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Abstract

The limited availability of antibiotics and the need for prompt decision-making
present significant challenges for healthcare practitioners. When faced with this
situation, practitioners must prioritize their approach based on several key fac-
tors. By leveraging the emergent understanding of collateral sensitivity among
antibiotic-exposed pathogens, we demonstrate the utility of control invariant sets to
predict treatment failure when antibiotic cycling is applied as a therapeutic strategy
aiming to eradicate or prevent emergence of multi-drug resistant pathogens. Our
results here pave the way for point-of-care diagnostic technologies to identify in-
fections and select appropriate treatments quickly, reducing unnecessary antibiotic
use.

1 Introduction
Antimicrobial drug resistance (AMR) was uncovered in the 1950s and it is well known
that the deployment of antimicrobial without prescription has increased the AMR crisis
[1, 2, 3, 4, 5, 6]. AMR has mainly been addressed by the discovery of new classes of
antibiotics but it was reported that the development of antimicrobials might not keep up
with the escalation of AMR in the next decades [7, 8, 9]. In addition, the combination
of drugs necessary to treat AMR has triggered the emergence of multidrug-resistant
(MDR) infections [10, 11, 12, 13] further aggravating the AMR crisis. Accordingly,
control strategies that extend the life span of existing antibiotics and reduce the MDR
are currently being studied [14, 15, 16, 17].
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One approach has been focused on exploiting synergistic and antagonistic effects
between antimicrobials [18], like orthogonal sensitivities that arise from the evolution
to resistance which is known as collateral sensitivity (CS). CS was first described for
Escherichia coli in 1952 [19] and it was observed in microbes infections and in can-
cer as well [20]. The CS phenomenon occurs when the genetic changes accrued on
the develop of resistance towards one agent simultaneously decrease fitness to a sec-
ond agent [21] and it is thought to be caused by a trade-off of pleiotropic resistance
mutations [22]. More importantly, CS can be used to design drug combinations ther-
apy: for instance by including mutual CS drugs in drug-cycling regimen [23, 24, 25].
To further understand the extent of CS, laboratory evolution has been deployed to
map out CS profiles between the known antibiotics for specific drug-resistant strains
[26, 27, 28, 29]; genome sequencing to characterize the components that contribute
to CS [30, 31, 32, 33]; and the development of mathematical modeling that provides
insight into the collateral dynamics network and supports control strategies to reduce
the growth of MDR [34, 35].

Mathematical modeling establishes a high level of control involving factors such as
pharmacodynamic (PD) and pharmacokinetic (PK) [36], optimal time of drug exposure
[37], between others with relevance on the effects antibiotics have on bacterial growth,
inhibition, killing, and mutation [38, 39, 40, 41]. Regarding collateral effects, mathe-
matical models have been developed to evaluate sequential drug regimens in vitro and
silico [42, 43], to assess the robustness of collateral sensitivity [43], to exploit its sta-
tistical structure and designing optimal policies [44], to evaluate possible reversion of
evolution towards resistance [45] and to compare cycling vs mixing treatments [46].
None of these models however tackled the CS phenomenon with a combinatorial mu-
tation network which has already been used for multidrug resistance (without collateral
effects) on cancer [47], for which it was assumed that a mutation that confers resistance
to one drug does not confer resistance to any of the other drugs in use; framework that
leads to a dead-end towards MDR. The epistatic interactions between genes involved in
CS is a complex and not fully understood phenomenon but some magnitudes and direc-
tions affected by this phenomenon can be measured and framed within combinatorial
mutation networks and - by dynamic network-based analysis [48] and the set-control
theory [49] - we can determine drug combinations that contain the infection.

Eliminating an infection requires driving the system states to the healthy equilib-
rium at the origin. This is referred to as the regulation problem in control [50, 51, 52].
However, stabilizing the origin is not always feasible, especially in the context of evo-
lutionary dynamics that lead to resistance. In such cases, more flexible control goals,
such as invariant sets, become invaluable [53, 54]. Invariant sets, unlike fixed equi-
libria, enhance controllability by offering alternative stable regions and they provide
safety zones to maintain infection suppression [55]. Such invariant sets play a fun-
damental stabilization role as the only regions formally stabilizable under Lyapunov
analysis [56]. In this study, we introduce a combinatorial mutation network that mod-
els qualitative collateral sensitivity data for the assessment of sequential drug regimens.
We employed a switched system framework [57, 58], extensively utilized in biomed-
ical control problems [59, 60, 58] and recently adapted for sequential drug regimens
with mutation dynamics [?, 61], with the goal of targeting phenotype states associ-
ated with specific collateral effects to improve treatment success in chronic infections.
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The model suggests that collateral sensitivity profiling can forecast the emergence and
proliferation of MDR strains. Furthermore, we explore invariant regions for resistance
evolution population trajectories that determine the conditions under which mutual col-
lateral sensitivity possesses the capacity to contain a chronic infection.

