Abstract
Clostridium thermocellum, a cellulolytic thermophilic anaerobe, is considered by many to be a prime candidate for the realization of consolidated bioprocessing (CBP) and is known as an industry standard for biofuel production. C. thermocellum is among the best biomass degraders identified to date in nature and produces ethanol as one of its main products. Many studies have helped increase ethanol titers in this microbe, however ethanol production using C. thermocellum is still not economically viable. Therefore, a better understanding of its ethanol synthesis pathway is required. The main pathway for ethanol production in C. thermocellum involves the bifunctional aldehyde-alcohol dehydrogenase (AdhE). To better understand the function of the C. thermocellum AdhE, we used cryo-electron microscopy (cryo-EM) to obtain a 3.28 Å structure of the AdhE complex. This high-resolution structure, in combination with molecular dynamics simulations, provides insight into the substrate channeling of the toxic intermediate acetaldehyde, indicates the potential role of C. thermocellum AdhE to regulate activity and cofactor pools, and establishes a basis for future engineering studies. The containment strategy found in this enzyme offers a template that could be replicated in other systems where toxic intermediates need to be sequestered to increase the production of valuable biochemicals.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Changed Title We have modified Figure 1A to zoom in on one compact and extended spirosome that we have identified from each C. thermocellum sample. We have included triangles of the same size and shape to indicate the proximity of a turn of a helix, showing that the identified compact spirosomes have a tighter conformation than extended spirosomes. We have created a new supplemental figure with spirosomes circled for all of the experimental conditions for C. thermocellum (Supplemental figure 1). We have added a reference to supplemental figure 1 in the text to direct the reader to these images. We included the pictures of the theoretical compact spirosomes, as generated from the 8-mer of E. coli AdhE (6AHC) to address the possibility of rosettes. We have now indicated in the text that there were 6.7% of the particles in the compact conformation, which is less than seen by negative stain. We further mentioned that the compact spirosome is less compact than that seen in E. coli. We added a sentence to the discussion about the possibility of contaminating E. coli spirosomes (though this is very unlikely) in our compact spirosome analysis: While these compact spirosomes could result from expression in E. coli, though this is very unlikely, we also identified compact spirosomes in a native C. thermocellum lysate, which would not have similar contamination issues. We have added the following sentences to the discussion to address this comment: This could potentially be due to the diXerences between Gram-positive and Gram-negative bacteria. In previous studies, compact spirosomes have only been isolated from Gram-negatives while solely extended spirosomes have been isolated from Gram-positives. Furthermore, while the compact spirosomes can transition to extended in the presence of cofactors, the reverse has not been previously observed with an extended spirosome. We are unsure as to what needs to be corrected in the figure 7 legend based on this comment.





