducibility. Specifically, we made use of a Tecan EVO 200 platform for 197 
all steps from colony picking to product quantification, with the exception of Sav expression in 96-deep 198 
well plates, which only requires a small number of pipetting steps (Fig. 2a). The most important 199 
addition to our previous semi-automated pipeline40 is the photometric quantification of the product 200 
indole. While this is a laborious procedure when carried out manually, the automated version 201 
simplifies screenings and proved to be very reproducible (Supplementary Fig. 2). As the robotic 202 
platform can handle up to eight 96-well plates at the same time, it greatly accelerates the acquisition 203 
of large data sets. 204 

Besides the activity assay, another critical barrier to obtaining sufficiently large sets of sequence-205 
activity data can be the cost of sequencing. Obtaining the sequences of several thousand protein 206 
variants by Sanger sequencing typically costs more than USD 10,000, which is prohibitive for most 207 
academic labs. In principle, the cost per variant can be reduced significantly by relying on NGS, which 208 
quickly becomes more cost-efficient than Sanger sequencing as the library size increases. However, in 209 
NGS all variants are sequenced in bulk, which means a method to retroactively link each sequence to 210 
the corresponding activity measurement is required. Previously, the use of DNA barcodes has been 211 
suggested to enable NGS of protein variants distributed across 96-well plates43–45. Building on these 212 
strategies, we established a two-step PCR protocol for the barcoding of Sav variants that is compatible 213 
with the Illumina NGS platforms (Fig. 2b). In the first step, which is carried out in 96-well plates, the 214 
randomized region of the Sav gene is amplified using primers that append a well-specific barcode 215 
combination as well as constant regions to the ends of the PCR products. This is achieved using eight 216 
forward (representing the plate‘s rows) and twelve reverse primers (representing the columns). For 217 
simplicity, heat-treated samples of bacterial cultures serve as templates, avoiding the need for 218 
laborious and costly plasmid purification.  219 

Subsequently, PCR products are pooled by plate, and each pool is gel-purified and used as a template 220 
for a second PCR. In this step, primers binding to the previously added terminal constant regions are 221 
used for amplification. These primers contain overhangs to append plate-specific barcodes as well as 222 
the adapters required for NGS. Through the combination of well- (1st step) and plate-specific (2nd step) 223 
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barcodes, it is possible to sequence thousands of variants from multiple plates in a single, low-cost 224 
NGS run and to assign the obtained sequences to the corresponding activity value obtained in the 225 
functional assay. In our specific case, paired-end sequencing of 40 bp from one end and 110 bp from 226 
the other end of the final PCR product was sufficient to read all well- and plate-specific barcodes as 227 
well as the five mutation sites in the Sav gene at a high read coverage (average of >100-fold per variant) 228 
and low cost (see Discussion).    229 

Relying on the combination of automated activity assay and NGS, we screened 32 96-well plates 230 
containing variants from the aforementioned library of Sav. As each plate contained six controls (empty 231 
vector and reference variant in triplicate), this amounts to a total of 2,880 variants. Excluding mutants 232 
that failed to grow, we obtained activity data on 2,790 variants. Most of these displayed an 233 
intermediate activity between the background level of cells lacking Sav (empty vector) and the 234 
reference variant Sav S112F K121Q (Fig. 2c). Notably, approximately 3 % of all mutants were more 235 
active than the reference. Using the NGS-based strategy, we retrieved the sequences for 2,663 out of 236 
2,880 wells containing Sav mutants. After excluding variants with nonsense mutations and wells 237 
containing more than one variant, sequence-activity data for 2,164 clones were obtained, of which 238 
2,035 were distinct variants. Notably, for variants appearing in multiple wells, the deviation between 239 
these replicate activity measurements was generally low, corroborating the high robustness of the 240 
assay (Supplementary Fig. 3). Importantly, the library displayed a high degree of sequence diversity, 241 
with every amino acid appearing in every position (Fig. 2d) and an average Hamming distance of 4.3 242 
between the mutants. Note that the amino acids of the reference variant were the most abundant in 243 
each position, as we did not randomize all five positions simultaneously. Thus, the library exhibited a 244 
high degree of variability both in terms of activity distribution (including a low fraction of inactive 245 
variants) as well as sequence diversity. This indicated that the aforementioned design goals for the 246 
library were met, providing a promising data basis for modelling the sequence-activity landscape by 247 
machine learning. 248 

As we had previously recorded sequence-activity data for 400 Sav double mutants (S112X K121X) that 249 
are part of the same sequence space40, we added these older data to the measurements obtained 250 
herein. As a result, a total of 2,992 data points covering 2,435 distinct ArM variants were available as 251 
initial training data for machine learning.  252 
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253 
Fig. 2 | Large-scale acquisition of sequence-activity data for ArMs. a, Depiction of the critical automated steps 254 
in the screening workflow. Colony picking, ArM assembly, reaction setup, and product quantification were 255 
performed on a lab automation platform. The less labour-intensive protein expression protocol was performed 256 
manually. In parallel to the activity assay, samples of the starter cultures were processed further for NGS. b, PCR-257 
based barcoding strategy for cost-effective sequencing of Sav variants in 96-well plates by NGS. First, the mutated 258 
region of the Sav gene is amplified using primers with row- (BCrow) and column-specific (BCcolumn) DNA barcodes. 259 
This step is performed in PCR plates using heat-treated bacterial cultures as templates. After pooling all samples 260 
from one plate, a second PCR is performed to add two plate-specific barcodes (BCplate) as well as adapters 261 
required for Illumina sequencing (a1 and a2). Subsequently, all samples are pooled and sequenced via paired-262 
end reading to cover all barcodes and mutation sites. c, Cell-specific hydroamination activity of 2,164 ArM 263 
variants from the initial library obtained by automated screening of 32 96-well plates. Only variants that were 264 
included for model training are displayed. Controls (empty vector and reference variant) are displayed with their 265 
standard deviation in red. d, Fraction of amino acids at the five randomized positions in Sav. Note that the amino 266 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.579157doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.579157
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

acids of the reference variant (Sav 111T 112F 118N 119A 121Q, abbreviated Sav TFNAQ) are the most abundant, 267 
as the library was derived from this variant and contained at most four amino acid substitutions per variant. 268 

Development of an initial machine learning model of ArM activity 269 
To construct a model that can reliably predict the activity of untested ArM variants and guide further 270 
screening rounds, we relied on Gaussian process (GP) regression46. This machine learning technique 271 
can capture highly non-linear relationships and has the distinct advantage of being probabilistic, which 272 
means that it predicts a probability distribution rather than a point estimate, and thus provides an 273 
estimate for the confidence of each prediction. This feature can not only help users assess the 274 
uncertainty of individual predictions, but is ideally suited for active learning strategies. In this scenario, 275 
the model’s uncertainty estimates can be used to guide subsequent screening rounds towards 276 
uncertain regions of sequence space with the goal of improving the model (i.e., exploration), before 277 
suggesting highly active variants in later rounds (i.e., exploitation). 278 