2 Mathematical abstraction
The European Committee on Antimicrobial Susceptibility Testing (EUCAST) defines
a microorganism susceptibility to a level of antimicrobial activity as a high likelihood
of therapeutic success. Conversely, resistance is defined as a high likelihood of thera-
peutic failure. These categories are formally characterized by breakpoints determined
in standard phenotype test systems [62, 63]. Ideally, clinical breakpoints distinguish
between patients who are likely or unlikely to respond to antimicrobial treatment.

For convenience, the minimum inhibitory concentration (MIC) can be used as a
parameter of antibiotic action [38], since it was reported a linear relationship between
an increase in the MIC and hospital moralities [64]. It is defined as follows:

Definition 1 (Minimum Inhibitory Concentration - MIC). The MIC breakpoint is de-
fined as the lowest concentration of a drug that inhibits the visible growth of a microor-
ganism.

Collateral sensitivity between drugs A and B can be defined as a decrease in the
MIC of B for the antibiotic-resistant strain, when expose to drug A. Conversely, an in-
crease in the MIC defines a collateral (or cross) resistance. On the other hand microbi-
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Figure 1: Drug-driven vectors describe the direction the MIC evolves under drug ex-
posure. The drug-driven vector of A (red) shows cross-resistance and the vector of B
(blue) indicates collateral sensitivity. According to the position of the MIC and the
breakpoints, the naive strain V 0 is sensitive to both drugs, the variant V 1 is resistant to
both drugs and the variant V 2 is resistant to drug B but sensitive to drug A.

ology laboratories uses clinical breakpoints to categorize microorganisms as clinically
susceptible or resistant dependent on the quantitative antimicrobial susceptibility as in-
dicated by the MIC value [65, 66]. Figure 1 illustrates the scenario for two hypothetical
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drugs A and B, for the case of combining antibiotics in sequential order (not for mix-
tures drugs). According to Figure 1 the MIC of the wild-type (Variant V 0) indicates a
profile of susceptibility to both drugs, after V 0 is expose to drug A the MIC increase
respect to A and respect to B, i.e. drug A shows cross resistance. On the other hand,
after V 0 is expose to drug B the MIC increase respect to B but it decrease respect
to A, i.e. drug B shows collateral sensitivity. To determine the susceptible/resistant
profile of emerging variants following drug exposure, collateral sensitivity effects can
is formalized in next section using a combinatorial mutation network and, then linked
the network with a switched system to model the population trajectories under drug
sequential therapies.

2.1 Defining sensitivity and resistance
Consider N drugs {σ1, · · · , σN} = Σ. Σ defines a drug concentration space C ⊆ RN

≥0,
where c = (c1, · · · , cN ) ∈ C is such that ci represents concentration of drug σi for all
i = 1, · · · , N (see Figure 1 for 2 drugs Σ = {A,B}). We define a MIC N -dimensional
vector that quantifies collateral sensitivity and cross-resistance of all drugs on Σ for a
particular microorganism V , MIC(V ) ∈ C, as follows

MIC(V ) = (MICσ1(V ), · · · ,MICσN
(V )) ∈ C,

where MICσi
(V ) is the MIC of drug σi for microorganism V . The breakpoints of Σ,

BrΣ ∈ C, is given by
BrΣ = (Brσ1 , · · · , BrσN

) ∈ C,

where Brσi
represents a maximum concentration of drug σi allowed to used for all

i = 1, · · · , N . Then, the breakpoints and the MIC of Σ state the following.

Definition 2 (Sensitive/Resistant strains). Consider a microorganism V and N drugs
Σ = {σ1, · · · , σN}. It is said that V is sensitive/resistant to drug σi, with i =
1, · · · , N , if the ith element of the vector MIC(V )−BrΣ, is negative/non-negative.

The phenomenon of a microorganism Vi exposed over time to drug σ until it con-
verges to a resistant variant Vj (a different phenotypic state) can be represented by the
following graph

Vi
σ−→ Vj ,

which can be measured by the following drug-driven vector.

