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Abstract 
Will something appear and if so, what will it be? Perceptual expectations can concern both the 
presence and content of a stimulus. However, it is unclear how these different types of 
expectations interact with each other in biasing perception. Here, we tested how expectations 
about stimulus presence and content differently affect perceptual inference. Across separate 
online discovery (N=110) and replication samples (N=218), participants were asked to judge 
both the presence and content (orientation) of noisy grating stimuli. Crucially, preceding 
compound cues simultaneously and orthogonally predicted both whether a grating was likely 
to appear as well as what its orientation would be. We found that expectations of presence 
interacted with expectations of content, such that the latter’s effect on discrimination was larger 
when a stimulus was expected to appear than when it was not. This interaction was observed 
both when a grating was truly presented and when participants falsely perceived one. 
Confidence in having seen a grating on the other hand was independently affected by presence 
and content expectations. Further, modelling revealed higher sensitivity in distinguishing 
between grating presence and absence following absence cues than presence cues, 
demonstrating an asymmetry between gathering evidence in favour of stimulus presence and 
absence. Finally, evidence for overweighted predictions being associated with hallucination-
like perception was inconclusive. In sum, our results provide nuance to popular predictive 
processing accounts of perception by showing that expectations of presence and content have 
distinct but interacting roles in shaping conscious perception.  
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1. Introduction 

 The sound of an opening door elicits the expectation of something entering through its 
frame. Turning our gaze towards the door, sensory evidence then either affirms or denies this 
expectation. The predictive processing (PP) framework postulates that this process is inherent 
to all of perception such that what we perceive represents a combination of predictions, elicited 
by cues for example, and incoming sensory information (Bastos et al., 2012; Friston, 2005; 
Hohwy & Seth, 2020). Indeed, empirical research in recent decades suggests that predictions 
can bias perception towards the expected outcome through top-down connections that descend 
along the neural processing hierarchy (Aitken, Turner & Kok, 2020; Brandman & Peelen, 2017; 
Chalk et al., 2010; de Lange, Heilbron & Kok, 2018; Haarsma et al., 2022; Haarsma et al., 
2023; Kok et al., 2013;  Summerfield & de Lange, 2014; Thomas et al., 2022; Wyart, Nobre & 
Summerfield, 2012; Yon et al., 2018). 

Importantly, however, not all predictions are the same. Consider the earlier example of 
expecting something or someone to enter the room when hearing a door open. Rather than 
expecting a specific content, such as a specific person or cat, the sound of the door elicited a 
prediction of general stimulus presence – something being there. However, based on the time 
and place, expectations are likely also held regarding the nature of the stimulus entering the 
room, after all a colleague is far more likely to enter your office than a cat. How then do these 
different kinds of perceptual predictions, those about stimulus presence and those about 
stimulus content, combine to shape perception? This question has further implications to 
predictive processing accounts of psychiatric disorders characterized by aberrations in 
perception such as autism (Lawson, Rees & Friston, 2014, Sapey-Triomphe et al., 2023) and 
psychosis (Corlett et al., 2019, Powers et al., 2017). Specifically in the latter, previous studies 
have found that perceptual predictions can particularly affect perception in those prone to 
hallucinations, and even induce de novo percepts (Haarsma et al., 2020; Schmack et al., 2021; 
Sterzer et al., 2018; Teufel et al., 2015). Yet, these studies typically do not dissociate predictions 
about presence and contents. Indeed, in a previous study of ours, hallucination proneness was 
not related to content-based cues. Instead, the content of false percepts arose from activity in 
the feedforward layers of the early visual cortex, independently of the cues signalling the most 
likely stimulus. However, implicit beliefs about stimulus presence rather than content could 
still have contributed to these false percepts (Haarsma et al., 2023). This raises the possibility 
that predictions of stimulus presence and content could have distinct effects on perceptual 
inference.  

The higher-order state space (HOSS) model attempts to account for this distinction by 
distinguishing between predictions about stimulus presence (i.e. detection) and its possible 
contents (i.e. discrimination) at different levels of a processing hierarchy (Fleming, 2020). The 
result is a hierarchical process in which two distinct perceptual inferences on detection and 
discrimination are scaffolded by two types of predictions: those about the contents of a stimulus 
and those about the presence of a stimulus as a whole. 
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Fig 1. Higher-order State Space Model. Adapted and simplified from Fleming (2020). Tilt in 
content states refers to gratings in common experimental paradigms. 

In the present study, we studied how predictions about presence and content interact in 
altering perception. We orthogonally and simultaneously manipulated expectations of stimulus 
presence (grating vs. noise) and content (grating orientation) using compound cues. 
Participants performed a discrimination task on grating orientation, while also indicating their 
confidence in stimulus presence. The objective of the study was twofold. First, we aimed to 
establish empirically whether the different types of predictions have distinguishable effects on 
detection and discrimination responses. Second, considering hallucinations as the result of 
overweighted predictions, we asked whether presence or content cue effects were differentially 
related to hallucination-susceptibility, which was assessed using the Cardiff Abnormal 
Perception Scale (CAPS). To preview, presence predictions moderated the effect of content 
predictions on discrimination decisions. Meanwhile, presence and content predictions 
independently influenced stimulus detection. Our initial findings of evidence for a relation 
between hallucination-proneness and the effect of presence priors on perception did not 
replicate in a second sample. 

