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Abstract 11 

Behavior contains rich structure across many timescales, but there is a dearth of methods to 12 
identify relevant components, especially over the longer periods required for learning and 13 
decision-making. Inspired by the goals and techniques of genome-wide association studies, 14 
we present a data-driven method—the choice-wide behavioral association study: CBAS—that 15 
systematically identifies such behavioral features. CBAS uses powerful, resampling-based, 16 
methods of multiple comparisons correction1–3 to identify sequences of actions or choices 17 
that either differ significantly between groups or significantly correlate with a covariate of 18 
interest. We apply CBAS to different tasks and species (flies4, rats5, and humans6) and find, in 19 
all instances, that it provides interpretable information about each behavioral task.  20 

Understanding how behavior differs between different groups of humans or other 21 
animals is critical for generating and testing hypotheses about the functional role of genes, 22 
regions of the brain, and neural circuits, and is central to characterizing neurological and 23 
psychiatric dysfunction7. However, behavior is highly complex, evolving over multiple 24 
timescales and exhibiting substantial path dependencies due to individual experience8–12. It is 25 
increasingly possible to automate behavioral paradigms, and for computational methods to 26 
revolutionize behavioral analyses13–22. The latter come in two main flavors23,24: model-based, or 27 
top-down approaches, and data-driven, or bottom-up approaches. The former are substantially 28 
more prevalent than the latter; we offer a partial corrective. 29 

In model-based analyses, behavioral data, such as choices in a decision-making task, are 30 
processed under the specific assumptions of a hypothesis or model. If the model or hypothesis 31 
is correct, this is highly efficient, since large volumes of data can be reduced to a handful of 32 
parameters that index semantically meaningful phenotypes, such as learning rates or 33 
differential sensitivity to rewards or punishments. These parameters can then be compared 34 
between the groups. However, even when substantial effort is put into building multiple 35 
alternative models, and comparing them in a statistically rigorous manner, it remains possible 36 
that the best fitting model nevertheless fails to characterize the behavior properly, rendering 37 
nugatory any interpretation of group comparisons. Additionally, with such approaches, 38 
confirmation bias25 presents a significant challenge for accurate interpretation. Furthermore, in 39 
the worst of cases, model and hypothesis-based analyses provides a post-hoc framework for 40 
explaining any difference that can be found in a behavioral dataset26. Modern machine learning 41 
methods27,28 can provide useful lower bounds for how well hypothesis-driven models should fit, 42 
but these approaches lack interpretability and data efficiency. 43 

Data-driven analyses start from the other end, taking, and then characterizing, behavior 44 
without relying on parametric assumptions, and making very few assumptions about how the 45 
data is generated. Some of these approaches are unsupervised, for instance finding clusters in 46 
behavioral space and defining them as ‘syllables’ which can subsequently be compared 47 
between groups18,29,30; others are more supervised, directly looking for discriminative 48 
differences between populations or individuals13–16. By not trying to force data into a limited set 49 
of parameters, these methods should be more sensitive; however, comparisons between 50 
groups pose severe statistical challenges, because of the complexity and dimensionality of 51 
behavioral datasets. 52 
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Here, we present the choice-wide behavioral association study (CBAS), a data-driven 53 
analysis method designed to identify relevant sequences of choices (or other discrete 54 
behavioral features) made by subjects. CBAS has two components: 1) breaking down behavior 55 
into a comprehensive language for comparison between two groups or correlation with a 56 
covariate of interest; and 2) using rigorous, resampling-based, statistical corrections to account 57 
for the resulting large number of comparisons and maintain statistical power despite 58 
correlations in the data.  59 

Choice as a common discretization for behavior 60 

In developing our analysis, we were motivated by the data-driven approach of genome-61 
wide association studies (GWAS), whole exome sequencing (WES) and whole genome 62 
sequencing (WGS)31. In some ways, the state of behavioral analysis in systems neuroscience 63 
resembles the state of genetic analysis prior to GWAS/WES/WGS, where studies attempted to 64 
associate candidate genes with phenotypes. Candidate gene studies were often underpowered 65 
and failed to replicate32–34, reminiscent of aspects of behavioral analyses35. 66 

GWAS/WES/WGS look for differences in base-pairs of the genome between groups of 67 
subjects. The large numbers of base pairs being compared in these studies necessitates 68 
statistical correction to enable reliable decisions about the significance of any differences 69 
found.  The discrete nature of base-pairs and the ability to compare that set across subjects 70 
make GWAS/WES/WGS possible. To be able to develop a comparable method for behavioral 71 
analyses it is critical to identify an appropriate discretization of behavioral tasks. In many cases, 72 
choice provides just such a discretization (Fig 1). Indeed, there is evidence that, at a rather 73 
fundamental level, behavior occurs through discrete choices18,36.  We use three tasks, in three 74 
diverse species—flies, humans, and rats—to show the breadth of applicability of CBAS.  75 

Using choice as the basis of the comparison for the behavioral analysis requires an 76 
additional consideration beyond what is done for the genome with base-pairs. For 77 
GWAS/WES/WGS, an individual base pair can be a meaningful unit of information (although this 78 
is only a partial story37,38) that can be compared between subjects. This need not be the case 79 
for individual choices in behavior, whereby the choices that precede and follow a specific 80 
choice can change the meaning of that choice. In this case, the relevant behavioral feature is a 81 
whole sequence of choices. Therefore, CBAS does not just evaluate the occurrence of individual 82 
choices, but, rather, the occurrence of all sequences up to a certain, user-defined, length. In 83 
general, the longer the sequence length, the more data and computing time will be necessary.  84 

Evaluating the occurrence of all sequences of choices up to a certain length, causes a 85 
complexity, when it comes to correcting for the many comparisons, since, the sequences can be 86 
highly correlated. Standard methods to correct statistically for multiple comparisons (e.g. 87 
Bonferroni, Holm, Benjamini-Hochberg, Benjamini-Yekutieli) are either incorrect or 88 
underpowered for correlated data. Therefore, we instead use an approach based on resampling 89 
to correct for the multiple comparisons, which retains power in the face of correlations1. 90 

CBAS identifies interpretable differences for fly y-maze 91 

The first task we considered involves drosophila walking on a y-maze (Fig 1a). The 92 
movement of flies on the maze is tracked as they make the choice of going to either the left or 93 
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right arm after leaving the previous arm4. This left/right discretization of the task has enabled 94 
many conclusions about the genetic nature of individual variability4,39–43. Here, we compare the 95 
choices of two outbred strains of fly. Analyses in the original paper4 identified some clear 96 
indications about the difference; however, the data provide a useful testing ground for CBAS 97 
since there are many subjects and the results are relatively low-dimensional. 98 