Definition 3 (Drug-driven vector). Consider the following graph Vi
σ−→ Vj . The drug-

driven vector, ⇀vσ ∈ RN , is defined by

⇀vσ := MIC(Vj)−MIC(Vi).

Negative elements of ⇀vσ represent collateral sensitivity, unintendedly produced by
drug σ; positive elements represent cross-resistance, unintendedly produced by drug
σ, and null elements nonchange in relation to the MIC of the naive variant Vi. In
addition, considering the breakpoints of Σ and Definition 2, the vector ⇀vσ determines
the susceptible/resistant profile of all emerging variants.
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2.2 Evolutionary Network interactions between bacteria and an-
tibiotics

To obtain a formal dynamical model describing the mutation/variation path of a pathogen
when exposed to a sequence of N possible drugs (i.e., when applying one drug at a
time), we associate each possible combination of sensible/resistant variant to a state in
a state-space. This way, the potential dimension of the state space is 2N , accounting
for the fact that each variant can be either sensitive or resistant to each of the drugs.
Formally, an state xi, corresponding to variant Vi, for some i ∈ {1, · · · , 2N}, is given
(for instance) by xi := (σ1,S , σ2,R, · · · , σN,S), meaning that variant Vi is suscepti-
ble to drug σ1, resistant to drug σ2, · · · , and susceptible to drug σN or, the same,
MIC(Vi) := (MICσ1(Vi),MICσ2(Vi), · · · ,MICσN

(Vi)) fulfill the conditions

MICσ1(Vi) < Brσ1 ,

MICσ2(Vi) ≥ Brσ2 ,

· · · ,

MICσN
(Vi) < BrσN

.

We denote the complete model containing the 2N states as the classical one. How-
ever, if the model is intended to represent the system behavior just for realistic initial
conditions - i.e., initial conditions that can be reached starting from other realistic ini-
tial conditions and feasible paths - the dimension (and complexity) of the model can
be significantly reduced. Suppose that the original complete system of dimension 2N

is divided into two subspaces of dimension L and E, respectively (L denotes ”latent”
and E denotes ’explicit’ subspace), such that L+ E = 2N . And suppose also that the
L-dimensional subspace cannot be reached, by any drug sequence, from its comple-
mentary subspace of dimension E, containing this latter all the realistic initial condi-
tions. This way, the E-dimensional subspace is an invariant subspace containing all the
initial biologically feasible conditions: L-dimensional subspace can not be the result
of a mutation path promoted by the collateral sensitivity and cross-resistance profiles
of the chosen drugs.

To exemplify this point, let us consider the hypothetical case of a pathogen and
two drugs described in Figure 1, where drug A shows cross-resistance with respect
to drug B and drug B presents collateral sensitivity with respect to drug A. Ac-
cording to this simple scheme, the complete 2N states are denoted as ASBS , ARBS ,
AsBR and ARBR, denoting all possible variant combinations according to their sensi-
tivity/resistance to each drug. However, starting from the (wild type) variant V0, which
is a ASBS state, and a biologically feasible initial condition, only variants V1, which is
ASBR, and variant V2, which is ARBR, can be reached by applying sequentially drugs
A and B (in any order and during any time period). State variant ARBS constitutes
in this example the L-dimensional (with L = 1) latent subspace to which the system
cannot evolve, while the complementary 3-dimensional subspace is the invariant sub-
space. Figure 2 shows a graph V0

σ−→ Vi for every σ ∈ Σ := {A,B} and i = 1, 2, of
this example. Our main hypothesis supporting this approach is that, given that the col-
lateral sensitivity and cross-resistance profiles of the drugs are considered fixed for the
model, they necessarily determine its structure (its dimension and potential behavior).
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The general way to obtain the reduced model is by applying each drug at a time to
each state that emerges from the previous application of each drug. The procedure is
stopped when the network converges to a closed graph, as shown in the right plot of
Figure 2.

ASBS

ARBS

ASBR

ARBR

A

B

B

A
ASBS

ARBR

ASBR

A

B

B

A

Figure 2: Classic combinatorial mutation network describing resistant and sensitive
states for drugs A and B resulting in a total of 2N states (left) vs a combinatorial
mutation network accounting for collateral sensitivity and cross-resistance of drugs A
and B (right).

