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Abstract 
 
Humans and monkeys can effortlessly recognize objects in everyday scenes. This 
ability relies on neural computations in the ventral stream of visual cortex. The 
intermediate computations that lead to object selectivity are not well understood, but 
previous studies implicate V4 as an early site of selectivity for object shape. To explore 
the mechanisms of this selectivity, we generated a continuum of images between 
“scrambled” textures and photographic images of both natural and manmade 
environments, using techniques that preserve the local statistics of the original image 
while discarding information about scene and shape. We measured the responses of 
single units in awake macaque V4 to these images. On average, V4 neurons were 
slightly more active in response to photographic images than to their scrambled 
counterparts. However, responses in V4 varied widely both across different cells and 
different sets of images. An important determinant of this variation was the effectiveness 
of image families at driving strong neural responses. Across the full V4 population, a 
cell’s average evoked firing rate for a family reliably predicted that family’s preference 
for photographic over scrambled images. Accordingly, the cells that respond most 
strongly to each image family showed a much stronger difference between photographic 
and scrambled images and a graded level of modulation for images scrambled at 
intermediate levels. This preference for photographic images was not evident until ~50 
ms after the onset of neuronal activity and did not peak in strength until 140 ms after 
activity onset. Finally, V4 neural responses seemed to categorically separate 
photographic images from all of their scrambled counterparts, despite the fact that the 
least scrambled images in our set appear similar to the originals. When these same 
images were analyzed with DISTS (Deep Image Structure and Texture Similarity), an 
image-computable similarity metric that predicts human judgements of image 
degradation, this same pattern emerged. This suggests that V4 responses are highly 
sensitive to small deviations from photographic image structure. 
  
Introduction 
  
Humans and monkeys are adept at recognizing objects in everyday scenes. The neural 
substrate for object recognition is a series of computations in the ventral stream of 
visual cortex (Ungerleider and Mishkin, 1982; Mishkin et al., 1983; Goodale and Milner, 
1992; Logothetis and Sheinberg, 1996; DiCarlo et al., 2012; Kaas et al., 2022). This 
consists of a series of hierarchically connected visual areas: beginning in area V1, 
continuing through areas V2, then V4, before culminating in inferotemporal cortex (IT). 
Population responses of neurons in IT successfully discriminate objects (Pasupathy and 
Connor, 2002; Rust and DiCarlo, 2010) and predict human performance on object 
recognition tasks (Majaj et al., 2015). While the visual responses of neurons in IT have 
been well characterized, the intermediate computations that build these object selective 
responses are not yet well understood.  
 
We recently described a selectivity for complex image statistics in V2 neurons that is not 
present in area V1 (Freeman et al., 2013; Ziemba et al., 2016, 2018). Using the Portilla-
Simoncelli texture model, which is based on image statistics derived from a V1-like 
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representation (Portilla and Simoncelli, 2000), we generated images of “naturalistic” 
texture and spectrally matched noise. Neurons in V2 respond more strongly to images 
containing naturalistic structure than to matched noise images (Freeman et al., 2013), 
and this modulation emerges slowly over the course of 60-80 ms after response onset 
(Freeman et al., 2013; Okazawa et al., 2016; Ziemba et al., 2018).  
   
The selectivities of neurons in area V4 are less well understood. One hypothesis is that 
object-centric representations are first constructed in V4 (Pasupathy et al., 2020). Many 
neurons in V4 respond robustly and selectively to object curvature (Pasupathy and 
Connor, 1999, 2001), with responses that are invariant to object position (El-Shamayleh 
and Pasupathy, 2016) and integrate global context about object occlusion (Bushnell et 
al., 2011). Results from neurophysiology (Rust and DiCarlo, 2010; Kramer et al., 2023) 
and human fMRI (Movshon and Simoncelli, 2014; Long et al., 2018) suggest that V4 
also responds more strongly to photographic images than to matched texture images 
synthesized using the Portilla-Simoncelli algorithm. 
  