GPs are characterized by a mean and a covariance function, which is commonly referred to as kernel. 279 
In our case, as we operate on the space of protein sequences, the kernel measures the similarity 280 
between different ArM variants. Since the selection of a suitable kernel is of paramount importance 281 
for good performance and sample efficiency (i.e., predicting accurately with little data), we performed 282 
a benchmarking process and found that the non-linear Matérn kernel46 performed best in our case 283 
(see Methods).  284 

Moreover, our model development pipeline included steps to account for experimental noise and to 285 
select suitable descriptors (Fig. 3a). Considering the inherent noise in biological experiments during 286 
modelling is crucial to ensure that decisions are not influenced by random fluctuations. To distinguish 287 
the genuine signal from these fluctuations, it is necessary to define a probabilistic model for data 288 
generation, known as the likelihood. This step involves specifying the likelihood and its parameters, 289 
which is essential for applying Bayes' theorem to calculate the posterior distribution (see Methods). 290 
To elucidate the form of the likelihood, we relied on the variants appearing multiple times in the 291 
screening. This revealed that the deviation of these replicates from the per-variant mean closely 292 
follows a log-normal distribution, which can be viewed as a conservative estimate of the experimental 293 
noise in the data (Fig. 3b). Considering the log-transformed values, this implies a Gaussian likelihood. 294 
Next, we used the replicate measurements to determine a standard deviation, which is a key element 295 
in defining the data likelihood. We made the simplifying assumption that the variance of the 296 
measurement remains constant across the different ArM variants and repeated this analysis after each 297 
round of screening. As illustrated in Fig. 3c, under- or overestimating the experimental noise leads to 298 
a drastically reduced performance of the resulting model, likely due to overfitting to noise in the data. 299 
In contrast, the procedure applied here results in a robust performance in the face of noisy data. 300 

With regard to the descriptors that represent the ArM variants during training, we considered features 301 
that reflect chemical properties of amino acids11 as well as features that were extracted from Sav 302 
mutant structures predicted with the Rosetta software47. The latter included both geometric features 303 
(e.g. solvent accessible surface area, number of hydrogen bonds, partial charge, dihedral angles, etc.) 304 
and energy terms. Note that the geometric descriptors were compiled to be strict supersets of the 305 
chemical descriptors (i.e., they also included the chemical descriptors), and similarly the energy-based 306 
descriptors are strict supersets of the geometric descriptors. Given the large number of features (125 307 
chemical, 682 geometric, and 161 energy features), we sought to select subsets that are parsimonious 308 
while still highly predictive to ensure data efficiency and eliminate redundancy. To this end, we relied 309 
on Bayesian evidence maximization (see Methods). Due to the non-linearity of the optimization 310 
challenge, we first reduced the feature sets using LASSO, which performed best in a benchmarking test 311 
(Supplementary Fig. 4). More precisely, we fitted a linear model and selected features with non-zero 312 
coefficients for automatic relevance detection using Bayesian evidence maximization with a Gaussian 313 
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process. This allowed us to reduce the initial pool of features to 20-100 and speed up the evidence 314 
maximization step, which required multiple optimisation restarts to ensure that an adequate 315 
maximum was achieved. 316 

Finally, we trained GP models using the different reduced feature sets on the available sequence-317 
activity data and evaluated model performance using 15-fold cross-validation. For comparison, we 318 
included a linear and an additive, non-linear model based on chemical descriptors. The latter is 319 
restricted to treating potentially non-linear effects on the activity additively and is therefore not 320 
capable of modelling epistatic effects. Notably, the linear and additive models performed considerably 321 
worse than the GP models (Fig. 3d), confirming that advanced methods such as GP models are required 322 
to accurately capture the sequence-activity relationships in the data. Interestingly, the chemical, 323 
geometric, and energy-based descriptors displayed a comparable performance, and a set of 20 324 
features proved to be sufficient in all cases. The most influential features based on automatic relevance 325 
detection are listed in Supplementary Table 1 (see Supplementary Fig. 5 for an analysis of their 326 
influence).  327 

As computationally expensive structural calculations are required to generate the geometric and 328 
energy-based features and no clear benefit over models relying only on chemical descriptors was 329 
observable, we chose to continue with the subset of 20 chemical features as our primary encoding 330 
strategy for further modelling. The resulting model displayed a good predictive performance, with a 331 
median R2 of 0.54 based on 15-fold cross-validation (see Fig. 3e and Supplementary Fig. 6 for exemplary 332 
validation splits). While leaving room for improvement, this degree of correlation has previously been 333 
shown to be suitable for guiding directed evolution campaigns11. Moreover, the median Spearman 334 
correlation of 0.68 demonstrates that the relative ranking of variants was largely reproduced by the 335 
model (Supplementary Fig. 7), which is important for confident selection of high-activity variants. 336 
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337 
Fig. 3 | Development of the initial GP model. a, Overview of the machine learning pipeline. Initially, the standard 338 
deviation of the activity measurements was estimated to account for experimental noise. Subsequently, three 339 
feature sets were calculated and reduced sets were obtained by applying LASSO and Bayesian evidence 340 
maximization. The resulting descriptors were then used to train GP models. Model selection and model fitting 341 
were benchmarked using cross-validation. Ultimately, the GP model can be used to navigate the sequence space 342 
in active learning cycles. b, Histogram of the deviation between replicates in the initial library. The distribution 343 
of residuals can be conservatively approximated by a normal distribution with a specific variance (orange). c, 344 
Influence of the noise estimate on the predictive performance of the resulting GP model. The value chosen based 345 
on Fig. 3b is highlighted in orange. The models used here were based on chemical descriptors with 20 features 346 
(see Fig. 3d) and were evaluated using 15-fold cross-validation. The box plots display the 25th, 50th and 75th 347 
percentile with whiskers denoting the 1.5-fold interquartile range. d, Influence of feature number (x-axis), model 348 
type (fill pattern), and descriptors (colour) on the performance of machine learning models analysed by 15-fold 349 
cross-validation. The box plots display the 25th, 50th and 75th percentile with whiskers denoting the 1.5-fold 350 
interquartile range. e, Performance of the GP model using chemical descriptors and 20 features on an exemplary 351 
cross-validation split. The measurement uncertainty (one standard deviation) is displayed in red, while the 352 
uncertainty of the model is in black. The R2 value of this particular cross-validation split is displayed.  353 

Model refinement by active learning 354 
The aforementioned performance parameters indicate that the initial GP model can predict ArM 355 
activity with reasonable accuracy. However, due to the vast sequence space, the random sampling 356 
from this space during the generation of training data, as well as inevitable biases in experimental 357 
library construction, it is likely that this initial model will not generalize well across the entire sequence-358 
activity landscape. Consequently, it may be “blind” for certain underexplored regions containing highly 359 
active ArMs. Therefore, we performed a second, exploratory screening round with the goal of 360 
improving the model’s accuracy and ability to generalize across the entire sequence space. To this end, 361 
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we designed a new library consisting of 720 variants that were primarily selected to be “informative”. 362 
Specifically, we utilised the uncertainty estimates of the GP model and selected the variants with the 363 
highest uncertainty in the predicted activity among all 3.2 million mutants48,49. 364 

