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Abstract 

Introduction The chemical classification of Cannabis is typically confined to the cannabinoid content, 

whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. 

Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased 

comprehension of elements that may contribute to chemical intricacy and the resultant medicinal 

qualities of the plant. 

Objectives Thus, herein, we report a computational metabolomics study to elucidate the Cannabis 

metabolic map beyond the cannabinoids. 

Methods Mass spectrometry-based computational tools were used to mine and evaluate the methanolic 

leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese 

(RDC).  

Results The results revealed the presence of different chemical compound classes including 

cannabinoids, but extending it to flavonoids, polyketides, and phospholipids at varying distributions 

across the cultivar plant tissues. Therefore, the two cultivars were differentiated based on the overall 

chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid 

content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular 

docking studies in combination with biological assay studies indicated the potentially differing anti-

cancer properties of the two cultivars resulting from the elucidated chemical profiles.  

Conclusion These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis 

strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into 

plant biochemistry and justifies selecting certain varieties for medicinal use. 
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1. Introduction 

The Cannabis plant is of the Cannabaceae family and is known to grow in various forms of 

cultivars or strains. Cannabis is popularly known for both its recreational use and there is 

emerging awareness of its medicinal properties (Cicaloni et al., 2022). There are currently more 

than 700 strains of Cannabis with trivial names such as Purple Kush, White Widow, Amnesia 

Haze and Royal Dutch cheese. When drawing focus on the chemical composition of the 

numerous Cannabis strains or cultivars, the chemical classification or differentiation is limited 

to several categories or chemovars which are based only on the plant’s cannabinoid content 

(Gloss, 2015; Lewis et al., 2018). The cannabinoid chemical class comprises a group of 

compounds that naturally occur in Cannabis varieties. The chemical structure of these 

compounds is characterized by a C21 terpene phenolic backbone, which can be traced in parent 

cannabinoids, cannabinoid derivatives, and transformation products. These cannabinoids are 

further divided into sub-classes, namely; cannabichromene (CBC), cannabidiol (CBD), 

cannabielsoin (CBE), cannabigerol (CBG), cannabicyclol (CBL), cannabinol (CBN), 

cannabinodiol (CBND), cannabitriol (CBT), △𝟖-trans-tetrahydrocannabinol (△𝟖-THC), △𝟗-

trans-tetrahydrocannabinol (△𝟗-THC), and miscellaneous-type cannabinoids (Filipiuc et al., 

2021; Radwan et al., 2021; Procaccia et al., 2022).  

Type I Cannabis cultivars are characterized by high tetrahydrocannabinol (THC) levels and are 

used for both medicinal and recreational purposes. Type III Cannabis contains high levels of 

cannabidiol (CBD), which has been acknowledged for its therapeutic benefits more than type 

I. This has also led to the emergence of additional chemovars such as type II Cannabis which 

is known to have equal levels of both THC and CBD compounds (Lewis et al., 2018). 

Nonetheless, some of the reported medicinal applications and benefits of Cannabis include 

alleviating nausea and pain in cancer patients receiving chemotherapy, and alleviating 

neurological symptoms such as anxiety, stress and sleeping problem (Moltke & Hindocha, 2021). 

Additionally, studies have shown promising evidence of the therapeutic effects of the Cannabis 

plant (including drugs and essential oils derived from the plant) in the suppression of diseases 

such as cancer, Alzheimer’s disease, and Huntington’s disease (Kogan & Mechoulam, 2007; 

Odieka et al., 2022). Although Cannabis is expected to have a rich, complex, and diverse 
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chemical composition, however, so far, the only bioactive chemical constituents that have been 

well-studied from Cannabis are cannabinoids (Sarma et al., 2020).  

The cannabinoid chemical class is distributed in varying amounts across all the different plant 

parts of Cannabis. The typical anatomy of the Cannabis plant is comprised of the leaves, 

flowers, stem, and roots. When considering the plant parts or plant tissues of Cannabis, 

cannabinoids are widely known to be abundant in the flowers (inflorescence) of the plant 

compared to the other plant tissues (Jin et al., 2020). Consequently, several pharmaceutical 

companies (supported by numerous scientific studies) exclusively focus on isolated compounds 

or crude extracts from Cannabis flowers (inflorescence) for the development of new drugs due 

to the high cannabinoid content found in the flowers(Sarma et al., 2020; Balant et al., 2021;). 

However, research shows that the use of leaf or seed in traditional medicine (Cannabis) is often 

more important than the use of inflorescence for the treatment of certain ailments (Balant et 

al., 2021). This suggests that Cannabis or its other plant tissues can be alternative sources for 

drug discovery. Therefore, the comprehensive exploration of the full phytochemical space of 

Cannabis and its different plant parts remains important as this can aid in identifying Cannabis 

cultivars or specific plant parts that are more useful for specific ailments (Aizpurua-Olaizola 

et al., 2016; Namdar et al., 2018; Balant et al., 2021).  

Nevertheless, the cannabinoid-centred approach continues to dominate the research field, and 

this has limited the exploration of the full potential of Cannabis chemistry. Furthermore, with 

an increasing attention to Cannabis, globally, and a growing momentum for legalization and 

commercialization of the plant (in some countries this is currently ongoing), there is a need to 

comprehensively characterize the chemistry of Cannabis (and its various plant tissues) beyond 

cannabinoids to understand its full chemical composition (Lowe et al., 2021; Pattnaik et al., 

2022). The increasing scientific efforts to characterize and explore the metabolome of Cannabis 

encompass the utilization of omics sciences, particularly metabolomics, which provides 

distinctive avenues to investigate the plant's metabolism and unravel the biochemical 

mechanisms driving the synthesis of various specialized metabolites within its tissues. 

Furthermore, metabolomics can facilitate and accelerate the search for novel bioactive 

compounds from plant crude extracts (Aliferis & Bernard-Perron, 2020; Vásquez-Ocmín et al., 

2021; C. R. Li et al., 2022).  

The application of metabolomics in Cannabis research and development (R&D), coined the 

term “cannabolomics”, is still in its infancy and there is a need for the optimization of 
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bioanalytical protocols, instrument analysis and metabolite databases to improve the robustness 

of this approach (Aliferis & Bernard-Perron, 2020).  Nonetheless, cannabolomics has been 

suggested for the classification of Cannabis into chemical varieties or “chemovars,” to 

emphasize the unique overall biochemical profile of the Cannabis plant of interest (Ladha et 

al., 2020). Such chemical profiling or metabolic phenotyping can confirm the composition and 

quality of the chemovar of interest, with variations indicating its medicinal applications. Thus, 

the study reported herein is a computational metabolomics work to elucidate a Cannabis 

metabolomic atlas of two cultivars for which sufficient seed material was available: Amnesia 

Haze and Royal Dutch Cheese cultivars (both type I chemovars). We mapped their metabolome 

content  beyond cannabinoids using a suite of computational metabolomics strategies including 

feature-based molecular networking, substructural discovery method (MS2LDA), in silico 

tools (e.g., NAP and DEREPLICTOR+), and MolNetEnhancer. The study contributes to 

ongoing Cannabis R&D efforts, particularly the comprehensive characterization of the plant 

chemistries of these two drug-type cultivars (a first of its kind) that have not been investigated 

or discussed in literature but form part of the many acclaimed Cannabis strains that have been 

generally hailed for their therapeutic properties against diseases such cancer. Hence, this study 

is also part of the ongoing efforts to determine the anti-cancer properties of Cannabis 

chemovars and aims to contribute and build on the evaluation of the bioactivity elicited by the 

varying chemical composition of Cannabis chemovars.  

