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Learning a new task is challenging because the world is high dimensional, with only a subset of
features being reward-relevant. What neural mechanisms contribute to initial task acquisition,
and why do some individuals learn a new task much more quickly than others? To address
these questions, we recorded longitudinally from dopamine (DA) axon terminals in mice learning
a visual task. Across striatum, DA responses tracked idiosyncratic and side-specific learning
trajectories. However, even before any rewards were delivered, contralateral-side-specific visual
responses were present in DA terminals only in the dorsomedial striatum (DMS). These
pre-existing responses predicted the extent of learning for contralateral stimuli. Moreover,
activation of these terminals improved contralateral performance. Thus, the initial conditions of a
projection-specific and feature-specific DA signal help explain individual learning trajectories.
More broadly, this work implies that functional heterogeneity across DA projections serves to
bias target regions towards learning about different subsets of task features, providing a
mechanism to address the dimensionality of the initial task learning problem.
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Introduction

A key challenge of learning a new task is that the environment is high dimensional - there are
many different sensory features and possible actions, with typically only a small subset
reward-relevant. While animals can learn to perform complex tasks that involve arbitrary
associations between stimuli, actions and rewards1–6, a consistent and striking result across
varied experimental paradigms is that in initially acquiring such tasks, large differences between
individuals are apparent in the learning process7–12. For example, although genetically inbred
mice achieve high and consistent steady-state performance in a standardized visual
decision-making task7, there are vast differences across individuals in how many training
sessions are required to reach this state. What neural mechanisms contribute to initial task
acquisition, and why do some individuals learn a new task much more quickly than others?

Midbrain dopamine (DA) neurons that project to the striatum have been implicated in
learning13–15 and in individual differences16–22. However, DA is often studied in animals that are
already familiar with a task's structure; thus, whether and how DA explains individual differences
in de novo task acquisition is not clear.

Given that DA neurons encode reward predictive cues15, one might expect task-related DA
responses and behavioral sensitivity to those task events to co-evolve during task acquisition,
as animals learn that task events are reward predictive9,23–26. This would be consistent with DA
reinforcement signals reflecting (and possibly even supporting) task acquisition.

However, such a result would not in itself explain why different individuals progress along
different learning trajectories. Instead, individual differences in the DA system that precede
learning differences would point to a mechanism with the potential to explain differences in
learning trajectories.

In considering the contribution of DA to individual differences in task acquisition, it may be
informative to consider differences across projection-defined DA populations16,17,20,21,27. While
traditionally the midbrain DA system was considered to provide a global, homogeneous
reinforcement signal to the striatum15, there is increased appreciation of functional heterogeneity
across dopamine neurons, with at least some of this heterogeneity varying by striatal target27–35.
Such heterogeneity may in part reflect the high dimensionality of stimuli and actions36,37, with
different DA subpopulations specializing in subsets of potentially relevant features.

Here, we performed longitudinal fiber photometry from DA terminals across 3 striatal subregions
as mice acquired de novo a standardized visual decision-making task7. We found that learning
trajectories were idiosyncratic, with different individuals exhibiting different patterns of
side-specific learning. Across the striatum, DA responses to the visual stimuli increased with
learning and closely tracked side-specific learning trajectories, consistent with widespread
reward prediction error coding. Strikingly, even before animals experienced any training, activity
in DA terminals in the dorsomedial striatum (DMS) displayed visual-contrast-dependent
responses to contralateral stimuli that predicted the extent of contralateral-side-specific learning.
Moreover, optogenetic activation of DMS DA terminals at the onset of contralateral stimulus
presentation improved contralateral performance. Thus, the initial conditions of a projection- and
feature-specific DA signal help to explain individual differences in learning trajectories. More
generally, this work implies that projection-specific heterogeneity in the DA system could serve
to bias different striatal subregions towards learning associations with a subset of task features.
This could simplify the problem of initial task acquisition by effectively reducing the
dimensionality of the learning problem faced by each subcircuit.
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Results