We generated these variants based on a pool of oligonucleotides obtained through commercial 365 
synthesis on arrays, a method that allows for the cost-efficient construction of large and targeted 366 
libraries50 and is therefore highly useful for active learning with large batch sizes. After cloning the 367 
oligonucleotides into the Sav expression plasmid, we screened the resulting exploration library relying 368 
on the automated pipeline in combination with NGS as described above. This exploratory round 369 
yielded sequence-activity data on 465 additional variants. It should be noted that this library also 370 
contained chimeric variants with amino acid combinations that were not planned in the computational 371 
design, likely due to PCR-mediated recombination between variants51,52. While unintended, these 372 
additional variants can also be used to augment the machine learning model and were therefore 373 
included for training. If desired, chimera formation can be minimized by optimizing the PCR 374 
conditions51,52. 375 

The exploration library displayed a similar activity distribution as the initial training data (Fig. 4a), which 376 
is in line with the focus on informative instead of active variants. Importantly, these new data led to a 377 
decrease in the standard deviation of the predictions, most prominently for variants that had 378 
previously exhibited a high uncertainty (Fig. 4b). While this observation alone is not a proof of 379 
increased accuracy, it hints towards an improved representation of previously underexplored regions 380 
of the sequence space, which we examined in more detail in subsequent analyses (see below). 381 
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382 
Fig. 4 | ArM engineering by means of active learning. a, Activity distributions in the three screening rounds 383 
displayed as violin plots. The 20 most active variants in each round are depicted as diamonds. Activity is displayed 384 
relative to the reference variant (Sav TFNAQ). b, Normalized histograms of the standard deviations of predictions 385 
across all 3.2 million variants after the first and second round of screening. c, Hit rate in the three screening 386 
rounds. Here, any variant with a higher cell-specific activity than the reference variant is considered a hit. The hit 387 
rate represents the fraction of hits amongst all variants screened in the respective round. Note that the hit rate 388 
in the initial library was calculated based on the triple and quadruple mutants, excluding the double mutants that 389 
had been tested previously40. In the third round, chimeric variants that were not part of the computationally 390 
designed library were excluded to provide a better analysis of the models‘ performance. d, The five most active 391 
variants from each screening round were tested again in four replicates. The five-letter codes denote the amino 392 
acids in positions 111, 112, 118, 119, and 121 for the respective variants.  393 

Active learning increases the efficiency of directed evolution 394 
Following model refinement in the exploration round, we set out to test whether our model-guided 395 
approach can indeed aid in the discovery of active ArMs. With this goal in mind, we designed a third 396 
library of 720 variants predicted to be of high activity. Additionally, we employed an in silico 397 
diversification step to avoid choosing only variants with highly similar sequences. This provides a 398 
safeguard against inaccuracies in the top predictions and increases the likelihood of obtaining variants 399 
with diverse properties besides activity (e.g. thermostability, solubility, or activity under alternative 400 
conditions). To this end, we used a notion of diversity known as determinantal point processes 401 
(DPPs)48,49, which use the GP kernel to determine which variants are similar to each other (see Methods 402 
and Supplementary Fig. 8a). In short, this approach treats the descriptors of the Sav variants as vectors 403 
in Euclidian space and attempts to select a set of vectors that are as orthogonal to each other as 404 
possible. We applied this process to a set of variants with the highest predicted activity to obtain a 405 
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subset of active and yet sequence-diverse variants. This led to a more diverse set of variants compared 406 
to a simple greedy selection of the variants with the highest predicted activity as assessed by three 407 
different metrics of diversity (Supplementary Fig. 8b). 408 

As described for the exploration round, we obtained the designed library based on an oligonucleotide 409 
pool and acquired experimental data for 349 distinct variants. Gratifyingly, this third library displayed 410 
a clear shift towards higher activities compared to the first two rounds, both in terms of the average 411 
as well as the top activities (Fig. 4a). We further analysed the hit rate in the screening rounds, which 412 
we define here as the fraction of ArM variants with higher activity than the reference variant, which is 413 
the most active variant identified in a previous study40. While only 3 % of the initial library were hits, 414 
this rate reached 38 % in the exploitation phase, amounting to an approximately 12-fold increase (Fig. 415 
4c). This demonstrates that the model acquired a meaningful representation of the activity landscape 416 
and can reliably predict active ArMs. 417 

To confirm the results from the different screening rounds, which were performed in single 418 
measurements, we tested the most promising variants from all three rounds again in four replicates 419 
(Fig. 4d). This revealed that Sav 111C 112T 118N 119L 121V (abbreviated Sav CTNLV) was the most 420 
active variant, reaching an 18-fold higher cell-specific hydroamination activity than the wild type (Sav 421 
TSNAK) and a three-fold higher cell-specific activity than the reference variant (Sav TFNAQ). In addition, 422 
we purified the most active variants from our whole-cell screening to test whether they also display 423 
an increased total turnover number in vitro, which was the case for five of the seven variants tested 424 
(Supplementary Fig. 9). As observed before40, the ranking of the variants changed in vitro, which can 425 
be expected due to the different reaction environments and varying expression levels in the 426 
periplasmic screening. 427 

Notably, the Sav CTNLV mutant does not retain the S112F K121Q mutations that were found to be 428 
optimal in the previous double mutant screening40. Likewise, all other variants evaluated in the 429 
validation experiment (Fig. 4d) retain neither or only one of these two mutations. This highlights the 430 
importance of epistatic effects, which can only be adequately considered through combinatorial library 431 
designs and non-additive models. Strikingly, several highly active variants contain a cysteine at position 432 
111, which seems counter-intuitive as cysteine has been repeatedly shown to have a pronounced 433 
inhibitory effect on gold-catalysed hydroamination53. However, residue 111 is pointed away from the 434 
metal, presumably preventing the thiol from interfering with catalysis. Notably, the beneficial impact 435 
of this mutation was not obvious from the initial data set, but became increasingly apparent in 436 
subsequent rounds. This indicates that active learning can traverse the mutational space more broadly 437 
than alternative methods and enable the identification of counter-intuitive effects on activity.  438 