2. Experimental procedure 

2.1 Plant cultivation and harvesting 

Cannabis seeds, Amnesia haze (a hybrid genetically comprised of 80% C. sativa & 20% C. 

indica) and Royal dutch cheese (a hybrid genetically comprised of 70% C. indica & 30% C. 

sativa), were purchased from Marijuana SA (Pty) Ltd (Cape town, South Africa). The seeds 

were grown into plants in Freedom farms premium classic growing medium (Freedom Farms 

Horticulture Technologies, Cape town, South Africa) at 24 °C, 70% humidity and a 24-hour 

light cycle for germination and vegetative stages. The flowering stage for both cultivars was 

initiated at 27 °C, 30% humidity and a 12-hour light/12-hour dark cycle. Seven-week-old plants 

in their vegetative stages were harvested for leaves per cultivar and 16-week-old plants in their 

flowering stages were harvested for flowers. The harvested plant-tissues were freeze-dried and 

crushed with a blender to powder form and stored at room temperature until metabolite 

extraction. 
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2.2 Metabolite extraction and standard preparation 

Fifty milligrams (50 mg) of the samples were weighed and extracted in 1 mL of 80% methanol 

(Chemlab, UK). The samples (leaves and flowers per respective cultivar) were spun overnight 

in a digital rotisserie tube rotator at 70 rpm. The crude extracts were then centrifuged at 158 × 

g in a benchtop fixed-angle centrifuge (Thermo Fisher, Johannesburg, South Africa). After 

centrifugation, the supernatants were filtered using 0.22 µm nylon filters into glass vials with 

500 µL inserts. In this study, seven independent replicates for each sample group were weighed 

and prepared. The prepared samples were then stored at 4 °C until analysis. For chemical 

baiting, the vitexin standard was prepared in 50% methanol to a concentration of 5 ppm. The 

standard was treated in the same manner as the samples for experimental procedures. 

2.3 Data acquisition – LC-MS/MS analyses of crude extracts 

Samples (methanol extracts) were analyzed on a liquid chromatography–quadrupole time-of-

flight mass spectrometry (LC-qToF-MS) instrument (LCMS-9030, Shimadzu Corporation, 

Kyoto, Japan). For chromatographic separation, a sample volume of 3 µL was injected on a 

Shim-pack C18 column (100 mm × 2.1 mm, 2.7 µm) (Shimadzu Corporation, Kyoto, Japan) 

thermostatted at 55 °C. In addition to the stationary reverse phase, the chromatography was 

carried out with a binary mobile phase, applying a gradient elution method. The solvent system 

comprised solvent A consisting of 0.1% formic acid in Milli-Q water (both HPLC grade, 

Merck, Darmstadt, Germany) and solvent B being methanol (UHPLC grade, Romil SpS, 

Cambridge, UK) with 0.1% formic acid, with a flow rate of 0.4 mL/min. The gradient elution 

was performed as follows, B referring to organic composition (i.e., solvent B): 5% B for 3 min, 

5–40% B over 3–5 min, 40-95% B over 5-12 min, then 95% B for from 12 min to 18 min. The 

gradient was changed back to initial 5% B at 18 min and kept to 20 min. The column was re-

equilibrated for 3 min.  

The effluents from chromatographic separation were further analyszd with the high-definition 

mass spectrometer, equipped with electrospray ionization (ESI), acquiring both negative and 

positive spectral data. The mass spectrometer parameters used were the following: 4.5 kV 

interface voltage, with interface temperature of 300 °C; 3 L/min flow rate for nebulization and 

dry gas; DL temperature of 250 °C, and 400 °C for heat block; detector was operated at 1.8 kV 

voltage. For monitoring the accuracy of acquired mass-to-charge ratio (m/z), sodium iodide 

(NaI) was used as a calibration solution. Both non-fragmented (MS1) and fragmented (MS2) 

spectral data were acquired with m/z range of 100–1200 Da. For MS/MS experiments, data-
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dependent acquisition method was applied, with an intensity threshold of 5000 counts. The 

collision-induced dissociation (CID) method was applied for the fragmentation of ions, using 

argon as a collision gas at a collision energy of 30 eV with a spread of 5 eV.  

2.4 Data mining: processing and chemometrics analyses 

The acquired raw datasets (ESI negative and positive centroid data) were processed using 

MetaboAnalyst version 5.0 (Pang et al., 2021). The data was processed with UPLC-Q/TOF 

default parameters using the centWave method. From the default setting, the max peak width 

was changed to 15. The resulting feature tables with 3560 and 3570 features for (ESI) negative 

and positive datasets respectively were imported into soft independent modelling of class 

analogy (SIMCA) version 17.0 software (Sartorius, South Africa) for chemometrics modelling. 

Principal component analysis (PCA) and hierarchical cluster analysis (HCA) models were 

computed for data exploration, and group classification and discriminant analysis.  

2.5 Molecular networking and Metabolite Annotation 

Prior to computing the feature-based molecular networks (FBMN) through the Global Natural 

Product Social (GNPS), the acquired raw datasets obtained from the Shimadzu LCMS-9030-

qTOF-MS were converted to open-source format (.mzML) files. The mzML files were then 

uploaded to Mass Spectrometry-Data Independent AnaLysis (MS-DIAL) platform for data 

processing. The parameters used for MS-DIAL data processing parameters included mass 

accuracy MS1 and MS2 tolerance of 0.25 Da and 0.1 Da respectively, with the MS/MS range 

of 50-800 Da; the minimum peak height was 2000 amplitude, mass slice width of 0.1 Da for 

peak detection, a sigma window value of 0.5 was used, and retention time tolerance was 0.1 

min and MS1 tolerance set at 0.015.  