When deciding to perform a data-driven genomics method, there are still decisions that 99 
need to be made. For instance, deciding to focus on only exome sequences in WES, or SNPs in 100 
GWAS. Similarly, to run CBAS, a few decisions need to be made about how to structure the data 101 
(Fig 2a). These decisions are important, and are not normally pre-determined directly by the 102 
data. Any conclusions drawn need to be interpreted in their light. 103 

The first decision is the possible choices that will make up the sequences used in CBAS. 104 
We refer to this as the basic language for the application of CBAS. For the fly task, the language 105 
is left or right turns. Next, as described above, a decision needs to be made about the maximum 106 
number of choices in a row that will make up all the sequences used in CBAS. For the fly task, 107 
we chose a maximum sequence length of 10 choices in a row. That means that CBAS evaluates 108 
all sequences from length 1 – 10 that exist in the dataset.  109 

CBAS then works through evaluating the average sequence count for each sequence, 110 
which we refer to as the rate of that sequence. The rate is calculated by counting the total 111 
number of times that sequence occurs in the population divided by the number of individuals in 112 
the population. To be precise about the occurrence of the sequence, a decision needs to be 113 
made about the number of trials over which this is counted, i.e. a criterion. The same criterion 114 
is applied to all subjects. For the fly task, we use the first 250 turns as that criterion. The last 115 
decision that needs to be made is what to do with subjects that do not reach the criterion. For 116 
the fly task, we exclude the subjects that do not reach criterion. 117 

Given these decisions, we performed a CBAS comparing two outbred strains of flies, 118 
Cambridge-A (CA) and w1118, from a publicly available dataset4. The w1118 strain is the 119 
background strain for many transgenic flies4. For each sequence of left/right turns up to 10 120 
turns long, the rate was calculated for the two strains (Fig 2b). Using the Romano-Wolf 121 
resampling-based multiple comparisons correction1,2 (see methods), we determined which 122 
sequences the two strains utilize significantly differently (Fig 2c). As a significance threshold, we 123 
use median control of the false discovery proportion at 5%, which is comparable to 5% false 124 
discovery rate (FDR) for the resampling-based method2 (see methods). 125 

CBAS identifies many sequences that differ significantly between the CA and w1118 126 
lines, some of which are shown in Fig. 2d. Upon inspection of the sequences, a clear, 127 
interpretable, difference is apparent between those sequences that occur more in the CA line 128 
and those that occur more in the w1118 line (Fig 2d&e). The CA line utilizes sequences with 129 
extended numbers of the same turn in a row, whereas the w1118 line utilizes sequences with 130 
more frequent changes in turn direction. Therefore, CBAS not only identifies that there is a 131 
difference between the two fly lines, but it also provides information to support an 132 
interpretation as to the nature of the difference.  133 
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Data-driven methods invariably need more data than hypothesis-driven methods. To 134 
estimate the sample size needed for appropriately powered experiments to detect any 135 
difference between these two fly lines, we took advantage of the large dataset to resample 136 
groups of smaller sizes from the data and recalculate the CBAS for each set of resampled 137 
groups. We generated an estimate of the power for different number of flies per group (Fig 2f) 138 
(see methods), by comparing the number of significant sequences identified by CBAS when 139 
comparing CA to w1118 to the number of significant sequences identified by CBAS when 140 
comparing the lines to themselves (Fig S1b). With 40 flies per group, CBAS has an estimated 141 
power >80% to distinguish the CA and w1118 lines. 142 

Graceful decay of CBAS output with decreasing group size 143 

The power calculation concerns the ability of CBAS to distinguish between the two 144 
strains. A more refined question is what the nature and comprehensiveness of the collection of 145 
significantly different sequences would be as smaller numbers of flies per group are analyzed. 146 
This would determine our ability to derive interpretations from fewer subjects. 147 

We first evaluated the number of significant sequences identified from smaller group 148 
sizes as a fraction of the total number of significant sequences identified with the full dataset 149 
(Fig 3a). As expected, with smaller group sizes, we find fewer overall sequences; however, 150 
across the range of group sizes evaluated, the median fraction of sequences was larger than the 151 
fraction of the population being used in the smaller group CBAS (Fig 3a). This indicates that, for 152 
this dataset at smaller group sizes, the proportion of sequences identified by CBAS grows faster 153 
than the proportion of subjects in the CBAS. This provides a rapid increase in the amount of 154 
information provided by CBAS as sample size increases.  155 

We next evaluated the fraction of the sequences identified by CBAS for the smaller sized 156 
groups that are not identified in the CBAS on the full dataset. Since we control the false 157 
discovery proportion and not the family-wise error rate, we do not expect this value to be zero; 158 
however, it was consistently small across all the group sizes evaluated (Fig 3b). The medians 159 
across the different repeats of the same sample sizes across the different sample sizes are all 160 
less than 2%. 161 

Then, we evaluated the similarity of the sequences identified by CBAS with 162 
nonoverlapping sets of subjects with the same group size (Fig 3c). At smaller groups sizes, this 163 
overlap could be quite low (median 24.4%), even though there was sufficient evidence to 164 
discriminate the strains (Fig. 2f). This means that the specific sequences identified by CBAS can 165 
be quite variable from one experiment to the next, especially at smaller group sizes. Given that, 166 
we sought to understand if the structure of the sequences comported with the conclusion from 167 
the full dataset—that the CA line uses more of the same turns in a row and the w1118 line 168 
more frequent changes in direction of turn. Even though the overlap between CBAS on 169 
different groups might not be that high (Fig. 3c), the sequences identified still follow the same 170 
structure as the full dataset in regard to number of the same turns in a row, (Fig 3d). As the 171 
group size increases the output of CBAS consistently becomes more similar to the results from 172 
the full dataset (Fig 3e), licensing more generalized conclusions. 173 

CBAS provides evidence for testing model-based analysis 174 
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The second task we considered, is the two-step task developed to test the interplay 175 
between model-based and model-free (reinforcement) learning (Fig 1b)44. In this task, subjects 176 
choose between pairs of images at two different stages. The image choice at the first stage 177 
governs the pair of images from which the subject can chose at the second stage. Following 178 
image choice at stage two, reward is delivered based on dynamic probabilities associated with 179 
each of the images. Model-based analyses of variants of this task have led to conclusions about 180 
the algorithms used in different brains regions44,45 and differences that underlie psychiatric 181 
symptoms6; however, the interpretations are not without controversy46, and the complexity of 182 
behavior makes it difficult to evaluate ways in which the model might be missing features in the 183 
data.  184 

To test the ability for CBAS to provide useful information in such a situation, we 185 
evaluated the open-source dataset from Gillan et al6. In that work, a large population of human 186 
subjects performed the two-step task, and also answered a series of psychiatric symptom 187 
questionnaires. The authors performed factor analysis on the different questionnaires and 188 
found that factor 2, which they associated with intrusive thoughts and compulsive behavior, 189 
had significant association with the way subjects performed that task. They found that subjects’ 190 
factor 2 score was negatively associated with model-based decision making, leading to their 191 
conclusion that the greater the loading on intrusive thoughts and compulsive behavior for a 192 
person, the less likely they were to utilize model-based decision making on the two-step task.  193 