Idiosyncratic and side-specific learning of a standardized visual decision-making task

To study individual differences in learning, we leveraged a highly standardized visual
decision-making task7,38–40. In this task, at the beginning of each trial, a visual grating was
presented on a screen on either the right or left side. Mice received a reward by turning a
steering wheel with their front paws in the direction that centered the grating on the screen (Fig.
1a, Supp. Fig. 1a-c). Correct wheel turns were rewarded with 3 μl of sucrose water, while
incorrect ones lead to a short timeout (2 s) and white noise (0.5 s). Across trials, the visual
gratings varied in contrast (100%, 25%, 12%, 6.25%), with contrasts randomly and uniformly
selected. To maximize interpretability of the neural recordings over the course of learning, we
did not use a shaping procedure7, a de-biasing protocol7,41, or any other experimenter
intervention.

Mice showed a large degree of variability in their learning trajectories, both in terms of the
number of sessions to reach high accuracy (Fig. 1b) as well as in their probability of choosing
left versus right wheel turns (Fig. 1c). While some mice selected both options (right and left) to
an equal extent from the beginning of training, others appeared to prefer one side or the other.

To quantify choices across learning, we constructed a behavioral model (Fig. 1d) that explained
each session’s contrast-dependent choices (i.e. psychometric curve) based on weights that
evolved across sessions: a weight on the visual stimulus contrast on the left (βleft) or right (βright,)
that captured the contrast-dependent tendency to turn the wheel in the direction required by
each stimulus, a choice bias (βbias) that captured the tendency to choose one side or the other
irrespective of the stimulus, and a choice history regressor (βhist) that captured the tendency to
repeat previous choices(see Methods for model details). This successfully reproduced the
diverse psychometric curves observed across learning (Fig. 1e; 3 example sessions from 3
example mice) and allowed us to isolate the contribution of each variable to each mouse’s
behavior across learning (Fig. 1f).

The model revealed that while some mice learned to increasingly weight visual stimuli similarly
on both sides as training progressed (e.g., show an increase across training in both βright and βleft
in Fig. 1f, top), many instead displayed idiosyncratic learning trajectories where they
preferentially weighted one stimulus versus the other (e.g. large βright vs βleft in Fig. 1f, middle;
large βleft vs βright in Fig. 1f, bottom). This side-specific learning is consistent with the choice
asymmetries evident in the raw data (Fig. 1c), though note that the model enables
distinguishing between stimulus contrast-sensitivity (the stimulus weight) from a simple choice
bias. The side-specificity of stimulus learning at the end of the training (βright - βleft) was predicted
by the bias parameter βbias at the beginning of training, as evidenced both by plotting the
stimulus weights based on groups defined by the level of initial bias (Fig. 1g-j) and by correlating
initial bias with the difference between the final stimulus sensitivity weights (Fig. 1k). In contrast,
early βbias did not predict final βbias (Fig. 1l).

Based on these observations, we concluded that mice display idiosyncratic side-specific
learning trajectories that could be predicted by initial bias. We next explored how individual
differences in striatal DA signals might explain these individual learning patterns.
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Across the striatum, contrast-dependent dopaminergic visual responses tracked side-specific
individual learning trajectories

We recorded striatal DA signals longitudinally over the course of learning using fiber photometry.
To ensure consistent expression of the activity indicator across time and individuals, we used
double transgenic mice that expressed GCaMP6f in DA neurons (DAT-Cre x Ai148). Before
training, each mouse was implanted with optical fibers into the following striatal subregions:
dorsomedial striatum (DMS), dorsolateral striatum (DLS), and nucleus accumbens core (NAc;
Fig. 2a, Supp. Fig. 2a-c). Each subregion was recorded unilaterally, with a mixture of left and
right hemispheres across subregions within each mouse, and across mice for each subregion.
During each session for each mouse, we recorded simultaneously from all 3 subregions.