Post MS-DIAL data processing, the GNPS export files, both GNPS MGF files and feature 

quantification tables, were exported into the GNPS ecosystem using the WinSCP server for 

molecular networking. FBMNs were then computed and generated using the GNPS molecular 

networking workflow. The parameters used for computing FBMN for the leaves and flower 

spectral datasets included precursor ion mass tolerance of 0.25 Da with fragment ion mass 

tolerance of 0.25 Da. For spectral similarity, a cosine score cut off was 0.65, with a minimum 

of 4 matched fragment ions. For annotation, various spectral libraries were searched and these 

included MassBank, ReSpect and NIST.  To visualize and analyze the computed networks, the 

Cytoscape network visualization software (version 3.8.2) (Shannon et al., 2003; Smoot et al., 

2011) was used. 
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All semi-annotated and some unmatched/unidentified nodes, visualized in Cytoscape, were 

verified using their empirical formulae calculated from accurate mass and fragmentation 

patterns. In addition to the manual inspection of annotations, some natural products 

dereplication databases such PubChem (https://pubchem.ncbi.nlm.nih.gov) and Dictionary of 

Natural Products (http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml) were 

also used. The annotations were also verified and confirmed against available literature. All 

metabolite annotations were carried out at level 2 and 3 of the Metabolomics Standards 

Initiative (MSI) (Sumner et al., 2007). All validated annotations (manual and computational) 

are listed in supplementary table S1. The networks generated were further explored using 

network annotation propagation (NAP), where first in silico fragmentation was applied to the 

generated FBMN where structural searches were performed in databases e.g., GNPS, CHEBI, 

SUPNAT, and DRUGBANK.  

To perform network annotation propagation (NAP) (da Silva et al., 2018) jobs, both the fusion 

and consensus scores were used based on the first 10 structural candidates. Using scoring 

methods, NAP re-ranks the candidate structure list based on the network topology (Ernst et al., 

2019; Kang et al., 2019; Nephali et al., 2022). The two scoring methods, as previously 

mentioned, utilized by NAP include (a) fusion scoring, which uses MetFrag in silico prediction 

with MetFusion based on spectral library matches within a molecular family; and (b) consensus 

scoring, which uses the structural similarity from in silico candidates across the spectral nodes 

of a molecular family. The FBMNs were also explored using DEREPLICATOR (Mohimani et 

al., 2018) for peptidic structural annotations.  

Substructure annotation and initial exploration was carried out using the MS2LDA (MS2 latent 

Dirichlet allocation) tool (van der Hooft et al., 2016; Rogers et al., 2019) in GNPS and 

substructure annotations from MotifDB were included in the analyses. From the default 

settings, some of the parameters were changed as follows for the ESI negative dataset: Bin 

width was set at 0.01 (Tof data) and LDA free motifs set at 150. The MotifDB included was 

Rhamnaceae Plant and the rest were excluded. For the ESI positive dataset, the the parameters 

were changed as follows: LDA free motifs set at 200. The MotifDB included were GNPS, 

Massbank and Euphorbia. MolNetEnhancer (Ernst et al., 2019) which incorporated outputs 

from both FBMN and in silico tools such as MS2LDA, DEREPLICATOR, NAP and the 

automated chemical classification through ClassyFire, was applied, providing thus a holistic 

chemical overview of measured metabolomics spectral data, with enhanced structural details 
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for each fragmentation spectrum. The GNPS job links are provided in the Supplementary 

materials. 

2.6 Pathways analysis and relative quantification 

The metabolomic pathway analysis (MetPA) tool in MetaboAnalyst, version 5 (Pang et al., 

2021) was used to perform functional analysis,  

There are no sources in the current document.particularly pathway analysis. The latter was 

computed using identifiers of the annotated metabolites, KEGG IDs, as input data. For 

overrepresentation analysis, the enrichment method, hypergeometric test was used; and for the 

node importance measure, i.e., topological analysis, the relative betweenness-centrality was 

employed. For visualization was done using scatterplots and the pathway library used was 

Arabidopsis thaliana (thale cress) (KEGG). Using integrated peak areas, (relative) quantitative 

analysis was done, and colour-coded heatmap generated in MetaboAnalyst. Pareto-scaling and 

log-transformation were applied as data pre-treatment methods.  

 
2.7 Cell culture 

The MIA PaCa-2 pancreatic cancer and HEK 293 human embryonic kidney were cultured in 

Dulbecco's Modified Eagle Medium (DMEM) (Sigma Aldrich, USA) supplemented with 10% 

fetal bovine serum (FBS) (Biogen, UK) and 1% Pen-Strap (penicillin-streptomycin) 

(Biowhitakker, Germany) at 37 ºC in 95% humidity and 5% CO2. About 75% of confluent cells 

were harvested and rinsed with 6 ml Dulbecco’s Phosphate-buffered Saline (DBPS) (Sigma 

Aldrich, USA). The cells were then trypsinized with 2 ml of 1 X trypsin and were incubated 

for 45 s (HEK 293) and 90 s (PaCa-2) at 37 ºC in 95% humidity and 5% CO2. Four millilitres 

of fresh DMEM were added to both cell lines respectively to stop trypsinization. Into a new 50 

ml centrifuge tube, 6 ml of cell solution was transferred into the centrifuge tube, and the cell 

solution was centrifuged for 4 min at 2200 rpm (779 × g). After centrifugation, the pellet was 

resuspended in 3 ml of DMEM for cell quantification and further subculturing.  

After cell culturing, cell quantification was done using trypan blue and TC20 automated cell 

counter (Bio-Rad). In a 1.5 ml microcentrifuge tube, 10 µl of cells in DMEM was gently mixed 

with 10 µl of trypan blue and was followed by aliquoting 10 µl of the mixture into the cell 

counter slide compatible with the TC20. Cell viability and cell concentration were read and 

cells that exhibited 95% viability were used for cytotoxicity and caspase activity assays. 
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2.8 Extract preparation 

The 80% methanol flower extracts of AMNH and RDC were prepared using the protocol 

reported in section 2.2. The 80% methanol plant extracts were then dried into solid using the 

rotary evaporator and the two extracts (AMNHF and RDCF) were stored at room temperature 

until further analysis. The dried extracts were made up to a stock concentration of 100 mg/ml 

w/v in 100% dimethyl sulphoxide (DMSO) (PanReac AppliChem, Germany) respectively. The 

extract stock solutions were stored in the dark at 4 ºC awaiting further analysis. 

2.9 Alamar blue cellular viability assay 

The HEK 293 and MIA PaCa-2 were plated in 96 well plates (at 5000 cells per well). The cells 

were treated with AMNHF and RDCF and were incubated for 24 hours with an untreated 

control, the negative control set as 0.1% DMSO and the positive control set as 100 µM 

etoposide (Sigma Aldrich, Germany), and a media blank column (plated per column). The 

AMNHF and RDCF extracts were used to treat the cells in a concentration-based series starting 

from 100 µg/ml and serially diluting it 2X to 3.125 µg/ml. A volume of 10 µl of the Alamar 

blue (Thermofisher, USA) reagent was added to each well following the 24 hours treatment 

and the plate was incubated for 2 hours at 37 ºC. The fluorescence was measured in each well 

using a plate reader and the Gen 5 program 530/25 nm excitation and 590/35 nm emission. The 

analysis was repeated three times. 