There were two different groups to compare in the fly dataset. In this dataset the 194 
relevant comparison is correlation with a covariate (i.e. factor 2 score from the psychiatric 195 
symptom questionnaires)6. Therefore, we extended CBAS to identify the sequences that 196 
significantly correlate with this particular factor score (see methods). As with the CBAS applied 197 
to the fly data, there are decisions that need to be made to apply CBAS to this human dataset 198 
(Fig 4a). For this CBAS, the language is comprised of 8 different units: choosing image 1 or 2; 199 
making a choice within set A or set B, distinguishing A and B depending on whether a reward 200 
was delivered (shown in the figure as bold and underlined); and making ‘no choice’ (either at 201 
the first or second image), which occurs in the data, albeit rarely. Following Akam et al.45 we 202 
collapsed image 3 and 4 into set A and image 5 and 6 into set B because the specific images 203 
within the set are not relevant for the critical decision at the first stage. We ran CBAS on all 204 
sequences up to 4 choices long and evaluated the rate of the sequences over the 400 choices of 205 
the dataset (200 trials of the two-step task). In the open-source dataset, there was no subject 206 
who did not reach criterion.  207 

CBAS evaluated the correlation between the usage of each sequence and the factor 2 208 
score (Fig 4b&S2a). Multiple sequences were significantly correlated (Fig 4c&d). To understand 209 
the output of CBAS, we review the expectation associated with the hypothesis-driven analysis 210 
of this experiment. This task was designed to evaluate the interplay between model-based and 211 
model-free decision making44. Model-based decision making develops an understanding of the 212 
structure of the world (i.e. the model) and makes choices based on that understanding. Model-213 
free decision making makes choices based on reinforced past successful actions, without 214 
developing an understanding of the structure of the world. A way to see the difference 215 
between these two decision-making schemes is when a reward is delivered at set A (‘A’ in our 216 
language) after having come from image 2. A regular model-free learner will reinforce the visits 217 
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to both 2 and A and will therefore be more likely to choose 2 on the next trial. The model-based 218 
learner will have an understanding that choosing image 1 on the next opportunity makes it 219 
more likely to return to set A (because of the common/rare transition structure in the 220 
environment) and will therefore chose object 144. 221 

Instead of identifying correlations with sequences that relate to either the model-free or 222 
model-based learning, CBAS instead identifies a positive correlation with many sequences 223 
involving being rewarded at A and then selecting image 2 or being rewarded at B and then 224 
selecting image 1 (Fig 4d). Just as it was helpful with the fly data to find complete sets of 225 
sequences that were significant (e.g. all of the sequences that occurred in the data with 10 left 226 
or right turns in a row were identified as happening more in CA than w1118, etc.) we were also 227 
able to find practically complete sets of sequences that were identified as being positively 228 
correlated with the factor 2 score. Practically all of the sequences in the dataset that contained 229 
1A2 or 2B1, were significantly correlated with this score; whereas none of the sequences with 230 
1B1 was identified as significant (and there were no instances of 2A2 in the dataset) 231 
(Fig4e&S2b). 232 

Sequences 1A2 or 2B1 can be classified as anti-model-based decisions. The subjects get 233 
rewarded after choosing from the common side (A from 1 or B from 2), but then selects the 234 
image that will rarely bring them back to the previously rewarded side (2 from A or 1 from B). 235 
CBAS therefore identifies that anti-model-based learning is a prominent feature that correlates 236 
with intrusive thought and compulsive behavior loading. Further experimentation will be 237 
needed to understand the interplay between this mode of decision making, the task, and these 238 
symptoms scales. 239 

As with the fly data, we could evaluate the sample size needed to reach a given 240 
statistical power for identifying any significant correlation between the factor 2 score and this 241 
task. We resampled smaller group sizes and compared the CBAS for the true relationship 242 
between the sequence counts and factor 2 score to a randomly generated set of factor 2 score 243 
values that was drawn from the same distribution as the data (Fig S2c). A sample size of 900 244 
individual provides a power >80% to detect significant correlations between the factor 2 score 245 
and the subject (Fig 4f), which compares favorably to the sample size of ~1,200 – 1,600 subjects 246 
that Gillan et al. calculated to generate their dataset6. 247 

CBAS identifies a phenotype consistent with ASD in Scn2a haploinsufficient rats 248 

The third task we considered, involves spatial alternation behavior in rats. For this task, 249 
to get reward, the rats must alternate between pairs of arms of a track whilst visiting a different 250 
arm of the track in between (Fig 1c). Spatial alternation is a common behavioral paradigm for 251 
phenotyping and neurophysiology, and the discretization of the behavior into the arms chosen 252 
by the animals forms the basis of many of the conclusions from these studies47–51. However, our 253 
recent work calls into question the assumptions and hypothesis that motivate the standard 254 
analysis for spatial alternation behavior5,52. Even though we developed reinforcement learning 255 
agents to fit individual behavior, those agents showed clear differences from the way the 256 
animals learned5, limiting their use for phenotyping. Therefore, we applied CBAS. 257 
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We sought to discriminate wild-type (WT) rats from those haploinsufficient for Scn2a 258 
(Scn2a+/-), a high confidence, large effect, autism spectrum disorder (ASD) risk gene53,54. We 259 
collected a dataset of over 200 rats performing six different spatial alternation contingencies 260 
using our previously described automated behavioral system5 (see methods). Each spatial 261 
alternation contingency was defined by the three arms of the track where alternation needed 262 
to occur to get reward. For example, if the contingency was at arms 2, 3, and 4, reward would 263 
be provided for every arm visit in the sequence 3-4-3-2-3-4. 264 

The language for the spatial alternation CBAS was visiting each arm of the track and not 265 
getting reward and visiting the goal arms and getting reward. That means that within each 266 
contingency there were a total of 9 possibilities—6 unrewarded arms and 3 rewarded arms. For 267 
example, if the contingency was at arms 2, 3, and 4, the language is composed of visiting arms 268 
1, 2, 3, 4, 5, or 6 and not getting rewarded or visiting arms 2, 3, or 4, and getting rewarded. 269 
Each contingency was considered separately, as visiting a sequence of arms during one 270 
contingency likely means something different than visiting those same arms in a different 271 
contingency. We chose to evaluate all sequences up to six choices long. For the criterion, we 272 
used the trial at which each animal reached 100 perfect performance sequences four choices 273 
long for each contingency, and we included animals that did not reach the criterion (Fig 5a) (see 274 
methods).  275 