2. Methods 

2.1 Participants 

Two separate samples were collected with identical paradigms and procedures in order 
to discover and replicate a possible relationship between prediction effects and hallucination-
susceptibility. The first sample consisted of 110 participants (mean age = 28.2, SD = 5.1) and 
the replication sample contained 218 (mean age = 27.1, SD = 6.0). Participants were recruited 
through the online recruitment platform Prolific and compensated at a rate of £7.50 per hour. 
The replication sample size was determined by a power calculation based on the discovered 
effect size of the relationship between the presence cue effect and hallucination-susceptibility. 
Participants were required to be fluent in English and between 18 and 35 years old. Data were 
collected through the online experiment builder Gorilla (Gorilla Experiment Builder, 2022), 
which was also used to implement the behavioural paradigm. Participants were provided with 
an information sheet and consent form which they agreed to before moving onto the 
questionnaires and task. The entire study took approximately one hour and was approved by 
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the local UCL Research Ethics Committee (UCL REC) under the minimum risk ethics protocol 
for online studies 6649/004. 

2.2 Task Design & Stimuli 

A novel task was created that allowed for the simultaneous manipulation of both 
stimulus presence and content, inspired by Dijkstra and colleagues (2023). The basic paradigm 
was adopted from the previously mentioned study by Haarsma et al. (2023) and required 
participants to discriminate the orientation (left-tilted, 45° or right-tilted, 135°) of a grating as 
well as report their confidence in having seen a grating at all as opposed to just noise. As such, 
this confidence response related to a grating’s visibility and should not be confused with 
metacognitive confidence in the aforementioned discrimination decision. Compound cues were 
implemented along with other adjustments using Gorilla’s Experiment Builder (Gorilla, 2022). 

 

 
Fig 2. Task design and cue-stimulus-contingencies. 

Following a fixation cross, each trial consisted of a visual cue followed by the target 
stimulus of either a grating or noise (50% each). Sinusoidal grating patches (spatial freq. = 0.5 
cpd) were created using the Psychophysics Toolbox as implemented in MATLAB (Brainard, 
1997; The Mathworks Inc, 2022) and combined with noise patches (see below for details on 
the noise), resulting in gratings with four, five or six percent contrast. These contrast levels 
were chosen as pilot testing had shown that they result in an adequate task difficulty in most 
participants. The four noise patches (20% contrast) were created by applying a Gaussian 
smoothing filter to pixel-by-pixel Gaussian noise. Initially, 1000 noise patches were processed 
through a bank of Gabor filters with varying preferred orientations. Four noise patches with 
low (2%) signal energy for all orientations were selected to be included in the present 
experiment. This assured that the noise matched the gratings in terms of spatial frequency, but 
without carrying orientation-specific information. These noise patches were used as target 
stimuli on grating-absent trials, and were presented in counterbalanced manner, to ensure that 
fluctuations in perception could only result from internal signals, rather than from fluctuations 
in stimulus noise (Haarsma et al., 2023; Wyart, Nobre & Summerfield, 2012, Pajani et al., 
2015). Gratings were tilted either to the left (45°) or the right (135°), again with equal 
probability. The preceding cues were compounds consisting of a coloured circle predicting the 
orientation of a possible grating and a surrounding square/diamond predicting the presence of 
a grating as opposed to noise (see Figure 2, right). The visual cues were created using Adobe 
Express (Adobe Inc., 2022) and consisted of a coloured circle within a square of a certain 
rotation as previously explained. Circles were coloured either cyan (HEX: #009999) or orange 
(#E18000) predicting leftwards (45°) and rightwards (135°) orientations respectively. The 
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surrounding square was black (#000000) and either presented with its horizontal edges in 
parallel with the horizon or rotated by 45° resulting in a diamond-like shape with the former 
predicting noise and the latter a grating. 

The four different types of cues appeared on an equal number of trials. Crucially, the validity 
of one cue dimension was independent of the validity of the other cue dimension. In other 
words, cues indicating a left or right-tilted grating were valid on 75% of trials regardless of 
whether the cued grating presence was valid. This meant that whether a grating appeared as 
predicted following a presence cue, or contrary to predicted following an absence cue, did not 
affect whether the displayed grating would comply with the cued orientation. Conversely, cues 
indicating grating presence were valid on 80% of trials regardless of whether the cued grating 
orientation was valid. 

Cues were presented for 750ms followed by a 250ms blank screen before the target 
stimuli appeared for 50ms. Gratings were shown at varying contrast levels as explained in the 
materials section. Following the target stimulus and another 700ms blank screen, two arrows 
were displayed, one on each side of a fixation cross. Participants indicated the orientation of a 
possible grating by selecting the matching arrow on the screen (i.e. the left-pointing arrow for 
a left-tilted grating response) whose location with respect to the fixation cross varied on a 
pseudo-random trial-by-trial basis to avoid response biases. Keyboard presses of the buttons 
‘U’ and ‘I’ corresponded to picking the arrow on the left and right of the fixation cross 
respectively. A time-out was recorded after 1250ms. At the end of each trial, participants were 
shown “CONF?” which prompted them to indicate their confidence in having seen a grating at 
all. They were asked to do so within 1250ms by pressing one of four keys on their keyboard: 
Q = “I did not see a grating”, W = “I may have seen a grating”, E = “I probably saw a grating”, 
R = “I am sure I saw a grating”. The next trial started following a jittered inter-trial interval of 
either 500, 750 or 1000ms. 