Cell viability (%) = 
𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑒𝑑−𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓𝑏𝑙𝑎𝑛𝑘

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑−𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘
  X 100 

2.10 Caspase Glo® 3/7 activity assay 

MIA PaCa-2 and HEK 293 cells were plated and treated with AMNHF and RDCF in 33mm 

petri dishes in a similar manner as described in section 2.9 with the IC50s and controls.  The 

MIA PaCa-2 cell line was subjected to a caspase detection assay to determine if caspase-3 and 

-7 were activated due to the compound treatment. The cells were plated for 24 hours in 33mm 

petri dishes at 1x105 cells/ml. The cells were treated 24 hours after plating with 2 ml treatments 

consisting of an untreated control, the positive and negative controls, and the AMNHF and 

RDCF treatments with the IC50s of each extract. The assay was repeated three times and was 

conducted using the Caspase Glo® 3/7 assay kit (Promega, USA) based on the manufacturer’s 

recommendations.  
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2.11 In silico molecular docking 

The PDB files of the target proteins were obtained from the Protein Data Bank 

(https://www.rcsb.org/) database and selected based on their resolution: <2.0Å (1.5–2.0Å), 

while the structures of the ligands were retrieved from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). The files were then prepared in UCSF Chimera for 

docking by deleting and adding hydrogens to the receptors and ligands respectively. The 

structures were respectively saved in .pdb and .mol2 formats and converted into rec.pdb and 

.pdbqt formats using Autodock tools. After predicting the active sites of the receptors, a grid 

box was created to surround the binding residues present in the site using specific X, Y, and Z 

dimensions and centres. Setting the results to give five prediction outputs, Raccoon and 

Autodock Graphical user interface supplied by MGL tools were then used to dock the ligands 

onto the receptors. The complexes exhibiting the lowest Z-scores i.e., the least energy functions 

were then selected. The resulting .pdb files were viewed in UCSF Chimera, which was used to 

identify and label the residues involved in the docking.   

 

3. Results and Discussion 
 

 

3.1 Chemometric analysis of cannabis cultivars 

As detailed in the experimental section, a nontargeted LC-MS/MS-based metabolomics 

approach was applied for profiling the metabolome of leaves and flowers of two Cannabis 

cultivars that are used for medicinal purposes: Amnesia haze (C. sativa dominant) and Royal 

dutch cheese (C. indica dominant). The methanol extracts from leaf and flower tissues were 

analyzed on an LC-MS/MS platform. The processed spectral data was explored and evaluated 

by applying unsupervised chemometrics methods, namely, principal component analysis 

(PCA) and hierarchical clustering analysis (HCA) modelling. The generated models revealed 

certain structures within the data, such as tissues- and cultivar-related sample groupings, 

pointing to underlying differential metabolite profiles which were further investigated (Figure 

S1). 

 

3.2. Global chemical profiling – key constituents of cannabis metabolome  

The chemical profiling of plant extracts such as Cannabis, achieved through GNPS-based 

molecular networking (MN) tools, can assist in bettering and laying the foundation for the 
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differentiation of Cannabis cultivars into chemovars based on their chemical class content. In 

doing so, metabolite biomarkers can be identified for each chemovar, and this would aid in 

understanding the non-generic medicinal or bio-active potential elicited by each cannabis 

chemovar or plant-tissue thus narrowing down the medicinal applications of the chemovar of 

interest. Thus, in this study, the metabolic inventory of the two Cannabis cultivars was 

investigated. The obtained spectral data were submitted to mass spectral molecular networking 

(MN) through the GNPS ecosystem, a scalable workflow that digitalizes the diversity and 

distribution of metabolites in plants (Kang et al., 2019).  

Feature-based molecular networking (FBMN) enabled the semi-automated putative annotation 

of metabolites with confidence level 2 (or level 3) annotations as defined in the proposed 

minimum reporting standards of the metabolomics standards initiatives (MSI) (Sumner et al., 

2007) (Figure 1). FBMN represents a computational strategy that facilitates the visualization 

and compound annotation of complex, high-resolution untargeted LC-MS/MS metabolite data 

from natural extracts (Hammerle et al., 2021). This type of MN is designed to distinguish 

structural isomers by incorporating features such as chromatographic retention times which 

enhances metabolite annotation and thus the dereplication of metabolites whilst also retaining 

semi-quantitative information to perform statistical analyses (Quinn et al., 2017; Nothias et al., 

2018; Nothias et al., 2020). The computed FBMN of spectral data from leaves samples (from 

both cultivars) comprised 2914 nodes (consensus spectra) where 997 nodes clustered into 128 

molecular families based on spectral similarity (Figure 1.A). Searching spectral libraries in 

GNPS, 166 nodes were putatively annotated, with varying relative distributions across the 

cultivars, which point to diverse chemistries in the leaves of these Cannabis cultivars. For the 

samples from the flower tissues, the computed FBMN was of 2829 nodes of which 119 nodes 

were putatively annotated and 998 nodes clustered to form 172 molecular families (Figure 

1.B). The singletons (selfloop nodes) positioned at the bottom of both networks (Figures 1.A-

B) represented spectra that were not clustered into molecular families, i.e., low spectral 

similarity scores. 
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Figure 1: Feature-based molecular networking (FBMN): Molecular networks representing the general mass spectrometry detected chemical space of cannabis cultivars 

Amnesia haze (AMNH) and Royal dutch cheese (RDC). (A) mass spectral molecular network for the leaves, L denoting leaves and (B) mass spectral network for the flowers, 

F denoting flowers. Key: Amnesia haze leaves (AMNHL), Amnesia haze flowers (AMNHF), Royal dutch cheese leaves (RDCL) and Royal dutch cheese flowers (RDCF). 

Some major molecular families from each network are highlighted, e.g., flavonoids, cannabinoids and phospholipid Clusters.  
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The molecular families (MFs) in the networks provided a global visualization and insights on 

the metabolome of the two Cannabis cultivars, revealing diverse metabolite classes including 

phospholipids, cannabinoids and flavonoids, which are differentially distributed across the 

cultivars and across the tissues (Figure 1 and Figure S2).  From the 128 MFs found in the leaf 

data (where two or more connected nodes are considered as an MF), 94 MFs were comprised 

of unknown metabolites. However, 34 MFs had at least one metabolite automatically matched 

to the GNPS libraries, a similar trend that was also observed in the MFs found in flower MN. 

Considering that MN is rationally constructed based on spectral similarities (Aron et al., 2020; 

Vincenti et al., 2020; Yu et al., 2022; Zhang et al., 2023), automated annotation one node in a 

cluster can aid in decoding and annotating other structurally similar metabolites or features in 

the same molecular family. As such, MN improves on metabolite annotation, decoding ‘dark 

matter’ in spectral data, which subsequently provides an improved coverage on the annotated 

metabolome. In this study, this is illustrated by Figure 2A where one spectral node in the MF 

was putatively annotated through GNPS spectral library matching as CBD. Based on the 

concept of molecular networking, theoretically this cluster posed as a cannabinoid cluster 

formed by metabolites with similar structures and fragmentation patterns. This then propagated 

the manual annotation of unidentified metabolites such as cannabidiolic and cannabidivarinic 

acids in the cluster (Figure 2A).  The unannotated metabolites in this cluster also suggest that 

there may be other unknown CBD related compounds or analogues present. 