To further corroborate this hypothesis, we performed more detailed analyses to investigate whether 439 
the active learning strategy with a model-guided exploration round indeed led to a better 440 
representation of the available sequence space. We visualised the sequence space (using t-SNE54 on 441 
the kernel matrix, see Methods) to analyse how the tested variants are distributed across this space 442 
(Fig. 5a, b). While care must be taken when interpreting such low-dimensional projections, this analysis 443 
indicates that the initial library did indeed not cover the sequence space uniformly. The subsequent 444 
exploration round filled in several of the “gaps” in accordance with the design goal of this phase. The 445 
exploitation phase focused on a number of regions of high activity, indicating that the selection criteria 446 
of high activity and sequence diversity were met. The emergence of multiple clusters of active variants 447 
is compatible with the notion of a “rugged” activity landscape with many local optima. Such landscapes 448 
can be challenging to navigate using classical methodologies, which frequently follow a single “uphill” 449 
trajectory. In contrast, the GP model developed here acquires a holistic understanding of the entire 450 
space of 3.2 million ArM variants and allows us to sample various potential optima, increasing the 451 
chances of finding suitable variants.  452 
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Lastly, we sought to quantify the effect of the applied sampling strategy in relation to the size of the 453 
training data set. A crucial question in this regard is whether the active learning strategy suggested 454 
here provides a significant benefit over a comparable increase in the size of the training data set by 455 
random sampling of variants. To investigate this, we trained models on different fractions of the initial 456 
data set using the same model development pipeline as before. As a proxy for an experimentally 457 
determined hit rate, we analysed the models’ precision in identifying hits among the variants tested in 458 
the exploitation phase (i.e., the percentage of true hits among variants predicted to be hits). As 459 
illustrated in Fig. 5c, this analysis indicates that acquiring training data by random sampling is 460 
accompanied by strong diminishing returns: Approximately 40 % of the initial data set size (equivalent 461 
to ~1200 data points) is sufficient to achieve a similar performance (in terms of precision and mean 462 
squared error (MSE)) as a model trained on the entire initial data set (~3000 data points). This suggests 463 
that additional random screening rounds of similar size would not have led to noteworthy 464 
improvements of the model. In contrast, the model-guided exploration round, which consisted of only 465 
564 additional data points (an increase of less than 20 % in data volume), improved the precision in 466 
identifying hits from ~20 % to 48 %. This increase is significantly beyond any improvement that can be 467 
anticipated due to the mere increase in data volume, emphasizing the fact that this round was 468 
substantially more informative than random sampling. This confirms the validity of the suggested 469 
active learning and model-guided exploration strategies, pointing to a high potential for enhancing 470 
MLDE campaigns while at the same time minimizing the experimental effort.  471 

 472 
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473 
Fig. 5 | Enhanced sequence-activity mapping through active learning. a, t-SNE visualisation of the sequence 474 
space. ArM variants that were tested in the three screening rounds are highlighted in different colours. To 475 
generate this visualisation, all 3.2 million mutants were considered, and a uniform subsample of untested 476 
variants was plotted in grey. The similarity metric used was derived from the GP model (see Methods for details). 477 
b, t-SNE visualisation of the sequence space with colour encoding the activity of experimentally tested variants. 478 
The clustering is identical to that in Fig. 5a. c, Precision in identifying hits and mean squared error (MSE) of 479 
predictions as a function of the size of the training data set. The dark-blue bars in the upper graph indicate the 480 
average precision of models that were trained on different fractions of the initial data set (screening round 1). 481 
The diamond at 1.0 represents the precision of the model used to inform experiments. The light-blue bar on the 482 
right represents the model refined by model-guided exploration (screening round 2). Note that the precision is 483 
not identical to the experimentally determined hit rate (see Methods). The lower graph depicts the size of the 484 
data sets used to train the respective models. 485 

Discussion 486 
MLDE is a highly promising strategy for engineering enzymes and other proteins. However, the success 487 
and efficiency of such engineering campaigns hinges on the ability to generate sufficiently large and 488 
informative data sets, the use of smart sampling strategies, and the choice of suitable machine learning 489 
techniques that optimally leverage the resulting data. 490 

Many studies on MLDE have relied on small data sets4–10 and a single training phase4,5,10,55,56, which 491 
may be attributed to experimental limitations. This bears the risk that the resulting models do not 492 
accurately represent the sequence space, and thus are likely to leave significant potential hidden 493 
within this space untapped. Here, we applied lab automation and NGS to acquire large data sets in a 494 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.579157doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.579157
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

simple and cost-efficient manner, and directed our sampling to the most informative data by means 495 
of advanced active learning techniques. 496 

Lab automation greatly increases the throughput of screenings and is, at the same time, highly 497 
adaptable to various reactions and target proteins. In this study, we performed some experimental 498 
steps manually, but a fully automated workflow could also be implemented. Similarly, the 499 
computational pipeline is largely automated, and thus it is conceivable to conduct protein engineering 500 
with minimal human intervention. Importantly, recent developments such as academic biofoundries 501 
and cloud labs are making such approaches more widely accessible57,58. 502 

The NGS strategy employed here enables the sequencing of thousands of protein variants for the cost 503 
of a small Illumina run and PCR reagents. The former is available for a few hundred dollars (e.g. MiSeq 504 
Nano, yielding approx. 1 million reads) and will likely continue to get cheaper. If combined with other 505 
samples and run on an instrument with a large capacity, the prorated costs may even be in the range 506 
of a few dollars. Regarding the PCR reagents, primer synthesis costs are low as only 20 primers are 507 
required to address all 96 positions in a well plate. Similarly, the use of two plate barcodes means that 508 
12 primers for the second PCR are sufficient to distinguish 36 well plates. Overall, this means that 509 
sequencing is possible at a cost of less than one cent per variant. 510 

Combined, automation and NGS are ideally suited to generate large data sets for MLDE. At the same 511 
time, it is also crucial to design information-dense libraries to maximize the efficiency of experimental 512 
screening rounds. In the initial round, we achieved this by optimizing the mutational load in the library, 513 
which is a straightforward and broadly applicable strategy. Alternatively, approaches such as zero-shot 514 
methods relying on ∆∆G calculations13 can be applied as well. In subsequent rounds, library design can 515 
be guided by the machine learning model. While it may seem attractive to apply an exploitation-516 
focused strategy to quickly identify active variants, we hypothesized that a model-guided exploration 517 
round could substantially improve the predictive performance and thus increase the chances of 518 
identifying suitable variants in large and rugged sequence spaces in a subsequent round. Indeed, we 519 
observed that the exploration round improved the model’s ability to identify active variants far beyond 520 
what would be expected due to the increase in data volume alone. This demonstrates that active 521 
learning is a highly effective and efficient strategy for developing accurate models of sequence-activity 522 
landscapes. Moreover, the separation into exploration and exploitation phases provides a transparent 523 
and practical solution to the exploration-exploitation dilemma, as it allows for a clear and plannable 524 
resource allocation. In addition, our study introduces DPP sampling as a strategy for diversifying the 525 
selection of active variants, which increases the robustness of MLDE to possible model inaccuracies 526 
and may be beneficial with regard to secondary properties beyond activity. 527 

In terms of the machine learning approach, this study corroborates that Gaussian process regression is 528 
an attractive choice for MLDE, particularly when strong epistatic effects are present in the sequence-529 
activity landscape. Moreover, it is well-suited for active learning strategies, as the uncertainty 530 
quantification is computationally simple, which constitutes an advantage over alternative methods 531 
such as deep learning. Our results demonstrate that simple and computationally efficient descriptors 532 
are sufficient for non-trivial improvements to engineering campaigns, which is in line with other 533 
literature on the subject59,60. Nonetheless, it might be possible to further boost the predictive 534 
performance, for example by employing improved structure prediction algorithms or descriptors from 535 
modern protein language models61,62. Lastly, our results highlight that accurately accounting for 536 
experimental noise is crucial during model development, an aspect that has frequently been 537 
neglected63. 538 