2.4 Questionnaires 

To assess hallucination-susceptibility and control for possible confounds, participants 
were asked to complete three questionnaires in addition to the described experimental task. 
Firstly, the Cardiff Abnormal Perception Scale (Bell et al., 2005) was used to measure 
hallucination-susceptibility consistent with several previous studies in this field. Scores on its 
three subscales were summed for all 32 items to produce the overall CAPS score for which 
higher scores indicate higher hallucination-susceptibility. The Beck Depression Inventory was 
used to assess depression to control for general psychopathology (BDI, Beck, Steer & Brown, 
1996). Lastly, a demographics questionnaire was conceived and employed that measured age, 
gender, and maternal education level. The rationale for the inclusion of specifically these 
factors lies in their documented correlation with CAPS Scores (Bell et al., 2005). Attention 
checks that instructed participants to choose a specific answer option were implemented 
throughout the questionnaires. Participants that failed to select the instructed answer option 
more than once were excluded. 

2.5 Procedure 

Participants began the experimental session with the described demographics 
questionnaire. Prior to the instructions, participants were required to position themselves 50cm 
from the screen and adjust a visually displayed box to match the size of a credit card to ensure 
that visual stimuli were presented at approximately the same retinotopic size (Li et al., 2020). 
The main task was then introduced on a component-by-component basis which was inspired 
by another recent study using a comparable paradigm (Dijkstra et al., 2023). Participants were 
separately introduced to the two cue dimensions before these were combined and practiced 
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until task difficulty was reached. To ensure the learning of the cue-stimulus-associations, the 
cues were 100% valid during practice. Additionally, to provide participants with as much 
practice as possible with the orientation discrimination component, practice trials contained a 
larger proportion (70%) of grating-present trials than the test session (50%). Participants were 
informed that these were adjustments to help acquaint them with the task and that these would 
be reversed in the test phase of the task. They also received feedback and were required to meet 
certain performance criteria to progress through this training phase. Then, to ensure that the 
inflated cue validity during the training phase had not introduced a response bias, participants 
completed one run of trials in which cues were removed and participants again had to reach a 
performance level of 75%. Finally, participants completed the main task at full difficulty level 
for 480 trials split into four blocks of 120 trials with 30-second breaks in between. Before 
finishing the study, participants completed the CAPS and BDI. The testing phase took 40 
minutes in total resulting in an overall session length of around 60 minutes including task 
practice and questionnaires. 

2.6 Data Analysis 

Orientation cues were classified as congruent or incongruent depending on whether the 
subsequent grating was in line with the cue. Factorized by the presence cues, trials were thus 
divided into four conditions: presence/absence-cued × orientation-congruent/incongruent. 
Behavioural analyses compared these four conditions in terms of confidence responses 
(detection) and orientation response accuracy (discrimination). Results were illustrated using 
ggplot2 after Allen et al. (2021). 

A Bayesian decision model (BDM) was used to further dissect precisely how cues 
affected perceptual inference. BDMs can be likened to signal detection theory models in the 
sense that they distinguish between biases and sensitivity-related influences on perception. 
BDMs have the advantage that they more closely follow the tenets of Bayesian inference and 
were thus deemed more suitable in this case. The used BDM was adapted from a study 
conducted by Stuke and colleagues (2021) and modified to fit the present task’s experimental 
stimuli. The model used participants’ behavioural responses to infer prior and sensitivity 
parameters. The sensitivity parameter encoded to what extent a participant’s response depended 
on the displayed stimulus. Based on it, a likelihood value was computed that represented the 
probability of reporting a certain response option given a trial’s stimulus. The prior parameter 
on the other hand was a simple free parameter that encoded a shift towards either of the 
response options regardless of the presented stimulus. Combining the prior with the likelihood, 
the model produced a posterior probability that the displayed stimulus was correctly chosen, 
which could be compared to the true behavioural responses on each trial (see Stuke et al., 2021 
for exact formulae). This model was then inverted given a large number of trials to estimate 
the prior and sensitivity parameters by maximizing the summed log-likelihood of predicted 
responses using Powell’s optimization as implemented in R’s minqa package (Bates et al., 
2022; R Core Team, 2022). By comparing the different cueing conditions in terms of the 
retrieved parameters, the found behavioural effects were further investigated. Specifically, we 
used the BDM to model detection responses and predicted whether a participant would report 
a grating as opposed to noise. To this end, confidence responses were binned into low and high 
relative to each participant’s mean confidence to match the binary input variable of grating or 
noise. The sensitivity therefore represented the extent to which a participant’s confidence 
response depended on a grating or noise being shown. The prior parameter reflected biases 
towards reporting gratings or noise independent of the displayed stimulus.  

To assess the role of presence and content cues in hallucination-susceptibility, 
participant-specific presence and content cue effects were quantified as standardized slope 
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estimates from simple linear regression models predicting confidence and accuracy in 
individual participants. Linear models were created that predicted participants’ CAPS sum 
scores from these behavioural effect sizes, Separate models were created to investigate the 
relation of the two respective cues with CAPS to avoid multicollinearity problems. Each model 
additionally contained BDI scores as well as the demographic variables age and maternal 
education level to control for their influences on CAPS scores as rationalized earlier. A square-
root transformation was applied to CAPS scores to account for the positive skew in its 
distribution, in line with past studies (Davies, Teufel & Fletcher, 2017). To allow for 
comparisons between the types of effects and their relation with CAPS scores, slope estimates 
from the respective models were standardized. The two samples were well-matched in terms 
of psychiatric scores and demographics (Table 1).  

