Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development

View ORCID ProfileJames F. Clark, View ORCID ProfilePhilippe Soriano
doi: https://doi.org/10.1101/2024.02.16.580629
James F. Clark
1Department of Cell, Developmental, and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, NY 10029
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for James F. Clark
Philippe Soriano
1Department of Cell, Developmental, and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, NY 10029
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Philippe Soriano
  • For correspondence: [email protected]
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 16, 2024.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development
James F. Clark, Philippe Soriano
bioRxiv 2024.02.16.580629; doi: https://doi.org/10.1101/2024.02.16.580629
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development
James F. Clark, Philippe Soriano
bioRxiv 2024.02.16.580629; doi: https://doi.org/10.1101/2024.02.16.580629

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (6024)
  • Biochemistry (13708)
  • Bioengineering (10437)
  • Bioinformatics (33163)
  • Biophysics (17112)
  • Cancer Biology (14180)
  • Cell Biology (20108)
  • Clinical Trials (138)
  • Developmental Biology (10868)
  • Ecology (16022)
  • Epidemiology (2067)
  • Evolutionary Biology (20348)
  • Genetics (13398)
  • Genomics (18634)
  • Immunology (13754)
  • Microbiology (32164)
  • Molecular Biology (13393)
  • Neuroscience (70079)
  • Paleontology (526)
  • Pathology (2191)
  • Pharmacology and Toxicology (3741)
  • Physiology (5866)
  • Plant Biology (12020)
  • Scientific Communication and Education (1814)
  • Synthetic Biology (3367)
  • Systems Biology (8166)
  • Zoology (1842)