2.3 Dynamical model
A network with n sates (x1, x2, · · · , xn) can be linked to a switched system, as demon-
strated in a prior study [61] and by this we can investigate the impact of sequential drug
exposures on population dynamics. The effect of therapy is modeled by drug-induced
death rate framework: the growth rate for variant xi under exposure of drug σ is given
by ασ

i > 0 and death rate δσi > 0. Therapy (σ) can affect also mutation from xi to
xj rates by µσ

ij . The combinatorial mutation network is given by the binary matrix
mσ

i,j ∈ {0, 1}, where mσ
i,j = 1 implies an arrow from xi to xj , and mσ

i,j = 0 there is
no connection. The total carrying capacity is K > 0. The following switched system
describes the nonlinear dynamics between states.

ẋi(t) = α
σ(t)
i xi(t)

(
1−

∑n
i=1 xi(t)

K

)
− δ

σ(t)
i xi(t) + µ

σ(t)
ij

n∑
j=1

m
σ(t)
i,j xj(t). (1)

The states of the system are given by x = (x1, x2, · · · , xn), and the control input by
σ, for all time t > 0.

Remark 1. For switched systems, mode selection from the finite set can be formu-
lated as a dynamic programming problem, but the solution is difficult to implement and
may not account for constraints [67, 59]. More applicable control approaches involve
mixed-integer optimization [68], state-dependent switching rules [69], and receding
horizon switching signals [58].

The switch of drugs shifts the balance of birth and death such that the colony shrinks
or escapes. It is assumed that during single-drug therapy with, say, drug σd, mutations
lead to the emergence of a variant resistant to this drug, i.e., state σ1,?, · · · , σd,S , · · · , σN,?

varies/mutates to state σ1,?, · · · , σd,R, · · · , σN,? whatever ? is S or R. Consequently,
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the resistant phenotype proliferates while the sensitive strains will be killed at a con-
stant rate, ultimately culminating in treatment failure. Also, to simplify the model, all
sensitive cells are killed at the same rate as the naive strain.

Remark 2. The dynamics framework we consider here is that under the pressure of
any drug there is an evolution towards resistance to the drug. Thus monotherapy even-
tually fails to contain overall infection levels leading to treatment failure as resistant
strains dominate. Within this framework, combination drug regimens are required to
prevent uncontrolled spread of the infection. Our goal is to determine optimal switch-
ing protocols that constrain the infection despite ongoing evolution of drug resistance.

3 Invariance analysis for drug-resistant infections
Set-control theory deals with the properties of some regions of the state space that are
applicable to both the practical and theoretical aspects of control [54]. Particularly,
the invariant sets of a dynamical system are regions of the state space that trap the
trajectories of every state entering them: once the system is inside, it cannot escape the
invariant set. In the following, we detail how the theory of invariant sets can be applied
to analyze bacterial resistance.

In the framework proposed by Eq. (1) it is required to use combinations of an-
tibiotics with mutual collateral sensitivity to prevent population trajectory to escape,
because of the constant evolution towards resistance. However, this requirement is not
a sufficient condition to ensure that population trajectories will not escape. To see this,
consider Figure 3, where three illustrative dynamics show the effects of drug A (red)
and drug B (blue) with mutual collateral sensitivities on the two populations ARBS

and ARBS . Depending on the birth, death, and mutation rates, (a) the behavior of
the population can achieve perfect balance and the total population can be maintained
inside a target window; (b) the population may experience shrinkage so it will remain
inside the target window; and (c) the population may escape, because it is not possible
to keep the states inside the target region.

The assessment of this problem has been successfully tackled by set-control theory
[54]. Set-control involves examining regions within the state space that feasibly bound
system trajectories; such regions are known as invariant sets. Examining invariant sets
for our dynamical system can help us to determine if a trajectory will remain bounded
or escape from a target window..

Let us assume there is a therapeutic window T on the states space (containing the
origin) where we want to maintain the population of microorganisms. We consider
a discretization of the system (1) for a given step size. A control invariant set (CIS)
inside T, for the discrete switched system can be defined as follows.

Definition 4 (Control Invariant Set - CIS). A set Ω ⊂ T on the states space is said to
be a control invariant set of the switched system if for every state x(k) ∈ Ω there is a
feasible mode σ ∈ Σ such that the next state follows the condition x(k + 1) ∈ Ω.