2.7 HOSS simulations  

Finally, we considered how our behavioural effects may be accounted for within the 
framework of the previously described higher-order state space (HOSS) model (Fleming, 
2020). HOSS can be specified as a probabilistic graphical model in which 𝑊 is a 1	 × 	𝑁 vector 
that encodes the relative probabilities of each of 𝑁 discrete perceptual states (here, left tilted, 
right tilted, and absent), and 𝐴 is a scalar “awareness state” that encodes the probability of a 
perceptual state 𝑊 being “present” (left tilt, 𝑤!; right tilt, 𝑤") or “absent” (𝑤#). To simulate 
multivariate sensory data (X), 𝑊 in turn determines the value of 𝜇, which is a 𝑀 × 	𝑁 matrix 
defining the location (mean) of a multivariate Gaussian in a feature space of dimensionality 𝑀. 
Here we set 𝑀 = 2 to simulate activations of neural populations tuned to the two grating 
orientations in the task. The means (𝜇) and covariance (Σ) of 𝑋 were set arbitrarily to roughly 
match the average accuracies seen in the experiment (𝜇	 = 	 [0.5	1.5; 	1.5	0.5; 	0.5	0.5]; Σ	 =
	[0.4	0; 	0	0.4]). The priors on the 𝐴 and 𝑊 levels were set to be the same as the empirical 
probabilities used in the current experiment (𝑝(𝐴) 	= 	0.2 or 0.8; 𝑝(𝑊) 	= 	 [0.25	0.75] or 
[0.75	0.25]).  

We drew samples of 𝑋 for different stimuli on “present” trials (mimicking either left or 
right tilted gratings), under the different combinations of priors at the 𝐴 and 𝑊 levels. 60 
samples were drawn for each combination of prior per simulated subject, and for each sample 
the model was inverted to record posteriors over W and A as per the following equations using 
exact inference in Matlab (R2023a): 

𝑝(𝐴|𝑋) ∝ 𝑃(𝐴)<𝑃(𝑊|𝐴)𝑃(𝑋|𝑊)
$

 

𝑝(𝑊|𝑋) ∝<𝑃(𝐴)𝑃(𝑊|𝐴)𝑃(𝑋|𝑊)
%

 

The first equation yields a probability in a stimulus being present vs. absent – this quantity was 
used to model confidence in having seen a grating in the current experiment. The second 
equation yields a belief as to which perceptual state was more probable – the maximum of 
𝑃(𝑤!|𝑋) or 𝑃(𝑤"|𝑋) determines whether the agent responds “left tilt” or “right tilt” to the 
discrimination decision. Simulations therefore yielded mean confidence and accuracy scores 
on grating-present trials for 91 simulated individual participants (original sample size post-
exclusion), which were analysed in the same manner as the real data.  

 Initial simulations of this “standard” version of the HOSS model were unable to 
reproduce the robust presence × content cue interaction effects seen on accuracy in the 
empirical data. We therefore explored post-hoc alterations to the model architecture to ask what 
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may be needed to capture this salient feature of the data. One attractive model extension 
(explored in the discussion section of Fleming, 2020) is to allow the sensory covariance Σ	to 
itself depend on the prior over A - effectively increasing the range of (content) signals that 
would be expected under a presence (vs. absence) prior. We implemented this by multiplying 
Σ by 1.5 when presence was expected (when 𝑝(𝐴) 	= 	0.8). 

3. Results 

3.1 Demographics 

Table 1. Demographics Across the Two Samples. Note: MEL = Maternal education level, CSE 
= Completed secondary education 

 Age 
Mean (SD) 

Gender  
(M/F/O %) 

MEL 

Mode 
CAPS 
Mean (SD) 

BDI 
Mean (SD) 

Original 28.2 (5.1) 51 / 45 / 4  CSE 46.5 (49.9) 13.5 (12.4) 
Replication 27.1 (6.0) 64 / 35 / 1 CSE 43.2 (49.1) 13.4 (13.2) 

 

As previously mentioned, data collection was split into a discovery and replication 
sample. This split will be further discussed when discussing the hallucination-related analyses, 
but since no difference between the samples was found in terms of overall behavioural effects, 
their results will be reported alongside one another when describing the main experimental 
results. Figures accompanying the text display the original sample unless otherwise specified. 
Corresponding figures for the replication sample can be found at the end of the results section. 
No participant in either sample was excluded due to failed attention checks. One participant 
was excluded in the original sample for failing to respond on a large proportion (29.8%) of 
trials. Additionally, the described analyses were conducted after excluding 18 and 52 
participants respectively based on exclusion criteria aimed at preventing response biases. 
Ninety-one and 166 participants therefore remained in the original and replication sample 
respectively. Importantly, these exclusion criteria did not affect the main behavioural results 
reported here, which indeed remained highly significant in the full sample. Therefore, the 
exclusion criteria and their practical relevance are restricted to the hallucination-related 
analyses, in which context they will be discussed in more detail. Behavioural results without 
excluding any participants can be found in the supplementary materials. 