In this study, we asked how neurons in V4 respond to a continuum of images between 
photographic images and scrambled textures. Using an adaptation of the Portilla-
Simoncelli texture synthesis algorithm (Freeman and Simoncelli, 2011), we synthesized 
images that matched the complex features of an original photograph in spatially 
localized regions. By varying the region sizes from small to large, we generated images 
that smoothly transition between photographic images and scrambled textures, 
respectively. Photographic images drove larger modulations in the V4 population 
response than scrambled images, and those modulations were delayed relative to the 
onset of neural activity. V4 responses were highly sensitive to even small amounts of 
image scrambling, such that partially scrambled conditions were categorically distinct 
from photographic images. This categorical separation between photographic and 
partially scrambled images is well captured by DISTS, an image quality assessment 
metric designed for invariance to changes in texture resampling.  
  
Methods 
  
Image generation 
  
We chose a core set of 20 large photographic images taken from two databases. Half of 
these images were selected from photographs taken at a baboon habitat in Botswana 
(UPenn Natural Image Database, Tkačik et al., 2011), which approximate the 
evolutionary context of primate vision. The other half were selected from a photograph 
database of everyday objects in their natural context (Reachspace database, Josephs 
et al., 2021). These images are similar to some of the images that are typically used to 
train and evaluate deep neural network models of area V4 (Yamins et al., 2014). These 
source images were square cropped, when appropriate, to center objects within the 
frame. All source images were at least 800x800 pixels after cropping. Source images 
were then resized to a standard size of 1280x1280 pixels for image analysis and 
synthesis. From each source image, we then cropped four distinct 512x512 pixel 
regions, centered at locations +/-56 pixels horizontally and vertically from the center of 
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the source image. These images substantially overlap in their content and, when 
presented to the subject, represent a relative “shift” of the underlying pixels by a 
distance of 1.4 deg.  
  
To generate scrambled images, we used an adaptation of the Portilla & Simoncelli 
texture synthesis model that measures and synthesizes texture images within localized 
subregions (Freeman and Simoncelli, 2011, https://github.com/freeman-lab/metamers). 
For this study, we arranged these pooling regions as a square grid of smoothly 
overlapping fields that tiled the image. Then, within each pooling region, we measured a 
set of texture statistics (Portilla and Simoncelli, 2000). Specifically, we processed the 
image with a multi-scale, multi-orientation bank of filters (4 orientations, 4 scales), then 
computed both the linear responses and energy responses of each filter. We then 
computed the pairwise product of these responses at different positions, orientations, 
and scales. Finally, we computed weighted averages of these products within each 
pooling region, resulting in a set of  correlation statistics within each region. 
 
We synthesized new “scrambled” images by initializing an image with Gaussian white 
noise, then iteratively adjusting the pixels of that image to match the measured texture 
statistics within each subregion. The texture synthesis method uses periodic boundary 
conditions, measuring texture statistics toroidally across the edges of images. To 
prevent edge artifacts from appearing within the synthesized images, between iterations 
of the synthesis we “reset” the edge regions of the image (all pixels outside a circular 
vignette) to the pixel values of the original photographic image. After synthesis was 
complete, the images were cropped with this same circular vignette to remove these 
“photographic” regions, so that only “scrambled” portions of the image remained.  
 
For each “shifted” image, we synthesized new images based on 1x1, 2x2, 3x3, 4x4, and 
6x6 grids of statistical pooling windows. When presented to the subject, these pooling 
regions of these grids subtended 6.4, 3.2, 2.1, 1.6, and 1.1 deg, respectively. We also 
included the original images, giving a total of 6 distinct pooling region conditions. We 
refer to the set of 24 images derived from an original photograph (4 shifts x 6 pooling 
regions) as an “image family.” 
  
Experimental procedures 
  
Experimental procedures for monkeys conformed to the National Institute of Health 
Guide for the Care and Use of Laboratory Animals, and were approved by the New York 
University Animal Welfare Committee. 
 