The invariant set is a generalization of the steady-state (equilibrium) concept and its
existence implies there is a feasible sequence of drugs that keep the population bounded
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Figure 3: Illustrative dynamic evolution of mutual collateral sensitivity. Exposure
to drug A reduces concentration of ASBR cells (sensitive to A and resistant to B) but
allows the escape of ARBS . Oppositely, exposure to drug B reduces concentration
of ARBS but induces the escape of ASBR. a) A proper balance between dynamic of
drugs A and B implies that the total population can be feasible bounded. b) The best
scenario of mutual collateral sensitivity implies the asymptotic stability of the origin.
c) Despite a mutual collateral sensitivity it may not be feasible to prevent the escape of
the infection.

inside Ω, obviating so far the need for identifying the specific drug sequence, its order
and exposure times, which is related with a complex and challenging optimal control
problem. Instead, by simply ensuring the existence of a CIS, we can establish that the
infection can be feasibly contained. Certainly, the presence of a multidrug-resistant
(MDR) strain within the dynamical network implies the nonexistence of an invariant
set within a therapeutic window, provided the latter is bounded to safety regions.

To characterize a CIS, the concept of controllable set can be used [58]. The con-
trollable set of Ω is given by all the states that can be driven by a feasible mode σ ∈ Σ
in one step to Ω, and it can be formally defined as follows:

S(Ω) := {x(k) ∈ Rn
≥0 : ∃ σ ∈ Σ s.t. x(k + 1) ∈ Ω}.

The next result is well established on set-control theory.

Property 1. If Ω ⊆ S(Ω) then Ω is a CIS.

Proof. Suppose that x(k) ∈ Ω for some time-step k ≥ 0. Since Ω ⊆ S(Ω), then
x(k) ∈ S(Ω) as well. By definition of the controllable set S(Ω) there exists σ ∈ Σ
such that x(k + 1) ∈ Ω, which conclude the proof.

Various methods for characterizing invariant sets for a linear switched system were
proposed in [55]. Based on the ideas presented there, we have developed a method for
characterizing CIS in our framework, as detailed in the next section.
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3.1 Invariant sets characterization
For several infectious diseases, nutrients are in excess. Thus, the nonlinear model
described by Equation (1) can be simplified to a linear model when (1−

∑n
i=1 xi

K ) = 1.
In addition, if we consider mutation rate µσ

i = µ for all i = 1, · · · , n and σ ∈ Σ,
Eq. (1) can be rewritten as follows:

ẋ1(t)
ẋ2(t)

...
ẋ2(t)

 =


ασ
1 − δσ1 0 · · · 0
0 ασ

2 − δσ2 · · · 0
...

...
. . .

...
0 0 · · · ασ

n − δσn




x1(t)
x2(t)

...
x2(t)

 (2)

+µ


0 mσ

1,2 · · · mσ
1,n

mσ
2,1 0 · · · mσ

2,n
...

...
. . .

...
mσ

n,1 mσ
n,2 · · · 0




x1(t)
x2(t)

...
x2(t)

 (3)

which is equivalent to the switched linear system given by the following equations

ẋ = (Aσ + µMσ)x,

= Λσx (4)

where x belong to the state constraint X ⊂ Rn
≥0 and σ ∈ Σ. Note that Λ−1

σ Ω is well
defined even if matrix Λσ is singular.

Lemma 2. A set Ω ⊂ X is a control invariant set for the switched linear system (4) if
and only if Ω ⊆ ∪σ∈ΣΛ

−1
σ Ω.

We propose the following algorithm to compute a control invariant for the linear
switching system within a window T ⊂ X.

Algorithm 1: Invariant set within T for N drugs
Data: Λσ,T, σ = 1, 2, . . . , N
Result: Invariant Ω

1 Ω(0) = T;
2 while Ω(0) ̸⊆ ∪σ∈ΣΛ

−1
σ Ω(0) do

3 for σ = 1 : N do
4 Ω(σ) = Λ−1

σ Ω(σ − 1) ∩ T;
5 end
6 Ω(0) = Ω(N) ;
7 end
8 return Ω = Ω(0)

Proposition 3. Algorithm 1 converges to the largest invariant set of the switched sys-
tem (4) contained in T, or to an empty set.
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Figure 4: Heat-map representation of collateral sensitivity and resistance from [29].
Antibiotics are specified on Table A1.

4 Numerical Results
We assessed methods to find bounded invariant sets for the switched system associ-
ated with different treatments, and we demonstrate that the existence of this set implies
the infection can be suppressed (or at least contained) through a feasible sequence of
drugs. We use data collected in Imamovic et al. for P. aeruginosa strain PAO1 ex-
posed to clinically significant antibiotics, increasing the concentration over 10 days
such that by day 10 all strains could grow in the presence of the antibiotic when the an-
tibiotic concentration was above the EUCAST breakpoint. Dose response curves were
performed with the 23 other antibiotics to elucidate collateral sensitivity or collateral
resistance interactions showed in the heatmap on Figure 4.