Given that DA neurons encode reward predictive cues15, behavioral and dopaminergic
sensitivity to the stimuli should be expected to increase during task acquisition, as animals learn
that the stimuli are reward predictive8,9,23–26. To test this, we quantified dopaminergic sensitivity to
the visual stimuli by fitting the normalized fluorescence data with a linear encoding model for
each session and subregion (model schematic in Supp. Fig. 3). This allowed us to estimate
stimulus response kernels (Fig. 2b), which reflect the contribution of the visual stimulus to the
neural signals while (linearly) accounting for other task events (actions, outcomes). This model
could accurately capture moment by moment fluctuations in fluorescence on each trial (Fig. 2c;
Supp. Fig. 3).

Averaged across mice, across all regions, the magnitude of these stimulus responses increased
across sessions, as mice learned that the stimuli were reward predictive (Fig. 2d; L2-norm of
stimulus response kernels). Moreover, stronger stimulus responses emerged to the stronger
contrasts, consistent with stronger contrasts becoming more reward-predictive as the animals
acquired the task (increasing stimulus sensitivity behavioral weight with training in Fig. 1f-j).
While stimulus responses in DLS and NAc DA were similar for contralateral and ipsilateral
stimuli, DMS had much stronger stimulus responses for contralateral than ipsilateral stimuli (Fig.
2d)28,31.

How do these stimulus responses relate to each mouse’s idiosyncratic and side-specific
learning profiles (Fig. 1)? For each mouse, across sessions, we correlated the
contrast-dependence of the behavioral trajectories for stimuli on one side (stimulus contrast
weight from the behavioral model; Fig. 1) with the contrast-dependence of the neural trajectories
for stimuli on the same side (difference in L2-norm for highest vs lowest contrast stimulus
kernel). There was a strong correlation between the behavioral and neural measures across all
regions (example trajectories: Fig. 2e; neural and behavioral correlations for all mice: Fig. 2f).
While DLS and NAc DA showed this correlation for both ipsilateral and contralateral stimuli, in
the DMS, this correlation was only significant for contralateral stimuli (Fig. 2f), presumably
reflecting the contralateral specificity of the stimulus responses themselves (Fig. 2d).

Thus, across striatum, we observed the co-evolution during task acquisition of side-specific
dopaminergic and behavioral sensitivity to the visual stimuli, consistent with reward prediction
error signaling in DA neurons.

Pre-existing visual responses in DMS DA terminals predict learning on the contralateral side

While the striatum-wide correlations between DA trajectories and learning trajectories were
striking (Fig. 2), they do not clarify whether there are DA signals that precede behavioral
changes that could potentially explain individual differences in task acquisition. Notably, the
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DMS (unlike the other regions) exhibited contrast-dependent responses to the visual stimuli
from the very first session (Fig. 2d). To determine if these signals existed before training, or if
they emerged quickly on the first session, we examined DA responses during an earlier
pre-exposure session (“session 0,” before the first session) in which the visual gratings were
presented, but mice did not receive rewards, nor could they turn the wheel (Fig. 3a).

In DMS, but not NAc or DLS, DA terminals had contrast-dependent visual responses during
stimulus pre-exposure before training (“session 0”; Fig. 3b). These DMS DA responses were
contralateral-side-specific, similar to the pattern observed throughout training (Fig. 2d). The
stronger response to higher contrast stimuli may be interpreted as a salience-related
signal23,27,33,42–49. While DA has been associated with novelty coding23,48,50,51, these pre-existing
visual responses did not attenuate during the 25 presentations of each stimulus (Fig. 3c).

Previous theoretical accounts suggest novelty- or salience-related DA signals could provide
animals with a “bonus” (or head start) in forming stimulus-reward associations52. Therefore, we
wondered if variability in these DMS-specific pre-existing DA responses to the visual stimuli
might predict differences across individuals in learning trajectories.