We recorded eye position with a high-speed, high-precision eye tracking system 
(EyeLink 1000). The animal initiated each trial by fixating on a small dot (~0.25 degrees 
wide), and maintained fixation within a window of 1-2 degrees. Images appeared for 200 
ms, with a 200 ms inter-stimulus interval, and were blocked in 6-8 consecutive 
presentations, after which the animal received a juice reward. 
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Under general anesthesia, we implanted the animal with a titanium head post and 
recording chamber over area V4. We recorded single unit activity within V4 using both 
single site electrodes (FHC) and a linear microelectrode array (Plexon S-probe, 64 
channels with 50 µm spacing, over 3.2 mm total). We identified the location of the lunate 
sulcus, then recorded in surface V4 anterior to the sulcus.  
 
For single-site electrode recordings, we recorded all cells that were isolated and reliably 
driven by the image set. For linear array recordings, we inserted the probe into cortex 
deeply enough that visual stimuli drove multi-unit responses on most channels. Single 
units were isolated from multi-site recordings using KiloSort 2.5 (Kilosort 2.5, Steinmetz 
et al., 2021) followed by manual curation of well-isolated spikes (Phy, 
https://phy.readthedocs.io/). 
  
Firing rate analyses 
 
For all cells, we computed firing rates for all spikes within an interval between 50 ms 
and 400 ms after stimulus onset. When comparing or combining data across neural 
populations, we computed a normalized firing rate by dividing by the mean firing rate 
response to all non-blank stimulus conditions. 
 
Stimulus-dependent fractional variance: The visually evoked firing rate responses of V4 
neurons varied across both repeated presentations of the same stimulus, as well as 
different presentations of different stimuli. We sought to quantify the extent to which 
differences in stimulus responses were reliable. To this end we computed the stimulus-
dependent fractional variance as the proportion of overall variance that could be 
explained by differences in stimuli. Specifically, we computed total variance as the 
variance in firing rate responses across all trials, and the stimulus-dependent variance 
as the variance across each stimulus's firing rate averaged across repeated trials. 
Stimulus-dependent fractional variance was computed as the ratio of stimulus-
dependent variance to total variance. 
  
Modulation index: We computed a modulation index for individual cells as a 
standardized measure of the signed strength of photographic vs. scrambled firing rates. 
For each cell, we averaged firing rates over all image family and shift conditions to find 
a single rate for both the photographic or fully scrambled conditions. We compute 
modulation index as the difference between these rates, divided by their sum. For 
population-level modulation indices, we averaged rates over families, shifts, and 
neurons before computing the index. 
  
Rate-modulation correlation: For each neuron, we quantified the strength of the 
relationship between an image family’s total response and its relative modulation of 
photographic vs. scrambled images as a rate-modulation correlation. To compute an 
image family’s evoked firing rate, we averaged firing rates over all shifts and over both 
photographic and fully scrambled conditions. To compute each image family’s 
modulation, we averaged firing rates over all shifts, then computed the difference 
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between the photographic and scrambled firing rates. We then computed each neuron’s 
Pearson correlation between family-evoked rates and family-evoked modulation. 
  
Image family ranking: We sought to visualize whether the responses evoked by 
photographic images and fully scrambled images had different relationships to a 
neuron’s preferences for image family. We were concerned that simply ranking each 
neuron’s preferred image families might produce overfitting due to trial-to-trial 
fluctuations in firing rate. Overfit rankings could potentially overstate the difference in 
response magnitude between image families. We computed a cross-validated ranking 
of image families by splitting the image shift conditions into training sets (2 shift 
conditions) and testing sets (2 shift conditions). We computed average evoked firing 
rates over the photographic and fully scrambled conditions for each training set, then 
used these rates to rank image families. We then applied that ranking to the evoked 
firing rates of the test sets when plotting the data. The rank order plots in Figure 3 are 
the average of two rank order plots made from the two possible partitions of 
training/testing data. 
  
Population latency: To compute the onset of neural activity or modulation, we fit a 
rectified linear function (using non-linear least squares optimization, lsqcurvefit() in 
Matlab) for a period of time from before onset to the peak of activity/modulation:   
 

𝑟(𝑡) = 𝑟! +𝑚 ∗ [𝑡 − 𝑙]" 
 

where the three fit parameters are 𝑙, the onset latency, 𝑚, a slope parameter, and 𝑟!, the 
baseline rate/modulation. 
  