4.1 Sequential drug therapy simulation
We have simulated a combinatorial mutation network to describe the interactions be-
tween strains resistant and sensitive to 3 drugs. We compare a cyclic treatment for two
types of networks. The first is a conventional network with 3 generic drugs A, B and
C; in this case there are 23 different phenotypic states (as described in Figure 5-a), the
drug-driven resistance leads to mutations that follow a dead-end path to the multidrug
resistance strain ARBRCR, which is inevitable. The second network is designed ac-
cording methodology proposed on Section 2.2, for the antibiotics Aztreonam (AZE),
Ciprofloxacin (CIP), Tobramycin (TOB) from Table A1, with A = AZE, B = CIP ,
and C = TOB. The collateral sensitivity and cross-resistance profiles of these drugs
according Figure 4 (generated in [29]) produce a particular network, where the direc-
tions of mutations take into account all the side effects. Figure 5-b shows the network
for these drugs, the red arrows indicate that there is cross-resistance and the blue arrows
indicate that there is collateral sensitivity. As there are 3 drugs, one drug can exhibit
cross-resistance concerning one drug and collateral sensitivity concerning the other; in
these cases the black arrow is used. Both networks were linked to the dynamics model
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in Equation 1. This allowed simulating bacterial growth under 50hr cyclic dosing of
drugs A, B, C over 600hr (as described in Figure 5-c). Importantly, Figure 5-b shows
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Figure 5: Dynamic evolution of a classic mutation network vs a collateral sensitiv-
ity network simulations for three drugs with cyclic treatment. We consider two cases:
a) for a combinatorial mutation network given by generic drugs without collateral ef-
fects (a). And b) for a combinatorial mutation network that considers collateral ef-
fects between drugs Aztreonam (A = AZE), Ciprofloxacin (B = CIP ), Tobramycin
(C = TOB).

that drug interactions alter potential mutation pathways, so not all theoretically possi-
ble phenotype strains manifest in the network. The bacteria cannot mutate in a way
that becomes fully resistant to all drugs, what cannot be avoided in the classic network
presented in Figure 5-a. This is a crucial point as it enables us to select the right drugs
to prevent the emergence of multiresistant strains.
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4.2 Invariant set for Levofloxacin and Ampicillin
The antibiotics Levofloxacin and Ampicillin show mutual collateral sensitivity when
used in PAO1 wild type [29], thus providing an ideal scenario to test whether the model
generated by these two antibiotics admit invariants within a therapeutic window. The
mutual collateral sensitivity of the drugs LEV and AMP generates the combinatorial
mutation network shown in Figure 6-a, with the states ASBS (sensitive to both drugs),
and the states ASBR and ARBS . The network indicates the direction of mutations
under the effect of each drug. Note that the system has 3 states and one of them is
sensitive to both drugs (wild type ASBS), therefore this state converges to the origin
when either drug A or drug B is applied. Thus, we can disregard this dimension, and
represent the invariant sets in 2 dimensions; ASBR and ARBS . In this way, we have
better visibility of the sets. To calculate a control invariant for the system associated
with the network, we use Algorithm 1. Four cases were simulated, in which differ-
ent growth, death, and mutation rates were considered (see Section 5). For cases one
(Figure 6-b), two (Figure 6-c), and four (Figure 6-e) we chose a therapeutic window
given by the set T1 = {0 ≤ ARBS ≤ 1, 0 ≤ ASBR ≤ 1}, and the algorithm finds an
invariant within T1, as Figure 6 shows the controllable sets contains set Ω in each case,
fulfilling Property 1. For case 3 (Figure 6-d) the algorithm does not find an invariant
within T1, but it converges for T2 = {0 ≤ ARBS ≤ 1, 0 ≤ ASBR ≤ 0.5}.

4.3 Invariant set for Tobramycin, Carbenicillin and Colistin
Here we consider 3 drugs; Tobramycin, Carbenicillin, and Colistin, whose collateral
effects were analyzed in [29] for the treatment of the PAO1 wild-type strain. According
to Imamovic et. at. these drugs exhibit collateral sensitivity and cross-resistance both.
The combinatorial mutation network for these drugs is shown in Figure 7-a, with 4
states: the wild type ASBSCS sensitive to all drugs (A = TOB, B = CAR, C =
COL), and three other states that mutate among themselves according the collateral
effects of the drug used, ASBRCS , ARBSCS and ARBSCR.