Indeed, we observed a striking relationship between these pre-exposure stimulus responses in
DMS DA and individual differences in side-specific learning. For visualization purposes, we
separated mice into 2 groups based on their pre-exposure visual responses (Fig. 3d; “strong” vs
“weak” contrast-dependent contralateral DMS DA responses on “Session 0”), and plotted the
trajectory of the behavioral model weights during subsequent task training in each group (Fig. 3
e-g). Over the course of training, the animals with larger pre-exposure visual stimulus responses
developed larger contralateral behavioral stimulus sensitivity weights (Fig. 3e). On the other
hand, the pre-exposure DMS DA visual responses were not predictive of the ipsilateral weights
or the bias (Fig. 3f,g).

Thus, pre-existing visual responses in DMS DA predict individual differences in side-specific
learning, even before any training. While NAc and DLS did not have visual responses during
pre-exposure (Fig. 3b), we wondered how early in training their visual responses predicted final
performance, and how this compared to DMS. For each region on each training session, we
computed the across-animal correlations between the DA response to visual stimuli on each
side with the behavioral stimulus weights late in training (sessions 16-20) on the same side
(Supp Fig. 4). These correlations appeared much earlier in training in the DMS than the other
regions (Supp Fig. 4; for contralateral stimuli only), in line with pre-existing contralateral visual
responses being a unique property of this population.

Activation of DMS dopamine terminals during contralateral stimulus presentation improves
side-specific performance

The strength of pre-existing visual responses in DMS dopamine terminals predicted
side-specific learning (Fig. 3d-e, Supp Fig. 4). Could these visual signals causally impact
side-specific performance during learning? While it is clear that DA at the time of outcome
reinforces previous actions53–57, whether DA signals at the time of a preceding cue impact
learning is less clear49,53,54,58–60.

To test for a causal role of visual-stimulus-related DA signals in DMS, we performed brief
unilateral optogenetic stimulation of DMS dopamine terminals at the presentation of the
contralateral visual stimulus throughout training (Fig. 4a-b, Supp Fig. 2d). The stimulation, which
terminated before the outcome period (Supp. Fig. 1d-e), led to a significant improvement in
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performance between contralateral versus ipsilateral trials for the opsin vs control groups that
grew over early training (Fig. 4c).We therefore concluded that DA signals in DMS could improve
performance for contralateral stimuli.

Discussion

As mice learn to perform a visual decision-making task, variation across individuals in learning
trajectories closely tracks visual responses in DA terminals across striatum (Fig 1,2). In contrast
to these striatum-wide patterns, prior to any rewards or training, pre-existing side-specific visual
responses are present specifically in DMS DA terminals, and these signals predict and help
explain side-specific learning trajectories (Fig 3,4). This work is significant in suggesting that i)
the initial conditions of the DA system are important in explaining individual differences in
learning, and ii) feature- and projection-specific DA signals could be a mechanism to simplify the
problem of initial task acquisition.

Pre-existing visual responses in DMS-projecting dopamine neurons could serve to simplify initial
task acquisition

A major reason initial task acquisition is challenging is the issue of credit assignment: in virtually
any task, even nominally simple ones, there are multiple possible dimensions of the
environment that an animal could try to learn about, with most being reward-irrelevant. In the
case of the visual decision-making task used here, mice need to learn that the side-specific
relationship between visual stimuli and actions is what leads to reward, while other stimuli,
actions or stimulus-action relationships do not (including many high dimensional, uncontrolled
incidental features of the environment37).

Our data suggest that pre-existing, side-specific and projection-specific visual DA responses
could serve to decrease the dimensionality of this learning problem. In particular, different
striatal subcircuits could be biased to more quickly learn reward associations for different
subsets of stimuli or actions: in the case of DMS, our data reveals a pair of such circuits,
selective for visual stimuli that are salient and presented on one side of the visual world but not
the other. Extended to other subcircuits and task features, such an architecture would effectively
lower the dimensionality of the initial learning problem, as each subcircuit could be biased
towards learning about a different subset of features. Indeed, other striatal circuits likely have
pre-existing DA sensory responses to other modalities that could in turn predispose learning in
favor of those associations. For example, pre-existing auditory responses in DA neurons in the
tail of the striatum61 could support auditory-motor learning62,63, much like the visual responses
we examine here in DMS.