In running the CBAS on this dataset, we evaluated the rate difference of >86,000 276 
sequences across the six different contingencies, with a total of 1,476 sequences being 277 
identified as significantly different between the Scn2a+/- and WT littermates (Fig 5b&c). To 278 
interpret common features of those sequences, we sought categories of sequences for which a 279 
substantial fraction was identified as being significantly different between the groups: the 280 
strategy that was informative for the fly and human datasets (Fig 2e&4e). One common feature 281 
of spatial alternation behavior is the 3-arm structure of each contingency (e.g. arms 2, 3, and 4 282 
are the only arms with the potential to be rewarded during contingency A and E). Therefore, in 283 
all contingencies, we evaluated all sequences that exclusively contained all sets of three arms. 284 
For example, within a contingency we identified all sequences exclusively containing arms 2, 3, 285 
and 4, which means that every sequence within that category only contains visits to arms 2, 3, 286 
and 4 (but does not have to visit all of the arms). We did this with sets of three arms, 287 
independent of whether the choice was rewarded or not, as well as the set of three arms in a 288 
contingency that were all rewarded. There are 21 sets of three arms for each contingency, and, 289 
consistent with the relevance of these sets for the behavior, across all contingencies they 290 
contained only ~25% of all the sequences that the rats performed during the experiment, but 291 
~75% of all of the significant sequences (Fig S3a).  292 

Some of these sets of 3 arms are clearly interpretable. One such is the set of three arms 293 
from the current contingency, which contains all sequences where the animal exclusively visits 294 
the arms of the contingency but could make errors in the order of those arm visits (Fig 5d; left). 295 
A second interpretable set consists of three arms from the current contingency that are 296 
rewarded, which contains all sequences where the animal consistently performs the task 297 
correctly. A third and fourth are the sets of three arms exclusively containing the previous (Fig 298 
5d; right), or the one before previous, contingency arms, which contain sequences where the 299 
animals repeat prior actions that are no longer optimally rewarded.  300 
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For all sets of three arms, in all the contingencies we tabulated the fraction of the total 301 
sequences in the set that were significant either for WT > Scn2a+/- or WT < Scn2a+/-. We then 302 
asked if any of these fractions were larger than would be expected from randomly distributing 303 
the significant sequences across all possible sequence types within the entire category of sets 304 
of three arms (see methods) and found consistent patterns in how the WT and Scn2a+/- rats 305 
differed (Fig 5e). In 4 out of the 6 contingencies, Scn2a+/- rats showed increased usage of 306 
sequences containing the current contingency, and in 3 out of the 6 contingencies, Scn2a+/- rats 307 
also showed increased usage of sequences related to prior contingencies (either 1 or 2 308 
contingencies back).  By contrast, in 4 out of the 6 contingencies the WT rats showed increased 309 
usage of sequences containing the rewarded arms of the current contingency. This indicates 310 
that WT rats are ultimately better at performing spatial alternation behavior than Scn2a+/- rats, 311 
and that Scn2a+/- rats show difficultly transitioning from prior actions, repeating sequences 312 
from prior contingencies, possibly consistent with restrictive and repetitive actions, which 313 
forms one of the diagnostic criteria for ASD55. 314 

As with the fly and human data, we could evaluate the sample size needed to reach a 315 
given statistical power to detect any difference between these genotypes. We resampled 316 
smaller group sizes and compared the CBAS for the comparison between the WT and Scn2a+/- 317 
rats to the comparison between WT and itself and Scn2a+/- and itself (Fig S3b). A sample size of 318 
30 rats per group provides a power >80% to detect a difference between the two genotypes 319 
(Fig 5f). 320 

We have presented a general behavioral analysis method, CBAS, for identifying 321 
interpretable behavioral components that is grounded in sequences of choices made by 322 
subjects. There has been significant progress, in recent years, in tracking and analyzing, short 323 
timescale actions of subjects13–22; however, we lack methods for generally analyzing and 324 
interpreting sequences of these actions or long-run choices and decisions of subjects during 325 
behavior. CBAS provides just such a method and is applicable across a wide array of species and 326 
different behavioral paradigms (Fig 1). It can be used to test models and hypotheses (Fig 2&4), 327 
and, for instance, using generalizable simple principles about the relationship between 328 
sequences and task contingencies, it can generate hypotheses in complex behaviors where 329 
reliable computational understanding has yet to emerge (Fig 5). Through taking advantage of 330 
large-scale data collection and rigorous statistical methods, CBAS has the potential to transform 331 
our use of behavior in a comparable way to the ways that GWAS/WES/WGS changed the 332 
paradigm for genomic studies. 333 

Methods 334 

Animals: All experiments on rats were conducted in accordance with University of California 335 
San Francisco Institutional Animal Care and Use Committee and US National Institutes of Health 336 
guidelines. Rats were fed standard rat chow (LabDiet 5001). To motivate the rats to perform 337 
the task, reward was sweetened evaporated milk: 25 g of sugar per can (354 ml) of evaporated 338 
milk (Carnation). The rats were food restricted to ~85% of their basal body weight. 339 

The Scn2a mutant rats were generated due to funding from the Simons Foundation 340 
Autism Research Initiative. Long Evans Scn2a mutant animals (LE-Scn2aem1Mcwi; 341 
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RRID:RGD_25394530) were generated at the Medical College of Wisconsin and shipped to the 342 
University of California San Francisco for this study. Briefly, a single guide RNA targeting the 343 
sequence GTGAAATCCAACCAATTCCA sequence within exon 5 of Scn2a was mixed with Cas9 (S. 344 
pyogenes) protein (QB3 MacroLab, UC Berkeley) and injected into the pronucleus of fertilized 345 
Long Evans (Crl:LE, Charles River Laboratories) embryos. Among the resulting offspring, a 346 
mutant founder was identified harboring a net 4-bp deletion allele consisting of a 10-bp 347 
deletion (rn7: chr3:50,364,411-50,364,420) along with a 6-bp insertion of TTCACT, inducing a 348 
frameshift in the coding sequence predicted to truncate the normal protein after 193 amino 349 
acids. The founder was backcrossed to the parental Crl:LE strain to establish a breeding colony.  350 

Spatial alternation behavior: The automated behavior system for spatial alternation behavior 351 
was previously described5. There are different symbols on each arm of the track serving as 352 
proximal cues, and there are distal cues distinguishing the different walls of the room. 353 
Pneumatic pistons (Clippard) open and close the doors. Python scripts, run through Trodes 354 
(Spike Gadgets), control the logic of the automated system. The reward wells contain an 355 
infrared beam adjacent to the reward spigot. The automated system uses the breakage of that 356 
infrared beam to progress through the logic of the behavior. In addition to the infrared beam 357 
and the spigot to deliver the reward, each reward well has an associated white light LED. 358 