 

Furthermore, as may be expected from plant samples, flavonoids were also one of the major 

metabolite classes found in the cannabis tissues. In this flavonoid cluster, there are spectral 

nodes (such as m/z 489.10, 505.28, 479.15, 639.23 and 669.31) that could not be annotated 

through GNPS spectral library matching, yet they are postulated to be structurally related to 

glycosylated flavonoids (Table S1) due to their grouping with flavonoids such as isoquercitrin 

(m/z 433) and isorhamnetin-3-glucoside (m/z 477) (Figure 2B)(Table S1).   
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Figure 2: Molecular clusters extracted from FBMN. A detailed visual representation of the output of feature-

based molecular networking highlighting some of the major chemical classes in leaves /flowers of Amnesia haze 

and Royal dutch cheese. Key: Amnesia haze leaves (AMNHL), Amnesia haze flowers (AMNHF), Royal dutch 

cheese leaves (RDCL) and Royal dutch cheese flowers (RDCF). (A) Cannabinoid cluster in the leaves consisting 

of cannabidiolic (m/z 357.20) and cannabidivarinic acid (m/z 329.17) (B) flavonoid cluster in the flowers 

consisting of Isoquecetrin (m/z 463.12) and isorhamnetin (m/z 477.09). In addition to the annotation of the 

metabolites in the clusters, FBMN also aids in visualizing the relative abundance of each metabolite in the extracts. 

 

 

As above mentioned, it is worth noting that applying these computational tools improves 

annotation as it provides insights into possible molecular families in the measured metabolome. 

However, there are some limitations, related to similarity scoring algorithms and complexity 

of untargeted metabolomics spectral data. To improve on this, the “chemical baiting” concept 

was explored and applied. The baiting approach is a concept that is predominantly used in 

protein biochemistry where chemical baits or probes are used to bind or concentrate a diverse 

range of biomarkers (proteins & peptides, metabolites, lipids & fatty acids, nucleic acids, and 

post translationally modified peptides) that are either occurring in low concentrations or 

masked by other dominant resident proteins (Luchini et al., 2010). Nonetheless, within 

metabolomics approaches based on molecular networking (MN), a recognizable exogenous 

compound (a bait) can be employed to pinpoint other endogenous metabolites residing within 

the same molecular family cluster. Thus, in this study, the vitexin standard was used as a probe 

to determine the effect of chemical baiting on FBMN (Figure 3). 
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Figure 3: Chemical baiting in FBMN. The effect of chemical baiting on FBMN using the Vitexin standard as a probe for Vitexin-2-O-rhamnoside and any other metabolites 

that are structurally similar to vitexin. (A) FBMN before analyzing samples in the presence of the standard, (B) FBMN after analyzing samples with the standard and (C) 

zoomed-in vitexin cluster from (B)- showing the clustering of the vitexin standard together with vitexin-2-O-rhamnoside, as well as the incorporation of an unknown singleton 

and other structurally similar metabolites into one molecular family. 
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The overall observed effect of chemical baiting on FBMN (Figure 3), showed that using a 

standard, in this case the vitexin standard, can aid in probing or fishing out known, “unknown 

knowns” and “unknown unknown” that are structurally similar and thus have similar 

fragmentation patterns depending on one or more standards used. This was shown by the 

clustering of vitexin and vitexin-2-O-rhamnoside into one molecular family when the vitexin 

standard was added as a chemical bait. It is worth noting that cannflavins A and B, flavonoids 

unique Cannabis cultivars, were also initially detected in the same MF as vitexin-2-O-

rhamnoside before the addition of the vitexin standard. However, once the vitexin standard was 

added, the cannflavins formed their own MF (Figure 4). Cannflavins (canflavin A, B and C)  

are geranylated flavones that are said to be unique to Cannabis cultivars (Rea et al.,2019; 

Bautista et al., 2021; Tomko et al., 2022).   

Figure 4: Cannflavin cluster. A representation of the distribution of the detected canflavins (canlfavin A and B) 

and some of the GNPS matched analogues acquired in ESI negative. Key: Amnesia haze leaves (AMNHL), 

Amnesia haze flowers (AMNHF), Royal dutch cheese leaves (RDCL) and Royal dutch cheese flowers (RDCF). 

(A) Uknown compound ( m/z 367.156) (B) unknown compound (m/z 367.1193) matched through GNPS analogue 

library as afrormosin and ‘3,3’,4’-trimethoxyflavone respectively.   

 

Cannflavins A and B were detected in both the leaves and flowers of AMNH and RDC and 

reported in Table S1. Cannflavin A (m/z 435.1825) was distributed evenly across the plant 

tissues of both cultivars and cannflavin B (m/z 367.1193) was recognisably present in the leaves 

and flowers of RDC but significantly abundant in the flowers of AMNH  (Figure 4). Using the 
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GNPS analogues library search, the unknown metabolites in the cannflavin cluster were 

matched to flavone analogs such as afrormosin and ‘3,3’,4’-trimethoxyflavone which are 

structurally similar to the detected cannflavins. Therefore, this alludes to the notion that 

combing chemical baiting and molecular networking can help in spectral similarity clustering, 

and subsequently could increase the confidence in the (semi) automated metabolite 

annotations.  Thus, the computed FBMN after chemical baiting (Figure 3) provided spectral 

clustering and putative annotations of the measured metabolomes from the leaves of the 

cannabis cultivars, revealing 289 spectral library matches of flavonoids, cannabinoids, 

phospholipids and more (Table S1), 1265 connected nodes and 192 molecular families. 

Overall, the generated network showed clusters were lipid-like molecules to be more abundant 

in the plant tissues of RDC and flavonoids such as isoquercitrin to be more abundant in the 

tissues of AMNH while a cluster of hydroxy acids such as citric acid to occured in similar 

amounts across both the cultivars (Figure S2).   

To further explore and characterize the metabolome of the Cannabis cultivars, in silico 

annotation tools such as substructure recognition topic modelling through the MS2 Latent 

Dirichlet Allocation (MS2LDA), and the network annotation propagation (NAP) were 

performed for all spectral datasets from both cultivars, AMNH and RDC. To illustrate the 

contribution of these tools to the Cannabis metabolite annotation and identification at a scaffold 

diversity level, the outputs obtained from both AMNH and RDC dataset are reported herein 

(Figure 5 and Table S1). The machine learning (ML)-based tool, MS2LDA, allows an 

unsupervised decomposition of fragment spectra, discovering patterns of co-occurring 

fragments and neutral losses (termed 'Mass2Motifs', or shortly 'm2m') from different MS/MS 

spectra, which enables extracting information on substructural diversity within each class of 

metabolites (van der Hooft et al., 2016). Additionally, the generated substructural information 

highlights the (bio)chemical relationships of the connected compounds. Moreover, these 

(shared) substructures or scaffolds can point to functional groups and/or core structures of the 

compounds, revealing common biosynthetic routes in a molecular family (Van Der Hooft et 

al., 2016; Beniddir et al., 2021; Ramabulana et al., 2021).  
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Figure 5 MS2LDA output. molecular network clusters extracted from an MS2LDA substructure exploration analysis of cannabis cultivars AMNH and RDC in ESI negative 

ionization mode. (A) and (B) illustrate the MS2LDA-driven annotations of flavonoids (A) and cannabinoids (B) in the leaves of the cultivars. The coloured nodes represent 

some of the recognized substructures.
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One hundred and eighty-one (181) Mass2Motifs were discovered, and most were common in 

both the Cannabis leaves and flower datasets (ESI negative) of the two cultivars, respectively. 