The application of these strategies to the engineering of ArMs for gold-catalysed hydroamination led 539 
to the identification of a variant with 18-fold higher cell-specific activity than the wild type. Compared 540 
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to our previous screening of double mutants40, extending the search space to five positions led to a 541 
three-fold improvement. Further rounds of active learning could potentially lead to the discovery of 542 
even more active variants. Moreover, the methods developed here could be used to target additional 543 
positions. However, it should be noted that this ArM is likely a challenging engineering target due to 544 
the relatively exposed location of the cofactor in Sav. Therefore, applying this engineering strategy to 545 
alternative scaffolds with a more shielded active site might enable larger improvements64. Currently, 546 
artificial (metallo)enzymes are typically limited by their rather modest activity. Thus, the field could 547 
profit greatly from advanced machine learning-guided engineering strategies, as demonstrated here. 548 
Similarly, the active learning approach described here could be applied to tailor natural enzymes for 549 
industrial applications, or to engineer other proteins such as antibodies, biosensors, or transporters.  550 
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Materials and Methods 551 

Chemicals and reagents 552 
(Biot-NHC)Au1 was synthesized as previously described40. All other chemicals were obtained from 553 
Sigma-Aldrich. Primers were synthesized by Sigma-Aldrich, and enzymes for molecular cloning were 554 
obtained from New England Biolabs. 555 

Plasmids 556 
All plasmids were based on a previously described expression plasmid that contains a T7-tagged Sav 557 
gene with an N-terminal OmpA signal peptide for export to the periplasm under control of the T7 558 
promoter in a pET30b vector33. This plasmid is available from Addgene (#138589). A version of this 559 
plasmid encoding the Sav S112F K121Q mutant was used as the starting point for library generation. 560 

Cloning of Sav libraries 561 
Site-saturation mutagenesis at 20 positions: To individually randomize 20 positions in Sav, the plasmid 562 
encoding Sav S112F K121Q was amplified in two parts in order to create two overlapping fragments 563 
for each position, with mutations being introduced by an NDT codon in one of the primer overhangs. 564 
The PCRs were conducted using the primer pairs SSM_X_NDT_fwd and kanR_rev, and kanR_fwd and 565 
SSM_X_rev (X denotes the position to be randomized, see Supplementary Table 2). PCRs were carried 566 
out using Q5 High-Fidelity DNA Polymerase (New England Biolabs). Following DpnI digest and PCR 567 
purification, the corresponding fragments were assembled by Gibson assembly and transformed into 568 
E. coli BL21-Gold(DE3). Three clones per position were sequenced by Sanger sequencing to verify 569 
correct assembly and diversity at the desired position.  570 

Double, triple, quadruple, and quintuple mutant libraries: To generate sets of double, triple, 571 
quadruple, and quintuple mutants, the plasmid encoding Sav S112F K121Q was amplified in two parts. 572 
One part included the Sav positions 111 and 112, and the other part included positions 118, 119, and 573 
121. To generate fragments with variable but defined numbers of mutations, the primers from 574 
Supplementary Table 3 were used in several PCR reactions according to Supplementary Table 4. 575 
Following DpnI digest and PCR purification, the fragments were assembled in several Gibson assembly 576 
reactions as summarized in Supplementary Table 5. The reactions were then transformed separately 577 
into chemocompetent E. coli Top10. Plasmids were isolated from the transformants and transformed 578 
into the expression strain BL21-Gold(DE3). When picking colonies for screening, the theoretical 579 
diversity of the individual sub-libraries (Supplementary Table 5) was taken into account in order to 580 
obtain balanced sets of double, triple, quadruple and quintuple mutants. 581 

Active learning libraries: To create libraries of specific Sav variants that were suggested by the machine 582 
learning models, oligo pools were ordered from Twist Bioscience. These oligos were used as primers 583 
that bind immediately downstream of position 121 in Sav. The 5’-overhang contained the five mutation 584 
sites with the desired changes as well as a constant region for Gibson assembly (see Supplementary 585 
Table 6). For the first library of ML-designed variants, insert and backbone were generated according 586 
to Supplementary Table 7. For the second library, the PCRs were run according to Supplementary Table 587 
8. Following DpnI digest and PCR purification, the fragments were assembled by Gibson assembly and 588 
transformed into chemocompetent E. coli Top10. Plasmids were isolated from the transformants and 589 
transformed into the expression strain BL21-Gold(DE3). 590 

Sav expression in 96-well plates  591 
96-deep well plates were filled with 500 µL of LB (+ 50 mg L−1 kanamycin) per well. Cultures were 592 
inoculated from glycerol stocks and grown overnight at 37 °C and 300 revolutions per minute (rpm) in 593 
a Kuhner LT-X shaker (50-mm shaking diameter). 20 µL per culture was used to inoculate expression 594 
cultures in 1 mL of LB with kanamycin. These cultures were grown at 37 °C and 300 rpm for 1.5 h. At 595 
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this point, the plates were placed at room temperature for 20 min, and subsequently, Sav expression 596 
was induced by addition of isopropyl-β-D-thiogalactopyranoside (IPTG, final concentration 50 µM). 597 
Expression was carried out at 20 °C and 300 rpm for an additional 16 h. 598 

Whole-cell screening 599 
Following the expression of Sav mutants in deep-well plates, the OD600 of the cultures was determined 600 
in a plate reader using 50 µL of samples diluted with an equal volume of PBS. Afterwards, the plates 601 
were centrifuged (3,220 rcf, 15 °C, 10 min), the supernatant was discarded and the pellets were 602 
resuspended in 400 µL of incubation buffer (10 µM (Biot-NHC)Au1 in 50 mM MES, 0.9 % NaCl, 10 mM 603 
diamide, pH 6.1). Cells were incubated with the cofactor for 1 h at 15 °C and 300 rpm. Afterwards, 604 
plates were centrifuged (2,000 rcf, 15 °C, 10 min), the supernatant was removed and the pellets were 605 
resuspended in 500 µL of washing buffer (50 mM MES, 0.9 % NaCl, 10 mM diamide, pH 6.1). Following 606 
another centrifugation step, cell pellets were resuspended in 200 µL of reaction buffer (5 mM 2-607 
ethynylaniline in 50 mM MES, 0.9 % NaCl, 10 mM diamide, pH 6.1). Reactions were performed at 37 °C 608 
and 300 rpm for 20 h before determining the product concentration. To account for differences in cell 609 
density and plate-to-plate variations, the product concentrations were divided by the OD600 of the 610 
culture and normalized to the mean of the cell-specific product concentrations measured for the Sav 611 
S112F K121Q controls in the respective plate. 612 

Kovac’s assay 613 
Indole was quantified using the photometric Kovac’s assay (adapted from Piñero-Fernandez et al.65). 614 
For measurements in culture supernatant, plates were centrifuged (3,220 rcf, 20 °C, 10 min) and 110 µL 615 
supernatant was mixed with 165 µL of Kovac’s reagent (50 g L-1 4-(dimethylamino)benzaldehyde, 616 
710 g L-1 isoamyl alcohol, 240 g L-1 hydrochloric acid) in a separate plate. After 5 min of incubation, 617 
these plates were centrifuged (3,220 rcf, 20 °C, 10 min). Subsequently, 75 µL of the upper phase was 618 
transferred to a new transparent plate and the absorbance at 540 nm was measured in a plate reader 619 
(Tecan Infinite M1000 PRO). 620 