3.2 Behavioural results 

3.2.1 Presence cues enhance the effect of content cues on discrimination 

We first tested whether confidence in having seen a grating tracks the accuracy of 
discriminating its content. Here we found accuracy to increase linearly with confidence in 
grating presence, Greenhouse-Geisser-corrected repeated-measures ANOVA: F(1.759, 63.311) 
= 27.099, p < 0.001, η2 = 0.75 (replication: F(1.614, 122.667) = 98.784, p < 0.001, η2 = 1.30).  

A two (Presence Cue: Present, Absent) by two (Content Cue: Congruent, Incongruent) 
by three (Contrast: low, medium, high) ANOVA, with repeated-measures on all three factors, 
was used to analyse discrimination accuracy on grating-present trials. Grating contrast 
significantly affected accuracy, F(2,180) = 125.605, p < 0.001, η2 = 0.58 (replication: F(2,330) 
= 206.045, p < 0.001, η2 = 0.56), so that participants were better at discriminating the content 
of high-contrast than low contrast gratings, b =  0.141, t(90) = 14.329, p < 0.001 (replication: 
b =  0.136, t(165) = 17.206, p < 0.001). Importantly, a significant effect of orientation cue 
congruency was found, F(1,90) = 35.962, p < 0.001, η2 = 0.29 (replication: F(1,165) = 35.242, 
p < 0.001, η2 = 0.18), which was grounded in accuracy being higher on orientation-congruent 
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compared to orientation-incongruent trials, b = 0.047, t(90) = 5.997, p < 0.001 (replication: b 
= 0.05, t(165) = 5.936, p < 0.001), as revealed by post-hoc contrasts. In line with the notion of 
weighted inference, this effect was found to be stronger on low contrast than on high contrast 
trials, b = 0.082, t(90) = 4.789, p < 0.001 (replication: b = 0.070, t(165) = 5.161, p < 0.001). 
Presence cues did not significantly affect discrimination accuracy, F(1,90) = 1.488, p = 0.226, 
η2 = 0.02 (replication: F(1,165) = 0.707, p = 0.401, η2 < 0.01), but they did modulate the effect 
of orientation cue congruency, as revealed by an interaction between presence and orientation 
cues, F(1,90) = 11.395, p = 0.001, η2 = 0.11 (replication: F(1,165) = 6.559, p = 0.011, η2 = 
0.04). Further contrast analyses investigating this interaction effect revealed that the effect of 
orientation cue congruency was moderated so that it was stronger following a presence cue 
than after an absence cue, b = 0.050, t(90) = 3.376, p = 0.001 (replication: b = 0.030, t(165) = 
2.561, p = 0.011). As a result, presence cues only lead to higher accuracy when accompanied 
by a congruent orientation cue, b= 0.034, t(90) = 3.990, p < 0.001 (replication: b = 0.019, t(165) 
= 3.388, p < 0.001), but not when accompanied by an incongruent orientation cue, b = -0.016, 
t(90) = 1.260, p = 0.211 (replication: b = -0.011, t(165) = -1.139, p = 0.256). 

 
Figure 3. Orientation discrimination accuracy on grating-present trials. (A) Across confidence 
levels and (B) across cueing conditions (OC = Orientation cue). (C) Effect of orientation cue 
congruency on accuracy across contrast levels. Error bars reflect within-subject standard error 
of the mean. 

 A similar pattern of results also appeared for the orientation responses on grating-
absent trials. This included an orientation cue effect, F(1,90) = 33.714, p < 0.001, η2 = 0.27 
(replication: F(1,165) = 42.492, p < 0.001, η2 = 0.20), the lack of a presence cue effect, F(1,90) 
= 0.814, p = 0.369, η2 = 0.09 (replication: F(1,165) = 0.315, p = 0.576, η2 = 0.02), as well as a 
significant interaction between the two, F(1,90) = 12.770, p < 0.001, η2 = 0.12 (replication: 
F(1,165) = 17.436, p < 0.001, η2 = 0.10). Critically, this also applies to trials on which 
participants falsely reported seeing a grating with high confidence (Figure 4-B), orientation cue 
effect: F(1,86) = 41.929, p < 0.001, η2 = 0.33 (replication: F(1,157) = 66.850, p < 0.001, η2 = 
0.30), the lack of a consistent presence cue effect: F(1,86) = 6.190, p = 0.015, η2 = 0.07 
(replication: F(1,157) = 1.715, p = 0.192, η2 = 0.01) and a significant interaction between the 
two: F(1,86) = 8.312, p = 0.005, η2 = 0.09 (replication: F(1,157) = 35.655, p < 0.001, η2 = 
0.19). 
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Figure 4. Cue effects on orientation responses on grating-absent trials. (A) Proportion of 
rightward orientation responses across cueing conditions (OC = orientation cue) (B) Proportion 
of orientation responses given in line with the trial’s orientation cue (e.g. rightwards response 
after rightwards cue) across levels of confidence in having seen a grating. Error bars reflect 
within-subject standard error of the mean.  