The Mass2Motifs, annotated and unannotated were visualized through the MS2LDA website 

(ms2lda.org) (Wandy et al., 2018). As an illustration, some of the characterized Mass2Motifs 

found in the Cannabis leaves are highlighted and shown in Figure 5. These discovered 

substructural Mass2Motifs are significant in the sense that they can aid in the structural 

elucidation of “unknown knowns’’ (metabolites or spectral nodes whose reference spectra are 

not found in the GNPS spectral libraries and therefore represented as unknowns) such as m/z 

609.1476 identified as luteolin-glucoside-arabinoside. When evaluating the chemical makeup 

of the glucosylated flavonoids, Figure 5.A illustrates that m/z 609.1476 shares a common 

substructure (unknown motif_61) with the manually annotated metabolites luteolin-glucoside 

and luteolin-rutinoside. This resulted in the structural elucidation of luteolin-glucoside-

arabinoside (m/z 609.1476)  and led to the shared unknown motif_61 being annotated as a 

substructure that is related luteolin (m/z 285). Additionally, this also suggests that motif_107, 

motif_48, and motif_45 are all related to some sugar loss, respectively. Moreover, it can be 

postulated that motif_ 76 and motif_42 are both related to apigenin as they both form the core 

structure of the putative annotations of vitexin (m/z 431) and vicenin II (m/z 593) MS2LDA 

also highlighted some of the chemical moieties that make up cannabinoids as shown in Figure 

5.B.  

Compounds such as cannabidiol (CBD) were annotated through GNPS spectral library 

matching and with the use of FBMN, it was shown to be structurally similar to cannabidiolic 

acid (CBDA - m/z 357.2074) and cannabidivarinic acid (CBDVA - m/z 329.1765) (Figure 2). 

The MS2LDA discovered substructures of these compounds (or cluster) clearly describe the 

chemical relationship between the compounds through  rhamn_motif_172.m2m which 

describes the carboxylic acid that is attached to CBDA and CBDVA (Figure 5.B). 

Furthermore, this led to the shared unknown motif_86 being annotated as a substructure that is 

related to cannabidiol (m/z 313.2175). Combining Mass2Motif annotations and library 

matches, we can observe how the known compounds and unkown cannbidiol analogues are 

associated with the cannabidiol substructure. This makes sense as the cannabidiol derivatives 

would have a cannabidiol core structure. Altogether, the here highlighted Mass2Motifs are 

indicative of flavonoids and cannabinoids, respectively, and their decorations (i.e., 

glycosylations). Consequently, this confirms and gives confidence to the FBMN annotations 
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such as those previously made on the highlighted molecular family (Figure 2) and listed in 

Table S1.  

In addition to MS2LDA, Network Annotation Propagation (NAP) was also applied. NAP 

performs in silico fragmentation-based metabolite predictions or annotations of candidate 

structures through searching several databases including GNPS, ChEBI (Chemical Entities of 

Biological Interest), SUPER NATURAL (II) and DNP. Therefore, using these two scoring 

methods, NAP is a beneficial tool when experimental spectra are matched to a few spectral 

libraries matches as it also allows the propagation of annotations in the absence and presence 

of library spectral matches (da Silva et al., 2018; Nephali et al., 2022; Kim et al., 2023). The 

The outputs of the NAP obtained in this study are reported in the supplementary material. In 

brief, we could verify that NAP was able to correctly predict 18 (out of 997 spectral features) 

metabolites for the leaves data and 25 (out of 998) for the flower data. In both leave and flower 

exctracts, the NAP predicted metabolites include, cannabidiol, vitexin, orientin, and luteolin. 

These metabolite annotations were verified through manual inspection of fragmentation 

patterns and literature. 

To get an improved chemical compound class annotation and a comprehensive chemical 

overview of the measured spectral data, the outputs from FBMN, MS2LDA, NAP and 

DEREPLICATOR+ were combined in an enhanced molecular network workflow, 

MolNetEnhancer, which integrates also the automated chemical classification of molecular 

families with ClassyFire (Ernst et al., 2019). MolNetEnhancer enabled the chemical annotation, 

visualization, and discovery of the subtle substructural diversity within molecular families 

(Figure 6).  
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Figure 6: Enhanced molecular networking. MolNetEnhancer mass spectral FBMN of (A) leaves and (B) flowers of both AMNH and RDC cannabis cultivars acquired in 

ESI negative. The MolNetEnhancer FBMNs highlight the chemical superclasses present in leaves and flowers of two cultivars. The networks were computed from the combined 

outputs of FBMN putative annotations, substructure annotations (MS2LDA), network annotation propagation (NAP), and DEREPLICATOR.
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The generated networks indicated the varying distribution of major superclasses such as 

phenylpropanoids & polyketides, lipids and lipid-like molecules, organic oxygen compounds, 

benzonoids and organoheterocyclic compounds across the leaves (Figure 6.A) and flowers 

(Figure 6.B). A major difference observed between the plant-tissues of the cultivars (Figure 

6) was the abundance of phenylpropanoids and polyketides superclass, which was the second 

most dominating superclass in the leaves of the cultivars (Figure 6.A). Phenylpropanoids and 

polyketides include flavonoids, lignins, phenolic acids, stilbenes and coumarins. A 

considerable number of flavonoids were identified in the leaves and these metabolites, in 

addition to their plant functions, exhibit biological activities such anti-inflammatory and 

antioxidant properties.  

Other polyphenolic compounds such as feruloyl quinic acid and caffeoylquinic acid reported 

in Table S1 were also detected in the leaves. These phenolic acids which form part of 

chlorogenic acids are known to possess anticarcinogenic properties due to their antioxidant 

activities (Makhafola et al., 2016; Bouyahya et al., 2022). When evaluating the superclasses 

present in the flowers of the two cutivars, the Phenylpropanoids and polyketide superclass 

(comprised of polyphenolic compounds) was less dominant. Contradictory to this observation, 

flowers are regarded as important reproductive organs thus high levels of polyphenols are 

expected (Piccolella et al., 2020). However, the clear lack of polyphenols in the flowers of the 

studied cultivars (Figure 6.B) poses questions on the presence of intact biosynthetic routes of 

these compounds or the effects that the breeding process could have had on the chemistry of 

these cultivars. Moreover, literature regarding polyphenols in the flowers of Cannabis cultivars 

remains scarce and limited (Izzo et al., 2020). It has been shown that Cannabis cultivars lose 

genetic variation due to domestication and excessive breeding for selective traits (Clark & 

Merlin 2016). Therefore, such losses could contribute to the observed differences in the 

distribution of the phenylpropanoids and polyketides (polyphenols) between the leaves and 

flowers of the studied cultivars.  