This framework helps in interpreting the function of salience-related signals that have been
reported in previous DA recordings23,27,33,42–49, and is consistent with a classic idea about the role
of salience signals in providing an optimistic “bonus” to support learning52. However, it adds to
this framework by suggesting there are a number of separate circuits rather than a single, global
prediction error.

Indeed, such hypothetical specialization simplifies the curse of dimensionality insofar as any
given subcircuit would be initially biased to quickly discovering simple associations, appropriate
for tasks in which a small set of stimuli are associated with reward. Of course, there is no free
lunch. Such a bias for sparse solutions would not help, and might indeed hinder, detecting
contingencies that depend on more complex (e.g., multimodal) combinations of features. This
reasoning also leads to testable predictions about which types of contingencies are most easily

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.582199doi: bioRxiv preprint 

https://paperpile.com/c/Ag0pbe/w0Sx
https://paperpile.com/c/Ag0pbe/ouwL
https://paperpile.com/c/Ag0pbe/NhJ7+Nxs7
https://paperpile.com/c/Ag0pbe/iVC1+1brn+xemw+fKsP+rvNC+v2bu+vjMB+s1Hl+4VjK+TFI3+9pLt
https://paperpile.com/c/Ag0pbe/6yaN
https://doi.org/10.1101/2024.02.26.582199
http://creativecommons.org/licenses/by-nc-nd/4.0/


learnable: those that well-match the feature-selectivity of a projection-defined DA population.
This may explain why, in the present data, animals often learn more quickly to respond to stimuli
on one side or the other, independently from those on the other side, rather than the fuller
response rule combining both sides (Fig. 1).

Initial conditions of the DMS DA system can explain individual differences in task acquisition

Our data also help to explain why different individuals learn the same task much more quickly
than others (Fig. 1). The variation across individuals in the pre-existing visual response in DMS
DA signals, before task training and the presentation of any rewards, predicts individual
differences in acquisition of the visual-motor task on the contralateral side (Fig. 3). This supports
the idea that the pre-existing DMS DA visual responses facilitate reward learning, and highlights
the importance of the initial conditions of the DA system in understanding the emergence of
individual behavioral differences.

While DMS appears unique in having pre-existing visual responses, all subregions we examined
have DA visual responses that emerge with learning and closely track learning trajectories (Fig.
2). This is consistent with the widespread encoding of a reward prediction error in dopamine
terminals across the striatum64 because in this task the visual stimuli predict reward, and higher
contrast indicates that reward is more likely (with reward expectation depending on the
individual time-varying psychometrics curves, i.e. how the animal leverages the stimuli to drive
correct behavior; Fig. 1).

Relationship to prior experimental work on the DMS DA system

Our results complement prior work characterizing the DMS DA system, demonstrating
contralateral response preferences28,31,65, visual responses31,61, and stimulus-value related
responses64. Our results also relate to recent studies on striatal DA in initial acquisition of
sensory decision-making tasks8,9, most directly the demonstration that DA responses and
behavioral sensitivity to task stimuli grow together during learning9 (similar to our Fig. 2). Our
work adds to the literature primarily by revealing a pre-existing sensory feature-specific and
projection-specific DA signal that explains later learning (Fig. 3,4).

On the other hand, the relationship between our work and recent work implicating DMS DA in
individual differences in the development of a habitual17 or punishment-resistant21 behavioral
strategy is not yet clear. While it seems possible that a pre-existing sensory feature-specific DA
signal could contribute to the emergence of those strategies, more work is required to clarify a
potential connection.

While here we focus on visual responses in DMS DA, previous work from our group and others
has identified putative action correlates in this population28,65–67. Lateralized action-related DMS
DA responses may relate to orienting behavior, as DMS is a target of frontal orienting fields68,69,
has been implicated in tasks with orienting behavioral outputs70–72, and the DMS DA signal itself
reserves with changes in orientation65. For this reason, in the present task, action responses
may be at least partially obscured by head-fixation which prevents orienting behavior.
Regardless, we are confident the contrast-dependent responses examined here are visual, as
we isolated them from wheel movement with an encoding model, and furthermore confirmed
their presence during stimulus pre-exposure in the absence of task-related movements (Fig.
3a,b).