Each cohort of rats is divided into groups of four (or three) animals. The same groups 359 
were maintained throughout the duration of the experiment. Within a group, a given rat is 360 
always placed in the same rest box, and the four rats of a group serially perform the behavior. 361 
The rats have multiple sessions on the track each day. Prior to beginning the first spatial 362 
alternation contingency, the rats experience multiple days and sessions where they get 363 
rewarded at any arm that they visit (provided it is not an immediate repeat). During this period 364 
of the behavior, the duration of a session is defined by a fixed number of rewards, or a fixed 365 
amount of time on the track (15 minutes), whichever came first. During the alternation task the 366 
duration of a session was defined either by a fixed number of center arm visits and at least one 367 
subsequent visit to any other arm, or a fixed amount of time on the track (15 minutes), 368 
whichever came first.  369 

The algorithm underlying the spatial alternation task is such that three arms on the track 370 
have the potential for reward within a given contingency, for example during a contingency at 371 
arms 2-3-4, arms 2, 3, and 4 have the potential to be rewarded, and arms 1, 5, and 6 do not. Of 372 
those three arms we refer to the middle of the three arms as the center arm (arm 3 in the 373 
above example) and the other two arms as the outer arms (arms 2 and 4 in the above example).  374 
Reward is delivered at the center arms if and only if: 1) the immediately preceding arm whose 375 
reward well infrared beam was broken was not the center arm. Reward was delivered at the 376 
outer two arms if and only if: 1) the immediately preceding arm whose reward well infrared 377 
beam was broken was the center arm, and 2) prior to breaking the infrared beam at the center 378 
arm, the most recently broken outer arm infrared beam was not the currently broken outer 379 
arm infrared beam. The one exception to the outer arm rules was at the beginning of a session, 380 
if no outer arm infrared beam was broken prior to the first infrared beam break at the center 381 
arm, then only the first condition had to be met. 382 
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For the running of the behavior, the infrared beam break determined an arm visit; 383 
however, the rats sometimes go down an arm, get very close to the reward wells, but do not 384 
break the infrared beam. Therefore, for all the analyses described for the rats, an arm choice is 385 
defined as when a rat gets close to a reward well. These times were extracted from a video 386 
recording of the behavior. These, effective, missed pokes were more frequent at the beginning 387 
of a contingency. This proximity-based definition of an arm visit added additional arm visits to 388 
those defined by the infrared beam breaks, and none of them could ever be rewarded, nor alter 389 
the logic of the underlying algorithm. However, because of the non-Markovian nature of the 390 
reward contingency, they could affect the rewards provided for subsequent choices. 391 

A total of 121 WT (66 males, 55 females) and 120 Scn2a+/- (66 males, 54 females) rats 392 
were run on the spatial alternation task. WT and Scn2a+/- rats were littermates and were 393 
housed together prior to their being food restricted before the behavior. During the behavior 394 
and food restriction the rats were single housed. 1 WT rat died after finishing the first spatial 395 
alternation contingency, 1 WT rat died after finishing the fourth spatial alternation contingency, 396 
and 1 Scn2a+/- rat died after finishing the first spatial alternation contingency. The data from the 397 
animals that died was included up until their expiration. For the first contingency: 5/121 WT 398 
rats and 15/120 Scn2a+/- rats did not reach the CBAS criterion. For the second contingency: 399 
4/120 WT rats and 19/119 Scn2a+/- rats did not reach the CBAS criterion; for the third 400 
contingency: 4/120 WT rats and 12/119 Scn2a+/- rats did not reach the CBAS criterion; for the 401 
fourth contingency: 2/120 WT rats and 12/119 Scn2a+/- rats did not reach the CBAS criterion; 402 
for the fifth contingency: 4/119 WT rats and 14/119 Scn2a+/- rats did not reach the CBAS 403 
criterion; and for the sixth contingency: 3/119 WT rats and 12/119 Scn2a+/- rats did not reach 404 
the CBAS criterion. 405 

Romano-Wolf resampling based multiple comparisons correction: We follow the terminology 406 
and description laid out in Clarke et. al56 to describe the Romano-Wolf multiple comparison 407 
correction. First, we describe the way the method corrects for the family-wise error rate 408 
(FWER) and then explain how the procedure is extended to provide median control of the false 409 
discovery proportion.  FWER control at a level of 𝛼 means that across all comparisons there is a 410 
𝛼 percent chance of having at least one false positive rejection of a null hypothesis. The 411 
Romano-Wolf procedure provides FWER control through resampling the data1. It tests a total of 412 
𝑆 hypotheses. 413 

It is not generally known if the Romano-Wolf procedure controls for type III, or 414 
directional, errors. Type III errors are errors in the sign, or direction, of the conclusion. For 415 
example, if a statistical test provided information to reject the null hypothesis 𝜃! = 𝜃", and you 416 
then concluded that 𝜃! > 𝜃", when in fact 𝜃! < 𝜃". Therefore, instead of running a single two-417 
tailed test for each sequence, we run two one-tailed tests for each sequence. Therefore, the 418 
total number of hypotheses tested, 𝑆, is twice the total number of sequences being compared. 419 
For CBAS those hypotheses take one of two forms: 1) the rate of each sequence (𝑟#) is the same 420 
between two groups Δ𝑟# = 0, or 2) that there is no correlation (𝜌#) between each sequence and 421 
a covariate of interest, 𝜌# = 0. For the one-tailed versions of each hypothesis, we ask if 𝑟#! −422 
𝑟#" > 0 and 𝑟#" − 𝑟#! > 0 for the comparison CBAS, where 𝑟##  is the rate of sequence 𝑠 for 423 
group 𝑁, or if 𝜌# > 0 and 𝜌# < 0 for the correlational CBAS. 424 
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 The first step in the procedure is to create a studentized test statistic for each 425 
hypothesis. The studentization is different based on whether the CBAS is comparing two groups 426 
or calculating a correlation. In the case where two groups are being compared: 427 

𝑡# =
Δ𝑟#
𝜎#

 (7) 

where 𝜎# is the standard error of Δ𝑟#, which we calculate by combining the standard error of 428 

the mean of the rate for each group using error propagation, i.e. 𝜎# = 0𝜎#!" + 𝜎#"", where 𝜎##  429 

is the standard error of the occurrence rate of sequence 𝑠 for group 𝑁. 430 

 In the case where the correlation is being calculated the studentized test statistic3 is: 431 

𝑡# =
√𝑛𝜌4$
�̂�$

 (8) 

 432 

where: 433 

𝜌4# =
∑𝑋% 𝑌% − 𝑛𝑋:#𝑌:

;∑(𝑋% − 𝑋:$)" ∑(𝑌% − 𝑌:)"
 (9) 

  

�̂�# =
01𝑛∑ (𝑋% − 𝑋:#)"(𝑌% − 𝑌:)"$

%&!

01𝑛∑ (𝑋% − 𝑋:#)"$
%&! 01𝑛∑ (𝑌% − 𝑌:)"$

%&!