Additionally, Cannabis genomics data lacks plant-tissue-specific data (Hussain et al., 2021) 

but the metabolite data generated in this study could lay the foundation for further exploration 

of the regulatory genetic networks of chemical classes in plant tissues of Cannabis cultivars. 

For example, when zooming in on these identified superclasses and detailing the relative 

abundance of the identified metabolites, Figure S2 highlights the cultivar-specific and plant-

tissue-specific metabolite differences where lipid-like molecules such as Glc-Glc-

octadecatrienoyl-sn-glycerol (isomer 2) are dominant in the tissues of RDC while flavonoids 
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(phenylpropanoids and polyketide superclass) such as isoquercitrin are more dominant in the 

tissues of AMNH. These metabolic differences could be related to changes in regulatory 

networks underlying the specialized metabolome of these cultivars.  

The chemical profiling achieved through the GNPS-molecular networking tools revealed a 

complex and diverse phytochemical space of the cultivars based on the leaf and flower 

metabolite profiles. The leaves and flowers were characterized by the presence of chemical 

classes such as flavonoids, cannabinoids and phospholipids which have various medicinal 

properties as discussed above. Possible anti-cancer properties are one of the medicinal 

properties that were postulated from the revealed metabolomes of the two cultivars. To further 

explore this postulation, in silico molecular docking studies were performed to computationally 

predict the anti-cancer or anti-proliferative properties of the revealed cultivar chemistries 

supported by biological assay studies. 

3.3.  Anti-proliferative properties of AMNH and RDC: In silico molecular docking and 

biological assay studies 

The phytochemistry of both cultivars illuminated various chemical classes including 

cannabinoids and flavonoids- with some described to have anti-cancer properties amongst other 

biological activities. Selected cannabinoid and flavonoid ligands, based on the elucidated 

chemical profiles of the two cultivars (Tables S1 and S3), were docked against various cancer 

targets. Each ligand was docked against its known target since the targets have been shown or 

suggested to play vital roles in cancer pathways. The interactions of the ligands with the 

receptor/protein targets were investigated through computer-assisted modelling to reveal their 

effective binding capacities (Table S3). Illustratively, the most significant receptor and ligand 

interactive binding affinity or docking score (-10.3 kcal/mol) was observed between 

cannabinoid receptor type 2 (CB2) and △𝟗-THC (Figure 7). The amino acid residues involved 

in the interaction were shown to be SER285, PHE281, VAL113 and SER90. 
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Figure 7: Molecular docking to predict the activity of selected cannabis metabolites. Structure of CB2 active 

site in complex with △𝟗-THC. The docking pose indicates the receptor interactive amino acid residues SER285, 

PHE281, VAL113 and SER90 that position △𝟗-THC in the binding pocket of CB2.     

 

This was followed by the interaction between cannabinoid receptor 2 (CB2) and CBD where 

the binding affinity of -9.5 kcal/mol.CB1 and CB2 are endocannabinoid cannabinoid receptors 

or membrane proteins with seven transmembrane helices and belong to the rhodopsin-like G-

protein-coupled receptor superfamily (Sharif et al., 2016). CB1 is predominately found in the 

central nervous system (CNS) and in addition to its ability to bind to a wide range of 

cannabinoids, CB1 actively binds and mediates the psychoactive effects of △𝟗-THC (Kendall 

& Yudowski, 2017). On the other hand, CB2, which had the highest docking score or 

interacting with △𝟗-THC, is known to play a significant role in the regulation of immune 

responses, inflammation, pain, and other metabolic processes (Yeliseev & Gawrisch, 2017). In 

the many types of cancers, the activation of both CB1 and CB2 triggers several pathways. In 

lung cancer, it has been reported that when bound to the CB receptors, △𝟗-THC upregulates 

Tribbles homolog 3 (TRB3) which propagates autophagy mediated apoptosis (Salazar et al., 

2009; Fu et al., 2023). Moreover, studies conducted on pancreatic Mia PaCa2 cell line showed 

that, △𝟗-THC induced caspase-3 activation (characteristic of apoptotic cell death as illustrated 

above) and stimulated the de novo synthesis of ceramide which increased the cell apoptotic rate 

through the up-regulation of stress-regulated protein p8 (Carracedo et al., 2006; Laezza et al., 

2020). 

The cannabinoid CBD, which is known to interact with CB1 and CB2 in cancer pathways, was 

also shown to interact with the G-coupled protein receptor 55 (GPR55) where the docking score 
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was measured to be -7.8 kcal/mol (Table S3), slightly lower than the docking scores on CB1 

and CB2. GPR55 is one of the newly discovered endogenous cannabinoid receptors that now 

form part of the extended endocannabinoid system (Ramer et al., 2019). The endocannabinoid 

receptor GPR55 is abundant in the brain, skeletal muscle, gastrointestinal (GI) tract, white 

adipose tissue, the islets of Langerhans (β and α cells) and the pancreas. In cancer studies, 

GPR55 has been investigated for its vital role in cancer-promoting activities (Falasca and 

Falasca, 2022). The normal stimulation of GPR55 by its endogenous ligand 

(lysophosphatidylinositol (LPI)) activates the pro-tumorigenic Akt and extracellular receptor 

kinase (ERK) pathways which promote cell proliferation. However, when CBD binds to 

GPR55, it acts as an antagonist and thus promotes antiproliferation effects in cancer cell lines 

(Laezza et al., 2020). 

When evaluating the flavonoid content of Cannabis cultivars, literature highlights that more 

than 20 flavonoids have been identified in Cannabis of which the most abundant are flavone 

(luteolin and apigenin) and flavonol (quercetin and kaempferol) aglycones and glycosides 

(Bautista et al., 2021; Cásedas et al., 2022). Thus,  flavonoids identified and reported in Table 

S1 such as apigenin, quercetin and kaempferol,  in their non-glycosylated forms, were also 

investigated for their binding affinities to cancer targets (Table S3). Moreover, the anti-cancer 

propertie of cannflavin A, a flavone unique to the Cannabis plant, were also investigated. 

Among all the screened flavonoids, cannflavin A had the most significant docking score of -

9.3 kcal/mol through its interaction with caspase 3 The measured docking score of cannflavin 

A with caspase 3 amino acids SER144, THR143, GLU196, TRY200, PRO206, TRY202, 

ARG167 on caspase 3, a cysteine–aspartic acid protease that is predominantly found in the 

cytoplasm of cells and exists as an inactive pro-enzyme (pro-caspase 3) (Luo et al., 2010; 

Ponder and Boise, 2019). Studies done on cannflavin A as a ligand to caspase-3 have shown 

that the interaction causes slight cleavage on caspase-3 which results in cytotoxic effects to a 

variety of cancer cells such as human bladder transitional carcinoma cells (Tomko et al., 2022). 