Lab automation 621 
Colony picking, reaction setup and product quantification were implemented using an automation 622 
platform featuring two Tecan EVO 200 (Tecan Group AG) robotic platforms coupled to each other. Both 623 
platforms were controlled using the EVOware standard software (Tecan Group AG). Colony picking was 624 
performed using the integrated Pickolo system (SciRobotics). For shaking, incubation, and 625 
resuspension of cultures, the platform was equipped with a Kuhner ES-X shaking platform (Adolf 626 
Kühner AG) running at 300 rpm at 50-mm shaking radius. The shaking platform was surrounded by a 627 
custom-made box made of aluminum plastic composite panels (Tecan Group AG). The temperature 628 
inside the box was maintained at 15 °C using an “Icecube” (Life imaging services) heater/cooler device. 629 
Centrifugation of the samples was performed using the integrated Rotanta 46 RSC Robotic centrifuge 630 
(Hettich AG). All buffer exchanges during sample preparation were performed using the integrated 631 
liquid-displacement pipetting system equipped with eight 2500 µL dilutors and fixed stainless steel 632 
needles. Absorbance measurements were performed using a Tecan Infinite M200 PRO plate reader. 633 
The automation method files are available upon request. 634 

Barcoding of mutants 635 
Following colony picking, cultures were grown overnight at 37 °C and 200 rpm in 96-deep well plates. 636 
On the following day, 150 μL per culture was transferred to a 96-well PCR plate. The plates were sealed 637 
and placed in a thermal cycler for 5 min at 95 °C to lyse the bacteria. Subsequently, the plates were 638 
centrifuged (3200 rcf, 5 min) and 0.5 μL of the supernatant was used as template for the first PCR. This 639 
PCR step was done in 96-well plates, with each well containing a distinct combination of barcoded 640 
primers (see Supplementary Table 9). 30 cycles were performed with 30 s denaturation at 98 °C, 20 s 641 
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annealing at 71 °C and 30 s elongation by Pfu DNA polymerase at 72 °C. The products from each plate 642 
were pooled, run on a 2.5 % (w/v) agarose gel at 100 V for 2 h and purified using a gel extraction kit 643 
(Sigma-Aldrich). The products were then used as templates for a second PCR with distinct 644 
combinations of barcoded primers (Supplementary Table 10) to generate a plate-specific labelling. The 645 
primer overhangs also contained the adapters required for Illumina sequencing. 30 additional cycles 646 
were performed, consisting of 30 s denaturation at 98 °C, 20 s annealing at 63 °C and 30 s elongation 647 
by Q5 High-Fidelity DNA Polymerase (New England Biolabs) at 72 °C. Ultimately, all products were 648 
pooled, run on a 2.5 % (w/v) agarose gel at 100 V for 2 h, and purified using a gel extraction kit. 649 

Illumina sequencing 650 
NGS was performed by the Genomics Facility Basel using an Illumina MiSeq platform and a Reagent 651 
Kit v2 Nano (150 cycles, PE 110/40) using ~20 % genomic PhiX library as spike-in to increase sequence 652 
diversity. 653 

NGS data analysis 654 
NGS data were analyzed using a custom R script. Forward and reverse reads retrieved from fastq files 655 
were paired and target fragments were selected based on several constant regions 656 
(GTCACACGTAGCATGTGG, GAGACCTTGTGTCGATGG, GGCCTCGGTGGTGCC, no mismatches). Mutation 657 
sites as well as barcodes were extracted based on their distance to these regions. All reads with a Q-658 
score < 30 at the mutation sites were discarded, as well as those for which a barcode did not match 659 
any of the expected sequences. The codons at the mutation sites were translated to amino acids in 660 
order to identify the Sav variants and the barcodes were used to identify the plate and well for each 661 
read. For each plate, the entries were then grouped by variant and only the combinations of variant 662 
and well with the highest number of reads was kept. This eliminates combinations of variants and 663 
barcodes that result from chimera formation during the second PCR step. Subsequently, variants that 664 
accounted for less than 80 % of reads for a given barcode combination were discarded in order to 665 
eliminate cases where more than one variant had been present in a well.  666 

Sav expression for purification 667 
A single colony of E. coli BL21-Gold(DE3) harbouring a plasmid for periplasmic expression of the desired 668 
Sav variant was used to inoculate a starter culture (4 mL of LB with 50 mg L-1 kanamycin), which was 669 
grown overnight at 37 °C and 200 rpm. On the following day, 100 mL of LB with kanamycin in a 500 mL 670 
flask was inoculated to an OD600 of 0.01. The culture was grown at 37 °C and 200 rpm until it reached 671 
an OD600 of 0.5. At this point, the flask was placed at room temperature for 20 min and 50 µM IPTG 672 
(final concentration) was added to induce Sav expression. Expression was performed at 20 °C and 673 
200 rpm overnight, and cells were harvested by centrifugation (3,220 rcf, 4 °C, 15 min). Pellets were 674 
stored at -20 °C until purification.  675 

Sav purification 676 
Cell pellets were resuspended in 10 mL of lysis buffer (50 mM tris, 150 mM NaCl, 1 g L−1 lysozyme, 677 
pH 7.4). After 30 min of incubation at room temperature, cell suspensions were subjected to three 678 
freeze-thaw cycles. Subsequently, nucleic acids were digested by addition of 10 µL of DNaseI (2000 679 
units/mL, New England Biolabs) and CaCl2 to a final concentration of 10 mM, followed by incubation at 680 
37 °C for 45 min. After centrifugation, the supernatant was transferred to a new tube and mixed with 681 
40 mL of binding buffer (50 mM ammonium bicarbonate, 500 mM NaCl, pH 11). Pierce iminobiotin 682 
agarose (Thermo Fisher Scientific) was equilibrated in falcon tubes and used to pack a PD-10 column 683 
up to a bed height of approximately 1 cm. The lysate was loaded onto the column relying on gravity 684 
flow. Subsequently, the column was washed twice with 10 mL binding buffer. Ultimately, Sav was 685 
eluted using 10 mL of elution buffer (50 mM ammonium acetate, 500 mM NaCl, pH 4). Amicon Ultra 686 
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filters (10 kDa molecular weight cut-off) were then used to concentrate the samples and exchange the 687 
buffer against the reaction buffer (50 mM MES, 0.9 % NaCl, pH 6.1). 688 

Quantification of biotin-binding sites  689 
The concentration of Sav biotin-binding sites was determined using a modified version of the assay 690 
described by Kada et al.66, which relies on the quenching of the fluorescence of a biotinylated 691 
fluorophore upon binding to Sav. Specifically, 190 µL of the binding site buffer (1 µM biotin-4-692 
fluorescein, 0.1 g L−1 bovine serum albumin in PBS) was mixed with 10 µL of purified Sav. After 693 
incubation at room temperature for 90 min, the fluorescence intensity was measured (excitation at 694 
485 nm, emission at 525 nm), and a calibration curve produced with lyophilized Sav was used to 695 
calculate the concentration of Sav biotin-binding sites. 696 