 (10) 

For eq. 8, 9, and 10, 𝑛 is the number of subjects for which the correlation is being calculated, 𝑋%  434 
and 𝑌%  and the values of the metrics being correlated (in our case, the sequence count and 435 
factor 2 score for each individual respectively),  𝑋:# is the mean sequence count for the specific 436 
sequence being considered, and 𝑌: is the mean of the covariate of interest (factor 2 score, which 437 
is the same for any sequence). 438 

When two groups are being compared, we resample from the entire population with 439 
replacement (separately for each group) and build up a null distribution by bootstrapping 𝑀 440 
times. The test statistic from the 𝑚'( bootstrap sample for 𝑚 = 1,…𝑀 is:  441 

𝑡#
∗,+ =

Δ𝑟#
∗,+

𝜎#
∗,+  (11) 

where,  Δ𝑟#
∗,+ is the difference in the rate of each sequence whilst resampling, with 442 

replacement, from the entire population, ignoring the group labels. 𝜎#
∗,+ is the accompanying 443 

standard error of the resampled groups. The resampled group sizes are the same as the two 444 
groups of interest. 445 
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 In the case where the correlation is being calculated, the test statistic based on the 𝑚'( 446 
bootstrap sample is: 447 

𝑡#
∗,+ =

√𝑛𝜌4#
∗,+

�̂�#
∗,+  (12) 

where,  𝜌4#
∗,+ is the correlations of each sequence whilst resampling, with replacement, from the 448 

entire population, ignoring the group labels. �̂�#
∗,+ is the accompanying normalization factor of 449 

the resampled groups. The resampled group size is the same as the original. 450 

We used a value of 𝑀 = 10,000. Importantly, for each individual resampling, 𝑚, the 451 
same resampled set is used for all sequences. 452 

 The test statistics, and their accompanying estimators are ordered from largest to 453 
smallest values. This creates a 𝑀 × 𝑆 matrix where each column contains all the estimators of 454 
the test statistics. The first column contains the estimators from the largest test statistic, the 455 
second column contains the estimators from the second largest, etc.  456 

To define the distribution for which each test statistic is compared, which then 457 
determines the adjusted p-value, the following algorithm is used. The first sequence considered 458 
is the one with the maximum test statistic, 𝑡#.  Its comparison distribution is defined as the 459 
maximum value within each row of the matrix of estimators of the test statistic:  460 

max(𝑡∗,+) = max{𝑡!
∗,+, … , 𝑡,

∗,+} (13) 

which provides a total of 𝑀 values, 𝑡∗,+ (there is no longer an association with 𝑠, because these 461 
values can come from a resampling of any of the sequences). Using those 𝑀 values, the 462 
adjusted p-value is calculated as follows: 463 

  464 

𝑝#
-./ =

#{max(𝑡∗,+) ≥ 𝑡#} + 1
𝑀 + 1  (14) 

 After calculating 𝑝#
-./  for the first sequence, the column with the test statistic 465 

estimators generated from the first sequence is removed from the matrix. This now leaves a 466 
matrix that is 𝑀 × (𝑆 − 1). The above procedure is then used to calculate 𝑝#

-./  for the 467 
sequence with the second largest test statistic, and then its column of test statistic estimators is 468 
removed, etc until all 𝑝#

-./  have been calculated. Following the algorithm described in Clarke et 469 
al.56, we enforce monotonicity of the p-values by resetting the p-value for each sequence: 470 

𝑝#
-./ = maxL𝑝#

-./ , 𝑝#0!
-./M (15) 

This is done prior to calculating the p-value for the next sequence. 471 

 To control the false discovery proportion (i.e., control the number of false positives 472 
divided by the total number of hypotheses rejected), the idea of k-FWER is introduced2. For 473 
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control of the FWER, k is equal to 1, and that leads to an 𝛼 percent chance that there is at least 474 
1 false positive among all hypotheses rejected (most commonly 𝛼 = 0.05). If k equals 2, then 475 
there is an 𝛼 percent chance that there are at least 2 false positives among all hypotheses 476 
rejected. Therefore, to get control of the false discovery proportion we need to find the k that 477 
provides the proportion of interest given the number of hypotheses rejected. So, if we want a 478 
false discovery proportion, 𝛾, of 0.05, we need 𝑘~0.05 × number	of	hypotheses	rejected. 479 

 Romano and Wolf also derived an algorithm to do just that. The algorithm is as follows. 480 
Start with 𝑘 = 1. Apply the k-FWER procedure, and note the total number of hypotheses 481 
rejected, 𝑁. If 𝑁 < 1

2
− 1, stop and you have identified k. Otherwise, increase k by 1, and 482 

repeat2. The way you determine k-FWER is in eq. 13, instead of taking the maximum value in 483 
each row, you take the kth largest value. Finally, to get median control of the false discovery 484 
proportion, 𝛼 = 0.5. This means that 50% of the time you will get a value greater than 𝛾, and 485 
50% of the time you will get a value less than 𝛾, leading to control of the median2. This is a 486 
similar decision to what is done when calculating the false discovery rate with Benjamini-487 
Hochberg or Benjamini-Yekutieli, except the false discovery rate controls the mean of the false 488 
discovery proportion instead of the median. 489 

Power estimation for CBAS. To estimate the statistical power of CBAS for a given sample size 490 
we resampled the dataset without replacement and ran a CBAS to determine the number of 491 
significant sequences. For each sample size we performed 20 repeats (Fig S1b, S2c, and S3b). 492 
We also ran a CBAS comparing each group to itself (for the fly and rat datasets) (Fig S1b and 493 
S3b), with 20 repeats for each group; or correlating the sequence counts with a randomly 494 
generated set of factor 2 scores drawn from the same distribution as the actual factor 2 scores 495 
(for the human dataset) (Fig S2c), with 40 repeats. Then for each sample size, the power is 496 
estimated by identifying the largest 20 values of significant sequences, and determining the 497 
fraction of those values that were generated by the comparison of the two groups or the 498 
correlation with the data with the actual factor 2 scores. 499 

Spatial alternation category fraction determination of significance. There are a total of 20 500 
different sets of three arms, and 1 set of three arms with all choices being rewarded. For each 501 
of the six contingencies the fraction of sequences that exclusively contains the set of three arms 502 
that are significant is calculated separately for significant sequences greater in the WT and 503 
greater in the Scn2a+/-. That means that there a total of 21 × 2 × 6 = 252 fractions across all 504 
contingencies. To determine whether the fraction is significantly larger than expected by 505 
chance we proceeded as follows: Within a contingency, we determined the sequences that 506 
belonged to any of the 21 categories. Then, separately for sequences greater in WT and 507 
sequences greater in Scn2a+/-, we permuted the association between those sequences and 508 
whether or not they were significant. With that permuted association we recalculated the 509 
fraction of sequences in each category that were significant. We repeated that process 25,000 510 
times and determined significance by calculating the number of permuted fractions that were 511 
greater than or equal to the actual fraction value for each category and divided that by 25,001 512 
(as with eq. 15). That number was then corrected for multiple comparisons using the 513 
Bonferroni method and multiplied by 252, the number of tests being performed. Any category 514 
whose corrected p-value was < 0.05, was determined to be significantly larger than expected. 515 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.582115doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582115
http://creativecommons.org/licenses/by-nc/4.0/