3.2.1 Content and presence cues independently affect detection 

Confidence ratings were similarly analysed on grating-present trials using a two 
(Presence Cue: Present, Absent) by two (Content Cue: Congruent, Incongruent) by three 
(Contrast: low, medium, high) ANOVA, with repeated-measures on all three factors (Figure 5-
B). Like accuracy, confidence increased with grating contrast, F(2,180) = 275.623, p < 0.001, 
η2 = 0.75 (replication: F(2,330) = 363.448, p < 0.001, η2 = 0.69) with participants being more 
confident in having seen high-contrast gratings than low-contrast gratings, b = 0.656, t(90) = 
21.538, p < 0.001 (replication: b = 0.619, t(165) = 23.112, p < 0.001). A significant effect of 
orientation cue congruency was also once again found, F(1,90) = 33.965, p < 0.001, η2 = 0.27 
(replication: F(1,165) = 62.842, p < 0.001, η2 = 0.25), with congruent cues leading to higher 
confidence than incongruent ones, b = 0.087, t(90) = 5.825, p < 0.001 (replication: b = 0.265, 
t(165) = 7.927, p < 0.001). As before, this effect was stronger on low than on high contrast 
trials, b = 0.102, t(90) = 2.357, p = 0.021 (replication: b = 0.215, t(165) = 10.001, p < 0.001). 
Additionally, a significant effect was also found for presence cues, F(1,90) = 48.634, p < 0.001, 
η2 = 0.35 (replication: F(1,165) = 56.453, p < 0.001, η2 = 0.28), which as expected was 
grounded in confidence ratings being significantly higher following presence cues than absence 
cues, b = 0.14, t(90) = 6.964, p < 0.001 (replication: b = 0.426, t(165) = 7.513, p < 0.001). 
Unlike the other cue effects, this effect was only significantly stronger on low than on high-
contrast trials in the replication sample b = 0.072, t(90) = 1.869, p = 0.065 (replication: b = 
0.068, t(165) = 2.333, p = 0.021). The effects of the different types of cues on confidence 
appeared to be independent as no significant interaction was found between the two, F(1,90) < 
0.001, p = 0.977, η2 < 0.01. Here, a slight deviation was found in the replication where a small 
interaction was found, F(1,165) = 4.068, p = 0.045, η2 = 0.02, driven by slightly stronger 
orientation cue effects on confidence on absent cued trials. Interestingly, this subtle interaction 
was reproduced by the HOSS model (see section 3.3). Analyses of absent trials produced 
similar results, with presence cues leading to higher confidence ratings than absence cues, 
F(1,90) = 47.131, p < 0.001, η2 = 0.34 (F(1,165) = 56.107, p < 0.001, η2 = 0.25). 
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Fig 5.  (A) Cue effects on confidence on grating-present trials. (B) Orientation cue congruency 
(‘NA’ in the case of contrast level 0 since no grating was shown to validate or invalidate the 
cue) and (C) presence cue effects on confidence across contrast levels (note Contrast = 0 refers 
to noise trials). Error bars reflect within-subject standard error of the mean. 

Overall, content and presence cues were found to have distinct and robust effects on 
accuracy and confidence ratings. Specifically, content cues were found to promote more 
accurate responding when the cue was congruent with the stimulus. Crucially, this effect was 
strengthened or weakened depending on whether a presence or absence cue accompanied the 
content cue. Aside from this interaction, presence cues were not found to affect accuracy. In 
contrast, both content and presence cues showed independent effects on confidence, in the 
absence of robust interactions. 

3.3 HOSS model simulations reproduce empirical effect profiles 

 Initial explorations of the standard form of the HOSS model, without any dependency 
of sensory variance on detection prior, were unable to reproduce the pattern of empirical results 
– namely the robust interaction of presence and content cues on accuracy. Instead, a model in 
which presence expectations themselves increased the range of signals that were expected 
(implementing a dependency between the detection prior and sensory variance) was able to 
reproduce this qualitative pattern.  Here we report these simulations as a proof-of-principle that 
the HOSS model is flexible enough to accommodate the empirical data patterns, and to inform 
future computational work (see Methods). However, we note that this is a strictly post-hoc 
interpretation of the data, and should not be taken as evidence in support of the HOSS model.  

The simulated data were adjusted to roughly match the empirical data in terms of both 
mean accuracy (real: 0.825, simulated: 0.833) and confidence (real: 2.950, simulated, adjusted 
to task scale: 2.419). Simulated discrimination accuracy scores were analysed using a two 
(Presence Cue: Present, Absent) by two (Content Cue: Congruent, Incongruent) ANOVA with 
repeated-measures on both factors (Figure 6-A). As in the empirical data, a significant effect 
of orientation cue congruency was found on accuracy, which was higher on orientation-
congruent compared to orientation-incongruent trials. Presence cues had opposite effects 
depending on cue congruency, leading to higher accuracy with congruent and lower accuracy 
with incongruent content cues as reflected in the interaction between the two types of cues (all 
p < 0.001). Confidence scores were again similarly analysed using a two (Presence Cue: 
Present, Absent) by two (Content Cue: Congruent, Incongruent) ANOVA, with repeated-
measures on both factors (Figure 6-B). Significant main effects were again found for presence 
and content cues, in line with the real data. The simulated data also reproduced the subtle 
interaction found in the replication sample of stronger content-congruency effects on absence-
cued than on presence-cued trials (all p < 0.001). 
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 In sum, the simulated data were able to reproduce the patterns of empirical effects. This 
notably includes the contrasting ways in which presence and content cues interact depending 
on the perceptual decision at hand: presence cues moderate the effect of content cues on 
discrimination but affect detection in a largely independent manner. 