Relationship to the feature-specific RPE model of DA heterogeneity
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The presence of a visual feature-specific DMS DA signal is consistent with a recent model that
proposes that response variation across DA neurons can be explained at least in part by
differences in the feature representations in the inputs that are used to calculate reward
prediction errors (“feature-specific reward prediction error model”37). In this framework, different
dopamine neurons calculate different reward prediction errors based on different subsets of the
full feature space, based on the corticostriatal inputs they preferentially receive. This model thus
predicts similar feature selectivity of the DMS-projecting dopamine neurons relative to the DMS
neurons themselves, assuming an anatomical arrangement where DMS projects (indirectly or
directly) primarily to DMS-projecting DA neurons73. Consistent with this prediction, DMS
receives direct visual cortical inputs74, and has visual responses before task training75.

Summary

In summary, we find that the presence of pre-existing visual responses in DMS DA provides a
simple explanation for why some individuals learn a visual decision-making task faster than
others. This discovery sheds light on the significance of DA neuron functional heterogeneity: it
could serve to bias different target regions towards initially learning about different subsets of
task features, which could help address the dimensionality of the initial task learning problem.
This concept generates concrete, testable predictions about which reward associations are
easily learnable: those with stimuli that match the pre-existing responses of a projection-defined
DA population.
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Figures

Figure 1 | Idiosyncratic and side-specific learning trajectories.
a. Schematic of the task. On each trial, a Gabor patch of a different contrast (6.12%, 12.5%,
25% or 100%) is presented on the right or left side of a screen. Centering the patch with a
steering wheel leads to a small water reward while moving it out of the screen results in a short
timeout (2 s) and white noise (0.5 s). b. Accuracy (fraction of rewarded trials per session)
across training sessions. c. Probability of right choices across training sessions. In (b,c) each
line represents one mouse, colored by their mean accuracy in sessions 15-20. d. Schematic of
the behavioral model. Choice (left or right) on each trial is predicted with a logistic function
based on weighting the contrast of the right and left visual stimulus (βright and βleft ), a bias term
(βbias) coded such that positive values indicate rightward choice, and a choice history kernel.
Weights evolved across sessions (see Methods for details). e. Psychometric curves (“data”) and
model predictions (“model”) from 3 example mice on the first, middle and last session of training.
Lines and shading represent mean +/- s.e.m. f. Model weights across training for the same
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mice from (e). Lines and shading represent mean and 95% confidence intervals. g. Early βbias
(average of sessions 1-5) for all the mice, showing the subdivisions used in subsequent panels
between mice with weak, left, or right initial bias. h-j. Average trajectories of bias, right and left
stimulus weights across training for mice subdivided by their initial bias as shown in (g). Lines
and shading represent mean +/- s.e.m. across mice. k. Relationship between early βbias
(average of sessions 1-5) and the late difference in stimulus sensitivity weights (βright - βleft for
sessions 16-20). r=0.417, p=0.0007. l. Relationship between early βbias (sessions 1-5) and late
βbias (sessions 15-20). r=0.174, p=0.522. In (k,l), each dot is a mouse. Correlation and p-values
from robust regression. ** p <.01, ns: not significant. Across all panels, n=22 mice.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.582199doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582199
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2 | In DA terminals across striatum, contrast-dependent visual responses track
individual side-specific learning trajectories.
a. Experimental strategy used for collecting the fiber photometry data from DA terminals. Left:
Schematic of the recorded projections using the GCamPG6f x DAT::Cre mouse line. Right:
example histology. Scale bar: 1 mm. b. Contralateral stimulus response kernels, from an
example mouse on an example session. c. z-scored dF/F (solid line) and predictions from the
encoding model (dashed line) on 5 different trials for an example mouse, on an example
session. is the variance explained across the session within all trial epochs (from stimulus𝑅2