 15 

Data availability. Data will be made available upon reasonable request to the lead author. 516 

Code availability. Code used to calculate CBAS will be posted to Github upon publication. 517 
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Figure 1. Choice is a common discretization for behavior. In the three behavioral tasks under 650 
consideration in this work, the actions of the subjects are broken down into a series of choices. 651 
(a) Fly y-maze (top), and example set of choices of left (red) and right (blue) turns (bottom) of 652 
an individual fly. Data come from Buchanan et al.4. (b) Two-step task, performed by human 653 
subjects (top), and an example set of choices of an individual subject (bottom). The colors 654 
correspond to the different objects chosen (bottom). Data come from Gillan et al.6. (c) Spatial 655 
alternation behavior, performed by rats (top), and an example set of choices of an individual rat 656 
(bottom). The contingency is defined as the 3 arms that can be rewarded, and the 6-arm track 657 
enables different sets of three arms to be rewarded. In b and c, filled in circles indicate that 658 
reward was received.  659 
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Figure 2. CBAS applied to y-maze produces interpretable differences between fly strains. 660 
CBAS was applied to flies tracked on a y-maze (Fig 1a) (a) This table demarcates the decisions 661 
made to perform the CBAS on this dataset. There was a total of 1,225 Cambridge-A (CA) and 662 
1,372 w1118 flies in the dataset, 466 CA and 565 w1118 were excluded from analysis due to 663 
not reaching a total of at least 250 turns. (b) The occurrence of a single sequence of turns (10 664 
right turns in a row) in the two strains during the first 250 turns. The rows show the occurrence 665 
of that sequence of turns for all individual flies from each strain. The CA strain has a rate of 9.3, 666 
meaning that, on average, each fly utilizes this sequence 9.3 times. The W1118 strain has a rate 667 
of 2.1, meaning that, on average, each fly utilizes this sequence 2.1 times. (c) CBAS Manhattan 668 
plot displays the p-value for each sequence. Each sequence has two p-values on this plot, one 669 
for CA > w1118, and the other for CA < w1118. The sequences are ordered based on the 670 
number of choices in the sequence, and they are displayed on a log scale to make all sequence 671 
lengths visible. Within a given sequence length, the sequences are ordered based on frequency 672 
of occurrence in the entire dataset. The horizontal dotted line indicates the significance 673 
threshold of 5% control of the median false discovery proportion. A total of 10,000 resamplings 674 
were used to calculate the p-values making the maximum value on the plot 4.00004 675 
(−log	( !

!3,33!
)). (d) Every sequence that either has a maximum of 1 turn in a direction in a row 676 

(left) or a maximum of 7 turns in the same direction in a row (right). Sequences are colored 677 
based on whether CBAS identifies them as occurring significantly more in the CA strain (purple), 678 
w1118 strain (green) or as not significantly different (black). The sequences on the right are 679 
aligned to the 7 right or left turns. (e) The maximum number of the same turns in a row was 680 
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calculated for every sequence in the dataset (2,046 total sequences), and for every number of 681 
maximum turns in a row, the fraction of sequences that whose prevalence was significantly 682 
greater in the CA strain (purple) or the w1118 strain (green) is plotted. The CA and w1118 683 
strains showed separation with other related metrics even for the max turns that show both 684 
significance for both direction of comparison (e.g. max same turn in a row of 4) (Fig S1a). (f) 685 
Power estimate for different sized groups of flies in each strain (see methods). Horizontal 686 
dotted line shows a value of 80%.  687 
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Figure 3. Common, but degraded output with CBAS on smaller sample sizes. For all panels in 688 
this figure, many repeats of smaller sample sizes were generated from the fly data used in Fig 2 689 
by resampling subjects (without replacement within a group) from the full dataset. (a) Each 690 
CBAS run on the smaller sample size identified some number of significant sequences. Those 691 
sequences were compared to the sequences identified in the CBAS on the full dataset, and the 692 
graph shows the ratios of the number of sequences identified by the smaller sample size that 693 
were also in the full dataset to the total number of sequences identified in the full dataset. As a 694 
comparison, the ratio of the number of flies in the smaller CBAS to the total number of flies in 695 
the dataset is plotted in the maroon horizontal lines. (b) The number of significant sequences 696 
identified in the smaller sample size that were not also identified in the full dataset is plotted 697 
over the total number of significant sequences identified in the smaller sample size. (c) In 698 
creating the smaller samples sizes, 20 paired sets of animals were generated that had no 699 
overlapping individuals. The number of the same significant sequences that were identified 700 
with these nonoverlapping sets of flies is plotted over the average number of significant 701 
sequences in the pair. (d) For each repeat of each sample size, all of the sequences were 702 
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categorized based on the maximum number of turns in the same direction and the fraction of 703 
significant sequences within those categories are plotted (as in Fig 2e). The bottom row of this 704 
plot is from the full dataset and is identical to Fig 2e. (e) The Euclidean distance between each 705 
row from panel d and the full dataset row is plotted. Colors correspond to the sample sizes as 706 
shown in panel d. For panels a – c data points are overlayed by box and whisker plots. The 707 
center line of the box displays the median of the data, the top and bottom lines of the box 708 
show the 25th and 75th quartiles, respectively, and the end of the whiskers show the full range 709 
of the data.  710 
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Figure 4. CBAS identifies unexpected sequences in human dataset. CBAS was applied to 711 
humans performing the two-step task (Fig 1b) (a) This table demarcates the decisions made to 712 
perform the CBAS on this dataset. There was a total of 1,413 human subjects in the dataset. (b) 713 
The occurrence of a single sequence of choices (‘1A2’, meaning choosing object 1, then getting 714 
rewarded for a choice in set A, then choosing object 2) across all subjects in the dataset. 715 
Subjects are ordered based on their factor 2 (“intrusive thoughts and compulsive behaviors”) 716 
score. This sequence shows a correlation (𝜌) of 0.12 with factor 2 score from the questionnaire 717 
factor analysis (see S2a). (c) CBAS Manhattan plot displays the p-value for each sequence. Each 718 
sequence has two p-values on this plot, one for positive correlation and one for negative 719 
correlation. The sequences are ordered based on the number of choices in the sequence and 720 
are displayed on a log scale to make all sequence lengths visible. Within a given sequence 721 
length, the sequences are ordered based on frequency of occurrence in the entire dataset. The 722 
horizontal dotted line indicates the significance threshold of 5% control of the median false 723 
discovery proportion. A total of 10,000 resamplings were used to calculate the p-values making 724 
the maximum value on the plot 4.00004 (−log	( !