The stimulation of caspase-3 results in apoptosis, is often described as a “point of no return” 

for a cell and is characterized by apoptotic nuclear changes such as DNA fragmentation, 

chromatin condensation and nuclear disruption (Luo et al., 2010; Boudreau et al., 2019).  

Overall, all the flavonoids and cannabinoids exhibited good binding affinity with the various 

cancer targets which may be responsible for the anti-proliferative properties of cannabis flower 

extracts observed in Figures S4 and Figure 8. When considering Cannabis in natural products 

and cancer research, several studies have been done to support the efficacy of Cannabis 
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varieties for various cancer treatment-related symptoms. Some studies have also explored the 

efficacy of Cannabis in inducing apoptosis in cancer cells. However, most of these studies 

mainly focus on the effect of isolated major cannabinoids (e.g., CBD, CBG, THC etc) and 

focus less on other chemical classes or their combined synergistic effect.  Since Cannabis 

flowers are mostly studied in drug discovery and bioactive compound exploration, herein, the 

flowers of the two Cannabis cultivars (AMNHF and RDCF) previously profiled for their 

chemical content (through computational metabolomics) were investigated for anti-

proliferative effects through in vitro cell viability assays complemented with in silico molecular 

docking studies (discussed above) to determine if they elicited similar cytotoxic effects. The in 

vitro cell viability assays such as the alamar blue assay (Longhin et al., 2022) showed that both 

AMNHF and RDCF extracts were cytotoxic to the cancerous MIA PaCa-2 cell line which 

indicated anti-proliferative properties (Figure S4). The observed anti-proliferative properties 

were further supported and highlighted by the caspase activities of the MIA PaCa-2 cells upon 

being treated with AMNHF an RDCF extracts respectively. 

Various stimuli initiate or induce the energy-dependent apoptosis, an anti-proliferative process, 

where the activation of enzymes called caspases (cysteine-aspartic proteases) occurs (Saraste 

& Pulkki, 2000; Elmore, 2007). Caspases are proteolytic enzymes that have well-defined roles 

in cell death mediated by apoptosis, necroptosis, and autophagy. Apoptotic caspases (involved 

in both intrinsic and extrinsic apoptotic pathways) are expressed as inactive pro-caspases that 

are activated to their active forms- caspase 2,3,7,8,9 and 10. Their activation propagates a 

cascade of signalling events that result in the controlled demolition of cellular components 

(McIlwain et al., 2013; Shalini et al., 2015).  

Cell death caused by AMNHF and RDCF on MIA PaCa-2 treated cells was clearly indicated 

in Figure S4, and since caspases are over-expressed during cell death caused by apoptosis, 

caspase activity was then investigated. An evident increase in caspase activity was seen for the 

RDCF and ANMHF treated MIA PaCa-2 cells (Figure 8). The untreated cells were observed 

to have a reading of 3378.3 RLU while RDCF, following the chemotherapeutic drug 

(etoposide), presented a significantly high average luminescence reading of 7093.3 RLU- 

which was a 210% increase in caspase activity when compared to the untreated cells. 

Moreover, the AMNHF treated cells presented an average luminescence reading of 4603.7 

RLU, a 136.3% increase in caspase activity which was lower than that of RDCF. However, 

these evident increases in caspase activity indicate the possible up-regulation of apoptotic 

caspases (caspase 3 and 7) and thus point to apoptotic events due to the treatment of the cells 
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with RDCF and AMNHF. These results also correlate to the Alamar blue cytotoxic activities 

observed on the treated MIA PaCa-2 cells. 

 

 
Figure 8 : Caspase activity. The average luminescence readings (in relative light units) for the 24-hour treatment 

of the MIA PaCa 2 cell line showing the untreated cells, the cells treated with 0.1% DMSO, 100 µM etoposide 

and the IC50s of RDCF (65.7 µg/ml) and AMNHF (2 µg/ml). The asterisk (*) represents (*P < 0.05, **P < 0.01 

***P < 0.001, ****P < 0.0001) as calculated by a T-test between untreated and treated samples. 

 

No data has been reported on the displayed anti-proliferative activities of Cannabis cultivars 

AMNHF and RDCF. Therefore, we may hypothesize that the observed activities stem from the 

distinct chemical profiles of the two cultivars. Consequently, AMNHF and RDCF present 

promising subjects for upcoming investigations, including isolating compounds of various 

chemical classes and assessing their potential for anti-cancer properties. It is noted that these 

compounds usually undergo natural metabolism upon introduction into the human body. 

Therefore, future research focusing on the catabolism of these metabolites following Cannabis 

consumption and their route within the body will be important to assess the full health-related 

properties of various Cannabis cultivars. 

 

4. Conclusion 

The numerous Cannabis cultivars that are made accessible for medicinal purposes, are 

classified into several categories based only on the plant’s cannabinoid content. Nonetheless, 

the metabolomics computational strategies used herein such as molecular networking 

approaches, helped in visualizing, and elucidating the chemical diversity of the studied 

Cannabis cultivars beyond their cannabinoid content. The revealed plant-tissue based chemical 

profiles of the studied Cannabis cultivars showed variation in the distribution of 
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phytocannabinoids (major and minor) as well as other phytochemicals. Moreover, the 

phytochemical space of the leaves (which are underused in clinical studies) was highlighted as 

an alternative source of compounds with possible medicinal value. Such revelations, including 

the varying distribution of chemical classes across the studied cultivars, can assist in 

understanding the metabolome of Cannabis and gives an opportunity for the discovery of novel 

compounds in the elucidated chemical space.  

Since the therapeutic outcomes of Cannabis are non-generic, the knowledge generated from 

the chemotyping done herein can also inform further experiments such as the testing of the 

biological activities of the plant-tissues as they may be used to address different ailments based 

on their non-generic chemical composition. When considering the flower anti-proliferative 

activities of the extracts, these findings put emphasis on the importance of metabolic profiling 

Cannabis cultivars as they can inform their use as pharmacological agents, in this case as 

possible cancer suppressors. However, since this study was based on crude extracts, the anti-

proliferative activities observed could be a result of the synergistic effect of multiple 

compounds. Thus, further studies such as fractionation and compound isolation and evaluation 

of some of the identified metabolites in the studied Cannabis extracts on cancer cell lines are 

still needed. Moreover, based on the observed metabolite differences between the plant tissues 

of the studied cultivars, future studies could include integrating genomics and transcriptomics 

studies for in-depth analysis of the biosynthetic routes and regulation of the chemical 

compound classes illuminated in the cultivars. 

 

Supplementary information: Supplementary data to this article can be found online: 
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