Perceptual and neural distance metrics 
  
We wondered whether any well-established image measurements could predict the 
patterns of response we observed in V4. We turned to a set of image similarity metrics, 
which are most commonly used in practical applications to quantify the distance 
between an original image and a corrupted counterpart (e.g. to measure the quality of a 
lossy file format). To this end, we computed a set of pairwise distances between 
conditions for both the V4 population response, and for a set of image similarity metrics. 
In all cases, we only computed distances within the set of an original photographic 
image and its partially or fully scrambled counterparts. Each of these sets had 6 images, 
which resulted in 30 total comparisons per original photographic image. Over 20 image 
families and 4 shifts per family, this resulted in 2,400 total distances. 
  
Neural distance: For each image, we created a 134-neuron long vector of averaged, 
normalized firing rates. We then computed the Euclidean distance of each pair of 
vectors, and normalized that distance by the number of neurons. 
  
Image similarity metrics: We used 3 standard image similarity metrics to compare 
different images: RMS pixel distance, structural similarity (SSIM), and Deep Image 
Structure and Texture Similarity (DISTS). For RMS pixel distance, we first normalized 
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each image so that 0 and 1 corresponded to minimum and maximum luminance. We 
then computed the RMS difference over pixels for each pair of images. We computed 
SSIM (Wang et al., 2004) using the ssim() function in Matlab, with all exponents set to 
1. For the DISTS metric (Ding et al., 2022), we used a Matlab implementation of the 
algorithm provided by the authors (https://github.com/dingkeyan93/DISTS).  
  
Results 
  
We recorded the responses of 134 single units from area V4 of one macaque monkey. 
We chose 20 images from two natural image databases, 10 from the “Birthplace of the 
Eye” image set, containing evolutionarily relevant photographs taken at a primate 
reserve in Botswana (Tkačik et al., 2011), and 10 from the “Reachspace” image set 
(Josephs et al., 2021), containing images of objects in context in manmade scenes, with 
appropriate lighting and shadows. For each of these images, we created a larger 
“family” of 24 images, consisting of 4 discrete image shifts (Figure 1B) and scrambling 
at 5 distinct levels. Scrambling levels were chosen to transition smoothly between fully 
scrambled images and the original photographic images, in approximately equal 
perceptual increments (Figure 1C). 
 
Scrambled image modulation is heterogeneous across a population of V4 neurons 
  
V4 neurons responded well to both scrambled and photographic images (122/134 cells 
significantly responsive relative to baseline firing rates, p<0.05, permutation test). Most 
cells also responded differently to scrambled and photographic images. We captured 
this modulation by measuring the fraction of stimulus dependent variance (see Methods, 
Stimulus-dependent fractional variance). Stimulus dependent fractional variances were 
significantly greater than in permuted controls (median 0.23±0.13 MAD, 113/134 
p<0.05, permutation test). The sign and magnitude of modulation due to image 
scrambling was heterogeneous across the population. Some cells preferred 
photographic images over scrambled images (Figure 2A-B), while others were 
indifferent (Figure 2C), or preferred scrambled images (Figure 2D). Averaging the 
responses across the full V4 population revealed weak modulation across image 
families and scrambling conditions (Figure 2E). 
 