In vitro catalysis 697 
In vitro reactions were performed with 2.5 µM purified Sav (tetrameric; corresponding to 10 µM biotin-698 
binding sites), 5 µM (Biot-NHC)Au1 and 5 mM 2-ethynylaniline in MES buffer (50 mM MES, 0.9 % NaCl, 699 
pH 6.1). The reactions were performed in a volume of 200 µL in glass vials and were incubated at 37 °C 700 
and 200 rpm for 20 h. Subsequently, the indole concentration was determined using the Kovac’s assay. 701 

Machine learning  702 
All machine learning methods were implemented in Python using scikit-learn67, Pytorch68, Biotite69, 703 
pyRosetta70 and SciPy71. 704 

Calculation of descriptors: In this work, we encoded the Sav mutants by three different classes of 705 
descriptors: chemical descriptors, geometric descriptors, and energy-based descriptors. To obtain the 706 
chemical descriptors, we utilized amino-acid descriptors from four different sources: Z-scores16, 707 
VSHE17, Barley score18, and PCscores55. All of these are based on physical amino-acid properties (see 708 
Supplementary Table 11) and principal component analysis (PCA) was used to construct a reduced 709 
representation. Here, we concatenated these features, resulting in 25 values per amino-acid position. 710 
As we considered quintuple mutants, each Sav variant is thus described by 125 features.  711 

The geometric and energy-based features were created using the Rosetta software. First, we 712 
calculated the approximate dimeric structure of each mutant with a fixed seed using the mutate 713 
function with the default distance for post-mutational changes. The mutations were performed in the 714 
order of the five sites in the primary protein sequence (111, 112, 118, 119, 121). We calculated all 3.2 715 
million approximate Sav dimer structures. Next, we used the package Biotite to calculate charge, 716 
distance to the centre of mass, and radii of each amino-acid residue. Additionally, we calculated the 717 
solvent accessible surface area of each residue, the number of hydrogen bonds per residue, and the 718 
dihedral angles. A summary of the features can be found in Supplementary Table 12. We discarded 719 
variables that did not vary across the 3.2 million structures, leaving us with 682 features. The energy-720 
based features were calculated in the same manner as the geometric features using the approximate 721 
structure of the variant and correspond to the ref2015 set of 31 features per mutant from the Rosetta 722 
suite (see Supplementary Table 13). A common pre-processing step applied to all features involved 723 
subtracting the mean of each descriptor across the 3.2 million variants and scaling by the absolute 724 
value of the maximum value of that descriptor. This process ensured that the descriptors fell within 725 
the range [-1,1] and that their average value was zero. 726 

Likelihood elucidation: The first step of any data analysis is to understand its randomness and 727 
generation process. In our case, the likelihood specified the experimental error introduced by 728 
biological variability, the measurement procedure, etc. In other words, we assumed that our 729 
measurements were corrupted by additive noise under log transformation. To justify this hypothesis, 730 
we analysed the distribution of the differences between replicates from their mean value. As a normal 731 
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distribution appeared to be a good and conservative approximation for these data, we used a Gaussian 732 
likelihood with a standard deviation determined from the aforementioned distribution. In the first 733 
round, this value was determined to be 0.15, rounded to two decimal points in the log-transformed 734 
cell-specific activity. We repeated the same procedure for the subsequent screening rounds to account 735 
for variability between experiments. The standard deviations determined for the second and third 736 
round were 0.20 and 0.12, respectively. 737 

Model section: For further analysis and Gaussian process fitting, we did not use the full set of features 738 
due to the complexity of the initial fitting procedure, which involves optimizing the marginal 739 
likelihood72. To simplify this process, we preprocessed the initial set of descriptors using one of three 740 
straightforward machine learning models: LASSO, elastic net, and random forests. We evaluated the 741 
effectiveness of this procedure through cross-validation on the entire feature space. In all cases, we 742 
utilized the scikit-learn implementation of these methods. Both the LASSO and elastic net methods 743 
employed an adaptive selection of the regularization parameter, which involved an additional layer of 744 
cross-validation within the training split. For random forests, we used a configuration of 500 trees with 745 
a maximum depth of 15 and a minimum split size of 5. After training, we selected k descriptors with 746 
either the largest coefficients or the highest feature importance for further analysis. We varied k across 747 
20, 40, 60, 80, and 100. This range was chosen as the maximum set of descriptors that we believed 748 
would allow the Gaussian process library to reliably optimize the marginal likelihood. 749 

Gaussian process: The functional relationship between the Sav sequence and ArM activity was 750 
modelled using Gaussian processes (GPs). This Bayesian method is versatile in capturing a wide range 751 
of structures, and is defined by its mean and covariance function, also known as the kernel. In our case, 752 
we found that kernels of the following form performed best among selected statistical models with 753 
calibrated uncertainty:  754 

k(𝑝𝑝, 𝑝𝑝�) = κ(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑(𝑝𝑝, 𝑝𝑝�))) exp(−𝑑𝑑(𝑝𝑝, 𝑝𝑝�)2)𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑑𝑑γ(𝑝𝑝, 𝑝𝑝�) ∝ ���1/γ𝑗𝑗2 �Φ𝑗𝑗(𝑝𝑝) − Φ𝑗𝑗(𝑝𝑝�)�
2

𝑚𝑚

𝑗𝑗=1

�. 755 

This kernel is known as Matérn kernel with regularity parameter η=5/2 and is commonly used to model 756 
twice differentiable smooth response surfaces46. The letters p and p’ denote different protein variants 757 
of which we want to calculate similarity. The function Φ corresponds to the feature representation of 758 
the protein p. In this work, this is a function that maps the protein sequence or structure to a fixed 759 
length vector. The parameters γ𝑖𝑖 are usually referred to as length scales and are used for automatic 760 
relevance detection73. They guide the importance of a certain variable, i.e., if γ is very large, this part 761 
of the descriptor vector Φ  has less impact if changed than a coordinate Φ𝑗𝑗  with larger γ𝑗𝑗. The length 762 
scales can be selected based on Bayesian evidence maximization, which is a well-tested methodology 763 
to select length scales that most likely explain the activity data72. The parameter κ was selected using 764 
the expected maximal achievable improvement of the protein, in this case κ =  3, meaning that the 765 
maximum achievable improvement is 1000-fold over the wild-type variant (due to modelling log10). 766 

Bayesian evidence maximization: Hyperparameters, specifically the length scales of the Matérn 767 
kernel, were optimized for each of the chosen features using the maximization of evidence, a common 768 
Bayesian approach46. As before, we denote length scales 𝛾𝛾. By maximization of evidence, we mean 769 

𝛾𝛾∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝛾𝛾 𝑃𝑃(𝐷𝐷|𝛾𝛾) and  𝑃𝑃(𝐷𝐷|𝛾𝛾) = ∫ 𝑃𝑃(𝐷𝐷|𝑓𝑓, 𝛾𝛾)𝑃𝑃(𝑓𝑓, 𝛾𝛾)𝑑𝑑𝑑𝑑, 770 

where 𝑃𝑃(𝑓𝑓|𝛾𝛾) is the Gaussian process prior parametrized by length scales, and 𝑃𝑃(𝐷𝐷|𝑓𝑓, 𝛾𝛾) is the 771 
Gaussian likelihood as specified in the prior section on likelihood elucidation. The integration in the 772 
prior formula represents marginalization of the Gaussian process, and strictly speaking integration 773 
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requires certain mathematical regularity conditions, which we omit here. Upon finding the right length 774 
scales from the initial data, these were fixed, and the posterior 𝑃𝑃(𝑓𝑓|𝛾𝛾, 𝐷𝐷) was calculated after each 775 
experimentation round without changing them. To implement the Bayesian posterior calculation, we 776 
used a custom implementation in Python.  777 

