Abstract
Many internal organs in the body harbor a fluid-filled lumen. The mechanisms of lumens initiation and fusion have been reported as dependent on organ-type during organogenesis. In contrast, the physics of lumen suggests that force balance between luminal pressure and cell mechanics could lead to conserved rules which may unify their self-organisation. However, this hypothesis lacks experimental evidence. Here we compare lumen dynamics for three different systems (MDCK cysts, pancreatic spheres, and epiblast cysts) by using quantitative cell biology, microfabrication and theory. We report that initial cell number determines the maximum number of lumens but does not impact the steady state which is a final single lumen. In addition, lumen numbers exhibit two phases over time, a nucleation phase followed by a fusion phase. In the nucleation phase, lumens form between two cells in pancreatic and MDCK cysts whereas they form at the rosette stage between ten cells in epiblasts. In the second phase, lumens fuse by an increase in lumen volume for pancreatic spheres and MDCK cysts, whereas cell convergent directional motion leads to lumens fusion in epiblasts. We show that these phenomena are associated to the luminal hydrostatic pressure. We support these results with theoretical arguments and numerical simulations. We finally use MDCK cysts to manipulate cell adhesion and lumen volume and we successfully reproduce the fusion dynamics of pancreatic spheres and epiblasts. Our results reveal self-organisation rules of lumens across systems with relevance for morphogenesis during development and for the design of synthetic organs.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵† Joint first authors
Common points and differences between experimental systems have been tested and formulated in this new version.