We defined a modulation index (MI) as the difference between firing rate responses to 
photographic and scrambled images, divided by their sum. On average, the population 
showed a weak preference for photographic images over scrambled images (MI mean = 
0.01). Individual cells showed different amounts of modulation (Figure 3A). Overall, 
38/134 cells were significantly positively modulated, and 26/134 cells were significantly 
negatively modulated (p<0.05, permutation test).  
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Figure 1. Creating a continuum of images from scrambled textures to photographic 
images. A) We used the Portilla-Simoncelli texture model to scramble image features within a 
local pooling region (red circle). When a single pooling region covered the image (top) the 
image was fully scrambled into a texture. When multiple smaller pooling regions covered the 
image (bottom) the resulting image maintains some global “object-like” properties, while local 
features are scrambled. B) For each source image, we cropped four distinct “shifts.” These 
images contain the same central features, but are not matched pixel for pixel. C) By varying the 
size of the pooling regions used in the image synthesis algorithm, we created a continuum of 
images between scrambled textures and the original images. We used 5 pooling region sizes 
across our 6.4 degree diameter image: 6.4, 3.2, 2.1, 1.6, and 1.1 degrees. Images smoothly 
transition from scrambled textures to photographic images of objects. 
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Figure 2: Responses of V4 neurons to photographic and scrambled images. A-D) 
Pixelated images on the left of each panel show the average firing rate response for all 20 
image families and 6 scramble conditions. Pixel intensity indicates average firing rate over 4 
image shifts. Image families are ordered from highest to lowest by average firing rate per family. 
Curves on the right of each panel show smoothed and averaged firing rates as peri-stimulus 
time histograms (PSTHs). While some neurons showed clear positive modulation of 
photographic images relative to scrambled images (A: MI=0.25, B: MI=0.18), others showed no 
obvious modulation (C: MI=0.01), or negative modulation (D: MI=-0.02). E) On the left, the 
population average normalized response for all image families and scramble conditions. Image 
families are sorted from highest to lowest normalized response. On the right, individual cell 
PSTHs were normalized and averaged over the population to produce a PSTH. The population 
response shows only very weak modulation on the average. 
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Image families based on natural scene photographs (“Birthplace of the Eye” image set) 
typically had weaker modulation than families based on photographs of manmade 
scenes (“Reachspace” image set). We measured modulation strength (both positive and 
negative) by taking the absolute value of the modulation index. Modulation strength for 
natural scenes (abs(MI)=0.040±0.025 MAD across cells) was typically weaker than that 
for manmade scenes (abs(MI)=0.061±0.035 MAD across cells), and significant for the 
population (population test: p<0.001, 42/134 individual cells significantly larger at 
p<0.05, permutation tests). 
 

 
Figure 3: Modulation by image scrambling is heterogeneous across V4 neurons. A) 
Distribution of the modulation indices of individual neurons. Neurons with modulation indices 
that are significantly different from 0 are labeled in black (p<0.05). Nearly as many neurons 
were significantly positively modulated (N=36, p<0.025) as significantly negatively modulated 
(N=25, p<0.025). B) Distributions of modulation indices of individual neurons, split for images of 
natural scenes (top, Birthplace of the Eye image set) and images of manmade scenes (bottom, 
Reachspace image set). Neurons with modulation indices that are significantly different from 0 
are labeled in black (p<0.05). C) The modulation index for all image families and cells. Both 
families and cells are ordered by their average modulation index (top to bottom, and left to right, 
respectively). The marginal color bars show the neuron-averaged difference for individual image 
families (right) or the family-averaged difference for individual neurons (top). 
 
Scramble modulation varies with image family 
  
Figure 3C reveals that for most individual neurons, the strength and sign of scramble 
modulation varied across different image families. Individual neurons sometimes 
exhibited significant modulation for a subset of image families, while not showing 
significant modulation in their average response to all families. 96/134 neurons had at 
least one family that was significantly positively modulated, 91/134 had at least one 
family that was significantly negatively modulated, and 68/134 had at least one of each 
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(p<0.05, permutation test). The population also contained 15/134 neurons in which no 
family was significantly modulated (p<0.05, permutation test). 
 
We next looked for a link between each neuron’s preferred stimuli and the image 
families that most strongly modulated the cell. Neurons in V4 are tuned, at least in part, 
to the features that are matched between the scrambled and photographic images. 
Accordingly, we expected that the photographic images that most strongly drove neural 
responses in a given cell would be predictive of the scrambled images that drove strong 
responses. Consistent with previous reports (Long et al., 2018; Kramer et al., 2023), we 
found photographic image responses to be correlated with responses to scrambled 
members of the same image family (median correlation = 0.28 ± 0.14 MAD across all 
neurons). We defined an image family’s average drive to a neuron as the average 
response to all photographic and fully scrambled images in that family.  
  
Based on the conjecture that stronger responses might be associated with stronger 
effects, we hypothesized that scrambled image modulation might be stronger for the 
image families that most strongly drove an individual cell. This turned out to be true, 
both in cells that were (on average) positively modulated (Figure 4A & 4C) and in those 
that were (on average) negatively modulated (Figure 4B & 4D). Across individual 
neurons, image family response correlated with image modulation (median correlation = 
0.23±0.19 MAD, p<0.001, permutation test). 
  