 
Fig 6. Cue effects on HOSS-model simulated data. (A) Cue effects on accuracy. (B) Cue effects 
on confidence. Note that for the purposes of modelling, confidence responses were relabelled 
as 0 (low confidence) and 1 (high confidence). Error bars reflect group-level standard 
deviation. 

3.4 Bayesian decision model results 

3.4.1 Presence cues bias detection decisions and affect sensitivity 

We further dissected the empirical results using a Bayesian decision model (BDM), to 
explore how the presence cues affected confidence responses, in particular how presence cues 
affected the prior probability of reporting high confidence and sensitivity to stimulus presence.  
A significant difference in retrieved prior parameters was found indicating a bias towards 
reporting grating presence following presence compared to absence cues, paired t-test: t(90) = 
7.432, p < 0.001, d = 0.78 (t(165) = 7.865, p < 0.001, d = 0.61) (Figure 7-A & B, left panel). 
Interestingly, a significant effect of presence cues was also found with regards to the retrieved 
sensitivity parameters, however in the opposite direction, t(90) = 2.193, p = 0.03, d = 0.23 
(t(165) = -2.955, p = 0.004, d = 0.23), meaning that higher sensitivity parameters were found 
for the absence-cue compared to the presence-cue condition (Figure 7-A & B, right panel). In 
other words, participants’ confidence in stimulus presence more accurately tracked the actual 
presence of a grating following an absence cue. 
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Fig 7. BDM-retrieved parameters for original (A) and replication (B) sample data displayed 
using the sdamr-package in R (Speekenbrink, 2022). 

3.5 Hallucination-susceptibility results 

In the original sample, the content cue effect was not found to predict CAPS scores, β 
= 0.008, t(85) = 0.080, p = 0.936 while a marginal effect was found for the presence cue effect, 
β = 0.166, t(85) = 1.784, p = 0.078, η2 = 0.04. However, the trend-level relationship between 
the presence cue effect and CAPS was not present in the replication sample, β = 0.024, t(161) 
= 0.366, p = 0.715, and neither was the content cue effect, β = 0.073, t(161) = 1.126, p = 0.262. 
The results were obtained after applying the following exclusion criteria. Participants were 
excluded if they (1) performed significantly worse than chance on orientation-incongruent 
trials or (2) showed no effect of grating presence on confidence responses. The rationale behind 
both criteria was to exclude participants who did not respond based on the actual stimuli on the 
screen. Interestingly, relaxing these exclusion criteria resulted in a slightly stronger association 
between the presence cue effect and CAPS across the original and replication samples: β = 
0.173, t(104) = 2.066, p = 0.041 (β = 0.095, t(213) = 1.615, p = 0.108). This suggests that any 
relationship between the presence cue effect and hallucination-susceptibility was driven by a 
subset of participants whose responses were particularly driven by the cues. Supporting this 
notion, an ad-hoc leave-one-out analysis, which can be found in the supplementary materials, 
showed the effect of interest to be strongly reliant on individual participants. 
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Fig 8. Replication results. Orientation response accuracy on grating-present trials (A) across 
confidence levels and (B) across cueing conditions (IOC = Incongruent orientation cue, COC 
= Congruent orientation cue). (C) Effect of orientation cue congruency on accuracy across 
contrast levels. (D) Proportion of rightward orientation responses on grating-absent trials 
across cueing conditions (LOC = Left orientation cue, ROC = Right orientation cue, AC = 
Absence Cue, PC = Presence Cue). (E) Proportion of orientation responses on grating-absent 
trials given in line with the trial’s orientation cue (e.g. rightwards response after rightwards 
cue) across levels of confidence in having seen a grating. (F) Cue effects on confidence on 
grating-present trials. (G) Orientation cue congruency and (H) presence cue effects on 
confidence across contrast levels. 

4. Discussion 

Across two independent samples, this study introduced and validated a novel design for 
studying separate effects of presence and content priors on perceptual decision-making. The 
results provide robust empirical support for the distinct effect profiles of these different kinds 
of predictions. Specifically, our findings are consistent with more global presence predictions 
gating the effect of content predictions on lower-level discrimination responses. Meanwhile, 
presence and content predictions independently influenced higher-level detection. By 
informing a theoretical distinction between predictions of presence and content with empirical 
evidence, these findings illustrate the potential value or even necessity of introducing more 
nuance into the construct of prediction as well as its investigation. 

Beyond their distinct effects, our study also demonstrated the interaction between 
presence and content priors. Specifically, the biasing influence of content priors on 
discrimination judgements was boosted in the case of a presence prior and dampened in the 
case of an absence prior. This follows intuition in the sense that the utility of any content-
specific prediction is scaled by the likelihood of a stimulus appearing in the first place: the 
more likely the answer to the question ‘will something appear?’ is no, the more preconceptions 
about ‘what will it be?’ become redundant. Interestingly, a recent neuroimaging study also 
found an effect of content cue congruency on prefrontal activity to be contingent on the 
expectation of general stimulus presence (Dijkstra et al., 2023). This suggests that presence 
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expectations may act as a regulatory volume knob for the influence of content predictions lower 
down the hierarchy.  