Through Algorithm 1 we proved that there exists an invariant for the linear dynamic
system associated with this set of drugs, which is plotted in Figure 7-b in three dimen-
sions (the dimension of ASBSCS is not considered because this state always decays),
the parameters from Table 3 were used.

The invariant set Ω found and represented in Figure 7-b implies that the infection
can be feasibly contained through some sequence given by the drugs TOB, CAR and
COL. This means that even though there is constant evolution towards resistance,
the dynamics and interaction between these drugs are enough to contain the infection.
Technically, if a state,

x(k) = (ASBRCS(k), ARBSCS(k), ARBSCR(k)) ∈ Ω,

representing population at time k ≥ 0, one drug in Σ = {TOB,CAR,COL} implies
that

x(k + 1) = (ASBRCS(k + 1), ARBSCS(k + 1), ARBSCR(k + 1)) ∈ Ω,

and so on indefinitely.
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Figure 6: Invariant set for combination of drugs Levofloxacin (LEV ) and Ampicillin
(AMP ). From the profiles of collateral sensitivity and cross resistance of drugs LEV
and AMP the network describing the interactions between variants LEVSAMPS ,
LEVRAMPCS and LEVSAMPCR is computed. There exists invariant sets of the
mathematical model associated to the network which implies the infection can be
bounded with drugs LEV and AMP . Invariant Set Ω (green) inside T . Note that
the controllable set S(Ω) (dashed-lines) contains the invariant set for all cases.

5 Discussion
Our finding shows that a sequential drug treatment that aims to eliminate a population
of distinct bacterial phenotype all evolving resistance to the current drug requires drug
synergy. Without collateral sensitivity between agents, single or combined antibiotics
are bound to fail by enabling persistence of at least one resistant bacterial variant. In
this current study, we have used a birth/death model that captures interactions between
distinct variants of bacteria using the collateral sensitivity and cross-resistance profile
of the drugs targeting specific species. The interactions were modeled by combinato-
rial mutation networks where the mutation rates between the variants can be specified.
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inside the invariant set Ω for drugs Tobramycin (TOB), Carbenicillin (CAR) and Col-
istin (COL).

We modeled the drug effect by discrete events affecting the birth, death, and mutation
rates of a continuous bacterial population. Systems containing both continuous and
discrete-time dynamics and characterized by abrupt changes in at least one state vari-
able at certain time instants, are called hybrid systems [70] and can be used to analyze
qualitative properties of the population evolution.

Our model enables predicting the effect of sequential drug treatments, taking into
account the antagonistic and synergistic interactions between the drugs involved in the
process. This proposed model can be used to study advanced control strategies and de-
termine optimal combinations and sequences of drugs. It can also be used to determine
which combinations lead to the proliferation of multidrug-resistant strains, as well as to
analyze the trade-offs between the ongoing evolution of resistance to the current drug
and the evolution toward sensitivity to potential drugs. In the latter, we focused some
of our dynamic analysis. To this end, we employed set-control theory to character-
ize stable regions within the feasible state space. These regions could include steady
states, multiple equilibria, or invariant sets. However, our system had only healthy
equilibria (e.g., the origin) with no relevance in this context. Therefore, we proposed
to use the concept of control invariant sets to assess when the total population could
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be feasibly maintained within a therapeutic window, as an invariant set captured the
regions of the state space where the system can feasibly remain indeterminately. We
provided a method to characterize invariant sets for our particular system and com-
puted several invariant sets for a population of distinct phenotypes of P. aeruginosa and
its sensitivity profile for 24 relevant antibiotics [29]. In this way, the existence of a
nonempty invariant set within a therapeutic window for a specific system (determined
by the drugs chosen for therapy) ensures that drug resistance could be feasibly con-
tained. Furthermore, the nonexistance of such a set implies that the population can not
be feasibly contained inside the therapeutic window, resulting in resistance prevailing
over synergy.

Our dynamic analyses offer valuable qualitative and quantitative insights into the
collateral effects on population dynamics. We can reliably identify drug combinations
leading to treatment failure and those enabling the controlled dynamics of all subpopu-
lations, depending on specific birth, death, and mutation rates. To expand our findings,
we must incorporate PD/PK factors, account for stochastic processes, address resource
competition, and delve into parameter estimation. Although these additional factors
introduce a layer of complexity to the dynamic analysis, also would allow us to ef-
fectively leverage our results in modeling in-vitro population growth, and to ensure
the effectiveness of combining pharmacology and evolution for sustaining pathogen
suppression.