We summarized these effects at the population level by averaging each neuron’s 
responses, rank-ordered by how strongly each family drove that cell (see Methods, 
Image family ranking). The families evoking the strongest responses were, on average, 
positively modulated. Additionally, the families driving the weakest responses were, on 
average, negatively modulated (Figure 4E). These results suggest that photographic 
images drive a wider dynamic range of responses than scrambled images. To directly 
measure this, for each cell we computed the coefficient of variation of firing rates as a 
measure of dynamic range, across either photographic images or fully scrambled 
images (Figure 4F). Photographic images typically drove larger amounts of variation 
than scrambled images (100/134 cells with larger variation for photographic images, 
52/134 significantly larger, 15/134 significantly smaller at p<0.05, permutation test). 
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Figure 4. V4 responses to 
photographic images have a 
larger dynamic range than 
responses to scrambled images. 
A-B). For two individual neurons 
(neurons C & D from Figure 2), we 
ranked image families by how 
strongly they drove firing rate 
responses. We used a cross-
validated procedure to rank image 
families (see Methods) to avoid 
overstating differences in image 
family responsiveness. Families 
that evoked strong responses also 
tended to show strong positive 
modulation. Conversely, families 
that evoked weaker responses 
were often negatively modulated. 
C-D) PSTHs for the same two 
neurons, computed only for the top 
quarter of families that most 
strongly drove firing rate 
responses. For this subset of 
images both cells were positively 
modulated (same cells as Figure 2 
C-D, C: MI=0.17, D: MI=0.18). E) 
For the population averaged 
normalized response, we ranked 
image families by how strongly 
they drove responses. F) The 
population average over the rank 
order plots of individual V4 cells 
(computed as in A-B). Strongly 
driving families are positively 

modulated and weakly driving families are negatively modulated. G) The coefficient of variation 
of firing rates across all photographic images, plotted against the coefficient of variation across 
scrambled texture images. 
   
V4 scrambled image modulation emerges slowly 
  
Neuronal selectivities in area V4 emerged at different times after stimulus onset. To 
determine the timing of scrambled image modulation, we focused on a reduced subset 
of neurons (34 neurons most strongly, positively modulated) and image families (each 
neuron’s 5 preferred families ranked by image family drive, as above). The resulting 
PSTH (Figure 5A) shows that even among this strongly modulated subset, scrambled 
image modulation emerged slowly. For this population, the stimulus-evoked firing rate 
first differed from baseline 73 ms after stimulus onset (“response onset”), but signals 
from different scrambling conditions only began to diverge 52 ms later (125 ms after 
stimulus onset). This modulation grew slowly, reaching a maximum 140 ms after 
response onset (213 ms after stimulus onset). Modulation remained significantly 
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positive during the offset response (at 273 ms) and for at least 200 ms after, partially 
overlapping with the onset of the following stimulus. The slow onset and persistent 
nature of this modulation signal suggest that it may reflect the action of recurrent 
circuits. 
 

Figure 5. Modulation dynamics. A) Population 
averaged PSTHs for a subset of the neural 
population and a subset of the image set. 
Responses were averaged for the quarter of cells 
(34) that were most strongly, positively 
modulated. For each neuron, we took the top 
quarter of image families (5), ranked by how 
strongly they drove responses, averaged over 
both photographic and scrambled images. The 
onset of neural activity (at 73 ms) and beginning 
of the offset response (at 273 ms) are marked 
with arrows. Even among this strongly modulated 
subpopulation, modulation due to scrambling 
emerged 50 ms after the onset of neural activity. 
The uptick in activity beginning at 273 ms is due 
to a strong stimulus offset response from a subset 
of the neural population. B) Modulation indices 
between each scramble condition and the fully 
scrambled textures, at each point in time. 
Scramble modulation for photographic images 
first emerges at 125 ms (left arrow) and peaks at 
213 ms (right arrow), and persists well after the 
response to stimulus offset. 
  