Active Learning  778 
To employ active learning, we used a technique similar to the upper confidence bound method as 779 
described by Srinivas et al.27, or greedy information maximization. In the exploration round, we 780 
generated predictions using the GP model based on chemical descriptors with 20 features. To select 781 
informative variants, the confidence parameter was set to infinity. In addition, we allocated a smaller 782 
part of the experimental budget to variants predicted to be active to validate the model. The latter 783 
budget was split equally into three categories: A conservative set representing the Sav mutants for 784 
which the mean prediction minus two standard deviations was highest, as well as balanced and 785 
optimistic predictions chosen based on the mean and the mean plus two standard deviations as 786 
ranking mechanisms, respectively. See Supplementary Table 14 for an overview of the budget 787 
allocation in the exploration round. We obtained additional data points through a small random 788 
mutagenesis as well as chimeric variants, which were not part of the designed library.  789 

In the exploitation round, we aimed to select active and diverse ArM variants. To this end, we trained 790 
three GP models on the new data set (including the exploration round). The three models employed 791 
different descriptors (chemical descriptors with 20 features, geometric and energy –based descriptors 792 
with 50 features) to possibly obtain more diverse predictions. We split the experimental budget equally 793 
among the three models. Further, we split the experimental budget per model into conservative and 794 
balanced predictions (see above). The experimental budget allocation can be found in Supplementary 795 
Table 15. The confidence parameter was set to 2 for the exploitation round. Additionally, a diversifying 796 
principle based on determinantal point processes48, a mathematical model of diversity, was employed 797 
to choose a diverse subset of variants, following the principles described by Nava et al.49 (see below). 798 
Upon retrieval of the above budget, we performed a validation step. As part of it, we augmented the 799 
chemical descriptor model with the new data and proposed 30 additional Sav variants to test for 800 
potential improvements. These were selected to be conservative or balanced (10 variants each), and 801 
10 variants were selected to be the best predicted according to the balanced prediction metric.  802 

DPP sampling 803 
When selecting Sav variants for experimental testing, it is advisable that these are diverse, especially 804 
in the context of the exploitation round. For example, if we were to identify the best x candidates using 805 
the machine learning pipeline, it is very likely that all these top x candidates are highly similar to each 806 
other for small x. If the model happens to be incorrect with regard to the top predictions, this will lead 807 
to failure to identify any active mutants. A more principled approach is to pick a diverse subset. 808 
Namely, select a set of promising mutants, and then further select a subset of these which is diverse. 809 
This ensures robustness to potential misspecification errors. The model of diversity we employed here 810 
is the inverse of the similarity model we used to train the GP regressor, namely the kernel. We 811 
measured the diversity of the selected subset by the determinant of the kernel matrix. This is a 812 
common approach in the machine learning literature48, as it has an intuitive interpretation where the 813 
determinant between two vectors is proportional to the volume that the two vectors span (see 814 
Supplementary Fig. 7a). The more orthogonal (dissimilar) these two vectors are, the larger the volume. 815 
A natural extension to non-parametric models such as GP models is to use the kernel matrix instead of 816 
the inner product between vectors. Finding a subset of maximum determinant is an NP-hard 817 
problem74. Hence, often a probabilistic method is employed to find the subsets49,75. 818 
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Suppose that the probability of sampling a set is proportional to the value of the determinant for this 819 
set. This probabilistic object is known as determinantal point process (DPP)48 and can be sampled very 820 
efficiently. In order to diversify our top-x batches, we select a top y number of candidates, where y is 821 
bigger than x, from which we choose a diverse set of size x using DPP sampling. The value of y = 500 822 
was chosen arbitrarily for our experiments. The value of x depends on the available experimental 823 
budget in each round. The explorative round does not require diversification as the goal to select 824 
informative Sav variants already leads to diversity. In fact, it is related to the greedy search for a set 825 
with the largest determinant75. 826 

In order to compare the diversity of the measurements, we use the isometry score, which is a ratio 827 
determinant and trace of a kernel matrix defined via the batch of sequences. The score equates to the 828 
normalized ratio of trace and determinant.  829 

𝐼𝐼(𝐾𝐾) = �
𝑑𝑑𝑑𝑑𝑑𝑑(𝐾𝐾)

1
𝑛𝑛

1
𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐾𝐾)

�. 830 

The score is valued between 0 and 1, where 1 is achieved once K forms essentially a diagonal matrix. 831 
If this is the case, this means the implicit features (defined via the kernel) are orthogonal to each other. 832 
On the other hand, 0 indicates that the implicit features defined via the kernel are very closely aligned 833 
to each other. Of course, this score depends on the kernel metric we use. The DPP method practically 834 
maximizes this metric under the models’ kernel in expectation.  835 

Clustering of ArM variants 836 
The clustering shown in Fig. 5 was created using the t-SNE (t-distributed stochastic neighbour 837 
embedding)54 clustering methodology. For this analysis, we used the kernel matrix of the chemical 838 
descriptor model. This model is based on a Gaussian process with ARD (automatic relevance 839 
determination) kernel length scales. The t-SNE algorithm clusters the data based on a similarity metric 840 
that includes exponentiated negative Euclidean distances. This is very similar to our machine learning 841 
model, with the exception that instead of a pure exponential, we use the Matérn kernel. However, this 842 
should qualitatively lead to similar results. Hence, to generate the clustering, we took the chemical 843 
descriptors, scaled them with appropriate length scales, and used the scikit-learn implementation of 844 
the t-SNE algorithm to generate the clusters. We tested several values of complexity, and the plotted 845 
clusterings correspond to a value of 150, as it appeared to generate the most structured results. 846 

Subsampling analysis 847 
To analyse the effect of data set size on the predictive ability of the model, we created 20 random 848 
subsamples of the original data set for each subsampling fraction (0.1 - 1 in intervals of 0.1). We then 849 
applied the previously described machine learning pipeline, starting with the feature selection. To 850 
analyse the performance of the models, we used them to predict the activity of all ArM variants that 851 
were tested in the exploitation round, and calculated the mean squared error of the predictions as 852 
well as the precision in predicting hits (i.e., ArM variants with a higher activity than the reference 853 
variant). Precision is defined as the percentage of true hits among predicted hits. To investigate the 854 
effect of the exploration round, we calculated the precision of a model that was trained on all data 855 
from the initial library and the exploration round. In the latter case, the precision is different from the 856 
experimentally determined hit rate as not all experimentally tested variants were predicted to be hits 857 
by the model used here. 858 

Data and code availability 859 
The data and code will be made available upon publication of the manuscript. 860 
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