Parameters and software availability
For parameter simulations, we maintained uniform values for mutation rate and carry-
ing capacity across all cases. Specifically, we set µσ

ij = 10−4h−1 for all i = 1, · · · , n
and for all σ ∈ Σ. Additionally, we adopt qualitative values for growth and clearance
rates, such that ασ

i − δσi < 0 for strains xi sensitive to drug σ and ασ
i − δσi > 0 for

strains xi resistant to drug σ. Finally, only for the analysis of Figure 6, extreme values
(on the order of the growth rate) of the mutation rate were considered in order to obtain
qualitative results.

Software is available at
https://github.com/AlejandroRedna/Invariant_Bacterial_
Resistance_Mathematical_Bioscience_2024.
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Fekete, B. Bogos, O. Méhi, B. Csörgő, et al., Bacterial evolution of antibiotic
hypersensitivity, Molecular systems biology 9 (1) (2013) 700.

[27] T. Oz, A. Guvenek, S. Yildiz, E. Karaboga, Y. T. Tamer, N. Mumcuyan, V. B.
Ozan, G. H. Senturk, M. Cokol, P. Yeh, et al., Strength of selection pressure
is an important parameter contributing to the complexity of antibiotic resistance
evolution, Molecular biology and evolution 31 (9) (2014) 2387–2401.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.02.06.579227doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.579227
http://creativecommons.org/licenses/by-nc-nd/4.0/


[28] V. Lázár, I. Nagy, R. Spohn, B. Csörgő, Á. Györkei, Á. Nyerges, B. Horváth,
A. Vörös, R. Busa-Fekete, M. Hrtyan, et al., Genome-wide analysis captures the
determinants of the antibiotic cross-resistance interaction network, Nature com-
munications 5 (1) (2014) 4352.

[29] L. Imamovic, M. M. H. Ellabaan, A. M. D. Machado, L. Citterio, T. Wulff,
S. Molin, H. K. Johansen, M. O. A. Sommer, Drug-driven phenotypic conver-
gence supports rational treatment strategies of chronic infections, Cell 172 (1-2)
(2018) 121–134.

[30] N. L. Podnecky, E. G. Fredheim, J. Kloos, V. Sørum, R. Primicerio, A. P. Roberts,
D. E. Rozen, Ø. Samuelsen, P. J. Johnsen, Conserved collateral antibiotic suscep-
tibility networks in diverse clinical strains of escherichia coli, Nature Communi-
cations 9 (1) (2018) 3673.

[31] A. Liakopoulos, L. B. Aulin, M. Buffoni, E. Fragkiskou, J. Coen van Hasselt,
D. E. Rozen, Allele-specific collateral and fitness effects determine the dynamics
of fluoroquinolone resistance evolution, Proceedings of the National Academy of
Sciences 119 (18) (2022) e2121768119.
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Appendix

ANTIBIOTIC ABBREVIATION CLASS TARGET

Amikacin AMI aminoglycoside protein synthesis, 30S
Gentamicin GEN aminoglycoside protein synthesis, 30S
Tobramycin TOB aminoglycoside protein synthesis, 30S

Ciprofloxacin CIP quinolone DNA gyrase
Levofloxacin LEV quinolone DNA gyrase
Ampicillin AMP b-lactam (penicillin) cell wall
Piperacillin PIP b-lactam (penicillin) cell wall

Carbenicillin CAR b-lactam (penicillin) cell wall
Ticarcillin TIC b-lactam (penicillin) cell wall
Aztreonam AZE b-lactam (monobactam) cell wall
Cefepime CFP b-lactam (cephalosporin) cell wall

Cefuroxime CFX b-lactam (cephalosporin) cell wall
Ceftazidime CFZ b-lactam (cephalosporin) cell wall
Meropenem MER b-lactam (carbapenem) cell wall
Imipenem IMI b-lactam (carbapenem) cell wall

Minocycline MIN tetracycline protein synthesis, 30S
Doxycycline DOX tetracycline protein synthesis, 30S
Azithromycin AZY macrolide protein synthesis, 50S
Erythromycin ERI macrolide protein synthesis, 50S

Clarithromycin CLA macrolide protein synthesis, 50S
Colistin COL polymyxin lipopolysaccharide

Fosfomycin FOS fosfomycin cell wall biogenesis
Rifampicin RIF rifamycin RNA synthesis

Trimethoprim TMS antifolate combination folic acid pathway

Table A1: List of antibiotics used in [29] for the evolution of wild-type P. aeruginosa.
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