An image similarity metric predicts V4 responses to photographic and scrambled 
images 
  
Figure 5 also illustrates that, among this subset, the average modulation for 
photographic images (MI=0.17) is nearly twice as large as the modulation for any other 
intermediate scrambled condition (all MI<=0.091). To confirm that this effect was 
present among the larger population of cells and image families, we computed a 
population-level distance metric between the responses of pairs of images (Figure 6A). 
V4 population neural distances were consistently larger between photographic images 
and any scrambled condition than between different scrambled conditions – this is 
visually evident from the lighter cell values on the right and bottom margins of the plot in 
Figure 6A. This result was unexpected, as we had chosen intermediate scramble levels 
to approximate equally distinguishable increments (see, for example, Figure 1C). We 
confirmed that low-level properties of the image smoothly spanned the continuum 
between photographic and fully scrambled images using two image analysis metrics: 
pixel-based distance (Figure 6B) and the structural similarity index (SSIM, Wang et al., 
2004) (Figure 6C). These metrics confirmed that low-level properties of the images 
transitioned smoothly among all the scrambling conditions and the photographic 
images.  
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Figure 6. DISTS but not SSIM 
or pixel distance predicts the 
V4 population response to 
image scrambling. A-D) 
Pairwise, average distances for 
different pooling region sizes, for 
four different distance metrics. 
Large pooling region sizes 
correspond to larger amounts of 
scrambling (up to 6.4 degrees, a 
full scrambled image), while 
small sizes correspond to 
smaller amounts of scrambling 
(down to 0.0 degrees, the 
original photographic image). 
The first distance is a neural 
metric: the Euclidean distance 
between two normalized 
population vectors (A). The next 
three distance metrics derive 
from image analyses methods - 
average RMS pixel distance (B), 
the structural similarity index 
(SSIM) (C), or the Deep Image 
Structure and Texture Similarity 
Metric (D). DISTS and neural 
distance, but not pixel distance 
or SSIM, categorically separate 
photographic images from all 
scrambling conditions. E) Neural 

distance vs DISTS for individual pairs of images. For each of the 20 image families and 4 shift 
conditions (80 total photographic images), we measured distances between all 6 scramble 
conditions (30 comparisons per source image, 2400 pairs total). F) Correlation between 
individual condition neural distances and the three image similarity metrics. DISTS predicts 
neural distance, while pixel distance and SSIM do not. 
 
One explanation for this discrepancy is that V4 neuronal responses are invariant to the 
precise arrangement of local features within images of texture, but not within images of 
objects. This response property would make responses to partially scrambled images 
more similar to each other, and more distinct from responses to photographic images. 
Human perception of texture images is thought to rely on a local computation of 
“summary statistics” (Balas et al., 2009; Greenwood et al., 2009; Freeman and 
Simoncelli, 2011; Rosenholtz et al., 2012; Ziemba and Simoncelli, 2021), such that 
different samples of the same texture appear nearly identical, even if the precise 
arrangement of their local features does not match. 
 
To assess this possibility we used DISTS (Ding et al., 2022), a recently developed 
image similarity metric that was 1) designed to be robust to image variance that 
preserves texture identity, and 2) directly fit to human judgements of similarity between 
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distorted images and photographic images. Like our V4 measurements, the DISTS 
metric also showed a sharp split between photographic images and all scrambling 
conditions (Figure 6D). Furthermore, individual image pair distances measured with 
DISTS were significantly correlated with neural distances measured in V4 (Figure 6E), 
while measurements using pixel distances or SSIM showed essentially no correlation 
(Figure 6F). In short, DISTS could predict neural population responses to scrambled 
images. 
  
Discussion 
  
Our results show that neuronal responses in V4 are more strongly modulated by 
photographic images than by matched, scrambled images, even for very modest levels 
of scrambling. This modulation emerges slowly, and persists throughout the period over 
which neural activity is elevated.  
  