!3,33!
)). (d) Every sequence that was 725 

significantly positively (left) or negatively (right) correlated with factor 2 score. The sequences 726 
on the left are aligned to B1 or A2, and sequences on the right are aligned to A1. (e) For the 727 
categories listed (2B1, 1B1, 1A2, 2A2), the number of significant sequences that contain the 728 
category is plotted over total number of sequences that exist in the dataset that contain the 729 
category. For 2A2 no subject in the dataset performed that sequence.  (f) Power estimate for 730 
different sized groups of subjects (see methods). Horizontal dotted line shows a value of 80%.  731 
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Figure 5. CBAS provide interpretable information to phenotype Scn2a+/- rats. CBAS was 732 
applied to rats performing a spatial alternation task (Fig 1c) (a) This table demarcates the 733 
decisions made to perform the CBAS on this dataset. There was a total of 121 WT and 120 734 
Scn2a+/- rats for the analyses (see methods). (b) The occurrence of a single (unrewarded) 735 
sequence of arm choices (642424; all from contingency D which rewards 246) in the two rat 736 
genotypes during contingency E, which is rewarded at arms 234. The rows show the occurrence 737 
of that sequence of choices for all individual rats from each genotype. WT rats used this 738 
sequence at a rate of 0.12, meaning that on average about 1 out of every 10 rats used this 739 
sequence. Scn2a+/- rats used this sequence at a rate of 0.45, meaning that on average 1 out of 740 
every 2 rats used this sequence. (c) CBAS Manhattan plot displays the p-value for each 741 
sequence. Each sequence has two p-values on this plot, one for WT > Scn2a+/-, and the other for 742 
WT > Scn2a+/-. The sequences are ordered based on the number of choices in the sequence, and 743 
within each contingency are displayed on a log scale to make all sequence lengths visible. 744 
Within a given sequence length, the sequences are ordered based on frequency of occurrence 745 
in the entire dataset. The rewarded arms for each contingency are shown below the letter 746 
symbol for each contingency. The horizontal dotted line indicates the significance threshold of 747 
5% control of the median false discovery proportion. A total of 10,000 resamplings were used 748 
to calculate the p-values making the maximum value on the plot 4.00004 (−log	( !

!3,33!
)). (d) 749 
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Every significant sequence that exclusively contains arms 1, 2, 3 (irrespective of reward) during 750 
contingency B (left) or every significant sequence that exclusively contains arms 2, 4, 6 751 
(irrespective of reward) during contingency E (right). Sequences that occur significantly more in 752 
Scn2a+/- are shown in red, and those that occur significantly more in WT are shown in black. (e) 753 
The sets of 3 arms which show a significantly greater fraction of significant sequences than 754 
would be expected by chance (see methods). The categories above each group of bar plots 755 
indicate the structure of the set of 3 arms. “Current” indicates the 3 arms from the current 756 
contingency irrespective of reward, “current rewarded” indicates the 3 arms from the current 757 
contingency all of which are rewarded, “1 back” indicates the 3 arms from the prior 758 
contingency, “2 back” indicate the 3 arms from 2 contingencies prior, and “other” are 759 
categories that show significant fractions that do not fit the other categories. Of note, the 760 
sequences in the “current rewarded” category are a subset of the sequences in the “current” 761 
category, as can be seen in panel d, left. (f) Power estimate for different sized groups of rats in 762 
each genotype (see methods). Horizontal dotted line shows a value of 80%.  763 
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Supplementary Figure 1. (a) All sequences with a maximum length of 4 turns in the same 764 
direction in a row (Fig 2e) were evaluated for the fraction of L turns in the sequence 765 
(encompassing L = 4 – 8) and the rate of switching (number of changes in turn direction divided 766 
by the total number of turns in the sequence). These two metrics show a separation in the 767 
sequences that were significantly greater in the CA strain compared to those that were 768 
significantly greater in the w1118 strain: the CA strain had sequences with more extreme 769 
fraction of left turns and lower switch rate, consistent with more turns in the same direction. 770 
(b) Left: the number of significant sequences when randomly resampling the populations 771 
without replacement and calculating CBAS on the smaller sample sizes. Middle: the number of 772 
significant sequences when comparing smaller samples sizes of the CA strain to itself, with 773 
nonoverlapping individuals in each group. Right: the number of significant sequences when 774 
comparing smaller samples sizes of the w1118 strain to itself, with nonoverlapping individuals 775 
in each group. Data points are overlayed by box and whisker plots. The center line of the box 776 
displays the median of the data, the top and bottom lines of the box show the 25th and 75th 777 
quartiles, respectively, and the end of the whiskers show the full range of the data.  778 
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Supplementary Figure 2. (a) Correlation between the sequences count for each human subject 779 
and their factor 2 score for sequence: 1A2, which means choosing object 1, then making a 780 
choice in set A and getting rewarded, and then choosing object 2. Factor 2 reflects the intrusive 781 
thoughts and obsessive behavior loading on the psychiatric symptom questionnaires. Red line 782 
shows the linear fit to the data. (b) The correlation plotted as a function of the average 783 
sequence rate for all sequences containing the unit 2B1 (left), 1B1 (middle), or 1A2 (right). 784 
Filled in circles indicate those sequences that show a significant positive correlation. (c) Left: 785 
the number of significant sequences when randomly resampling the populations without 786 
replacement and calculating CBAS on the smaller sample sizes. Right: the number of significant 787 
sequence when randomly resampling the populations without replacement and comparing it to 788 
randomly generated factor 2 scores drawn from a distribution imputed from the original factor 789 
2 scores and calculating CBAS on the smaller sample sizes. Data points are overlayed by box and 790 
whisker plots. The center line of the box displays the median of the data, the top and bottom 791 
lines of the box show the 25th and 75th quartiles, respectively, and the end of the whiskers show 792 
the full range of the data.  793 
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Supplementary Figure 3. (a) For the sequences that exclusively contain all sets of 3 arms (Fig 794 
5d&e) the fraction of the total number of sequences is plotted in black for each contingency, 795 
and the fraction of significant sequences that are a part of the sequences that exclusively 796 
contain all sets of 3 arms compared to the total number of significant sequences in each 797 
contingency is plotted in green. (b) Left: the number of significant sequences when randomly 798 
resampling the populations without replacement and calculating CBAS on the smaller sample 799 
sizes. Middle: the number of significant sequence when comparing smaller samples sizes of the 800 
WT genotype to itself, with nonoverlapping individuals in each group. Right: the number of 801 
significant sequence when comparing smaller samples sizes of the Scn2a+/- genotype to itself, 802 
with nonoverlapping individuals in each group. Data points are overlayed by box and whisker 803 
plots. The center line of the box displays the median of the data, the top and bottom lines of 804 
the box show the 25th and 75th quartiles, respectively, and the end of the whiskers show the full 805 
range of the data. 806 
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