From a computational point of view, while standard signal detection theory models of 
detection and discrimination frame the two as evidence accumulation within the same sensorial 
landscape rendering them both first-order processes (King & Dehaene, 2014), the flat structure 
of such a model does not intuitively provide room for how hierarchical effects of one type of 
prediction affect the other. One computational model has put forward that these different kinds 
of predictions have a hierarchical relationship to one another (Fleming, 2020), which we here 
adopted and modified to demonstrate that the behavioural effects in our paper could at least in 
principle be accounted for by such a model. Note however, that this is not evidence for the 
brain deploying such a hierarchical predictions, as the model was adjusted to fit our data. 
Separate future empirical studies will need to provide evidence for the existence of such a 
computational hierarchy. 

 The current study also provides insight into more precisely how presence priors affect 
perceptual inference. Specifically, they led to biases in detection judgements, as expected based 
on past literature (Wyart, Nobre & Summerfield, 2012). However, the impact of presence priors 
on detection was also accompanied by a loss in overall sensitivity to sensory evidence. This 
suggests that participants were better at distinguishing between gratings and noise following 
an absence cue than a presence cue. One potential explanation for this unexpected finding is 
that after an absence cue, participants start with an expectation of noise, and need to accumulate 
sensory evidence in favour of grating presence to make a correct decision on grating-present 
trials. In contrast, following a presence cue, participants already expect to see a grating and 
need to gather evidence for its absence to make a correct decision on grating-absent trials. Past 
research has shown that an asymmetry exists between gathering evidence for absence vs 
presence, such that it is easier to gather evidence for presence (Mazor et al., 2019). This is 
thought to be due to absence decisions requiring negative evidence – something not being there 
– whereas sensory systems are typically tuned to propagate positive evidence for something 
being there (Meuwese et al., 2014). The result is that participants may be naturally better at 
accumulating evidence on incongruent absence-cued trials than incongruent presence-cued 
trials, leading to the difference in sensitivity parameters. Hierarchical models additionally 
suggest that prediction errors regarding stimulus presence are abstract, and lack content-
specific information (Dijkstra et al., 2023; Fleming, 2020). This may explain why, despite 
increased sensitivity to stimulus presence, accuracy on orientation responses was not higher 
following absence than presence cues. It should be noted that while supported by the current 
findings, this specific explanation is at this point largely speculative and requires further 
empirical investigation. 

Having successfully established the distinct ways in which presence and content priors 
affect normative perceptual decision-making, this study sought to further elucidate their roles 
in hallucination-like perception, which has previously been attributed to an overly strong 
reliance on predictions (Powers et al., 2016; Sterzer. et al., 2018; Corlett et al., 2019). Indeed, 
in the present study we found that on grating absent trials, high confidence false percepts were 
reported in line with the cued orientation. Moreover, expecting the presence of a stimulus 
increased the chance of detecting one on grating-present trials. In previous work where 
participants were unaware of the purpose of the cues, we found that content cues did not 
necessarily induce false percepts. However, in these studies false percepts still arose through 
stimulus-like signals reflecting the falsely perceived orientation (Haarsma et al., 2023; 
Haarsma et al., 2024). One possibility is that explicit content cues induce sensory-like activity 
(Kok et al., 2017; Aitken et al., 2020) resulting in false percepts. 
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We next tested whether the strength of content and presence predictions in driving false 
percepts related to hallucination-like perception. In both samples, there was no evidence for a 
relationship between the strength of content predictions and hallucination-proneness. This is in 
line with previous studies where content cues were not associated with hallucination-like 
perception (Haarsma et al., 2023). In contrast, in the discovery sample we did find that presence 
predictions have an enhanced influence on confidence in stimulus presence on absent trials, 
suggesting that presence priors are indeed overly strong. However, this result was not replicated 
in a second, larger sample, and largely dependent on exclusion criteria, specifically the 
inclusion of participants that were heavily influenced by the cues. This can hinder a 
straightforward interpretation of the results, as these participants may have disregarded the 
stimuli altogether. This issue is largely unaddressed in previous work, but has particular 
relevance for studies employing explicit cue instructions. The lack of an overly strong 
prediction effect in people prone to hallucinations in the replication sample seemingly 
contradicts the past literature. Although some past studies have found this type of effect in 
similarly sized or smaller, normative samples (Haarsma et al., 2023; Stuke et al., 2021), larger 
sample sizes may be required to observe these effects consistently. Furthermore, it is important 
to note that the average CAPS scores in this study were considerably lower (averaging around 
45, in line with the original study by Bell et al, 2005) compared to some previous studies, which 
reported average CAPS scores of 107 (Stuke et al., 2021), 72 (Haarsma et al., 2023) and 58 
(Schmack et al., 2021). Our samples’ limited range of hallucination-like experience might have 
reduced the power of this study. Future studies could enrich their samples by targeting clinical 
groups. 

In summary, our study aimed to empirically establish a distinction between presence and 
content priors by teasing apart their influences on perceptual decision-making. Beyond 
demonstrating that these priors differentially affect detection and discrimination decisions, we 
also showed that presence priors scale the influence of content priors on discrimination 
judgements. This is consistent with the proposal of a hierarchical relationship between these 
two priors, which an updated HOSS model was able to capture. Together, the current findings 
shed light on the computational underpinnings of the influence of expectations on perceptual 
inference.  
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