Natural scene processing 
 
Our results support the idea that some V4 responses are tuned to the characteristic 
properties of natural scenes. V4 responses are slightly stronger to photographic images 
than scrambled images, consistent with previous neurophysiology (Kramer et al., 2023) 
and human fMRI (Movshon and Simoncelli, 2014; Long et al., 2018). Populations of V4 
neurons also more robustly classify photographic images than scrambled images (Rust 
and DiCarlo, 2010), consistent with our observation of a greater dynamic range of 
response to photographic images than scrambled images. At the individual neuron 
level, we find preferences for both photographic and scrambled images. This may be 
related to the previously-reported continuum of V4 responses from  “shape-like” to 
“texture-like” (Kim et al., 2019; Willeke et al., 2023).  
 
Jagadeesh and Gardner, (2022) report that human fMRI signals could not be used 
consistently to distinguish photographic images from paired scrambled images. 
However, their texture synthesis method used statistics from the late layers of a deep 
network model of object recognition, which are more likely to be computed in later visual 
areas like V4 and IT (Yamins et al., 2014). In contrast, the Portilla-Simoncelli textures 
are synthesized based on statistics likely to be captured in V2 (Portilla and Simoncelli, 
2000; Freeman et al., 2013), and measurements of human fMRI using these textures 
have consistently shown modulation between photographic and scrambled images 
(Movshon and Simoncelli, 2014; Long et al., 2018). 
  
The seemingly-categorical difference between photographic and even slightly 
scrambled images is consistent with previous observations that object-based 
representations drive robust neural responses in V4 (Pasupathy et al., 2020). Neurons 
in V4 are selective for complex shapes (Kobatake and Tanaka, 1994; Pasupathy and 
Connor, 1999, 2001) and lesions to area V4 profoundly disrupt form-processing 
behaviors (Merigan, 1996). Many neurons in V4 are selective to the sharpness of object 
edges (Oleskiw et al., 2018) and monocular cues for three-dimensional shape (Srinath 
et al., 2021), both of which are disrupted by image scrambling. 
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We hypothesize that V4’s categorical separation of photographic image responses from 
mildly scrambled image responses may be a signature of an image quality computation. 
Although images scrambled with small pooling regions may appear perceptually similar 
to their photographic image counterparts, and may be relatively close in terms of pixel 
distance (Figure 5A), human observers are sensitive to scrambled image modulation 
even when pooling regions are very small (Wallis et al., 2019). We find that DISTS, an 
explicit model of this perceptual sensitivity, can partially account for how the V4 
population responds to a wide array of image comparisons. 
 
Dynamics 
 
The modulation of V4 responses by photographic image structure emerges ~50 ms after 
stimulus onset, and grows slowly. This is also consistent with many other studies that 
have described slowly-developing signals within V4. Some stimulus-driven properties, 
such as selectivity for complex contours (Yau et al., 2013) or shapes with blurred edges 
(Oleskiw et al., 2018), emerge more quickly than scrambled image modulation. Others, 
like the V4 population’s selectivity to complex, perceptually-salient features of texture, 
emerge over a time course (Kim et al., 2022) similar to that of scrambled image 
modulation. All of these stimulus-driven effects typically emerge faster than those 
related to more “cognitive” processes, such as the onset of attentional modulation 
(Motter, 1994) and the “filling in” of occluded stimuli that is hypothesized to originate in 
prefrontal areas (Fyall et al., 2017).  
  
The delayed time course of scrambled image modulation may be a consequence of 
recurrent processing within V4, or feedback from areas further down the ventral stream, 
such as posterior inferotemporal cortex (PIT) (Felleman and Van Essen, 1991). Such 
feedback signals may propagate further upstream than V4 – it has recently been 
reported that some neurons in V1 also show a preference for photographic images 
relative to scrambled images (Chen et al., 2022; Kramer et al., 2023). 
 
Conclusions 
 
We conceived these experiments as a way to bridge representations early in the visual 
pathway – of what Adelson (2001) termed “stuff” – to later areas in which neurons show 
selective responses to images of natural objects – to Adelson, “things”. Our results 
show that neurons in V4 do indeed respond selectively to images of objects, but they do 
so in an unconventional way. Rather than merely firing more spikes to object images, 
their responses more strongly differentiate images of preferred and non-preferred 
objects. This increased dynamic range allows V4 to provide more information about 
objects (Rust & DiCarlo, 2010), using this unconventional signaling strategy. 
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