onset to 1 second after feedback). d. Stimulus response magnitudes (L2-norm) in each region
and session, averaged across mice, for contralateral (top) and ipsilateral (bottom) stimuli. Lines
and shading represent mean +/- s.e.m. e. Trajectories of the contrast-dependence of neural
stimulus response magnitudes (“neural”; difference in L2-norm for 100% and 6.25% contrast)
and the behavioral stimulus choice weights (“behavioral”), for contralateral (top) and ipsilateral
(bottom) stimuli. f. Correlations of the neural and behavioral trajectories as shown in (e).
p-values calculated with t-tests. * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant. See
Table 2 for statistical details for panel (f). n=22 mice in (d) and (f).
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Figure 3 |
Pre-existing
visual
responses in
DMS DA
terminals
predict
side-specific
learning
trajectories.
a. Schematic of
the stimulus
pre-exposure
session before
training
(“Session 0”).
b. Stimulus
response
kernels for
contralateral
and ipsilateral
stimuli of each
contrast,
averaged
across mice,

during Session 0. c. Heatmap of stimulus responses on Session 0 to 100% contrast stimuli for
the first 25 trials, averaged across mice. d. Histogram across mice of contrast-dependent
stimulus responses on session 0, quantified as the difference in the L2-norm of the highest and
lowest contrast contralateral stimulus, colored by weak (orange: < 2) and strong (red: > 2). e.
Contralateral stimulus sensitivity weights from the behavioral model, for mice with strong versus
weak contrast-dependent stimulus responses during session 0 (subdivision of mice shown in
(d)). *** p < 0.001 for the interaction between DMS stimulus response on session 0 & session in
a 2-way ANOVA (see Table 3.1-3.2 for model details and full results). f. Same as (e), except for
the ipsilateral stimulus weight from the behavioral model. No significant interaction (ns) between
DMS stimulus response on session 0 and day (see Table 3.3-3.4 for model details and full
results). g. Same as (e,f), but for the bias weights from the behavioral model (transformed such
that positive means contralateral bias). No significant interaction (ns) between DMS stimulus
response on session 0 & session (see Table 3.5-3.6 for model details and full results). In all
panels, n=18 mice.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.582199doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582199
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. | Stimulating DMS DA
terminals at the onset of
contralateral stimulus
presentation improves
side-specific performance.
a. Schematic of the optogenetic
stimulation of DMS dopamine
terminals. Mice either expressed
Chrmine or a control construct in DA
neurons. DA terminals in the DMS
were optogenetically stimulated
unilaterally (532 nm, 0.2s burst
duration, 5ms pulse width, 20 Hz
pulses, ~0.25 mW) at the onset of
the contralateral stimulus
presentation throughout training. b.
Example histology image of optical
fiber location and terminal
expression of ChRmine-mScarlet.

Scale bar: 900 µm. c. Comparison of performance for contralateral and ipsilateral stimulus trials
in control (n=7, left panel) and ChRmine (n=6, right panel) mice. *p<0.05 for cohort
(ChRmine/YFP) & side (contra/ipsi) interaction in 3-way ANOVA with cohort (ChRmine / YFP),
day and side (contralateral / ipsilateral) as factors (see Table 4.1-4.2 for model details and full
results).
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Methods

Animals

For the fiber photometry experiments (Fig. 1-3), a total of 22 mice (n=14 male and n=8 female)
were used from a cross of DAT::IRES-Cre mice (JAX 006660) and the GCaMP6f reporter line
Ai148 (JAX 030328). For the optogenetic experiments (Fig. 4), we used a total of 13
DAT::IRES-Cre mice (n=4 male and n=9 female). Mice were maintained on a reversed 12 h light
cycle and experiments were formed on their dark cycle. All mice used were 3-4 months old at
the start of training. All experimental procedures were conducted in accordance with guidelines
from the National Institutes of Health and were reviewed by the Institutional and Animal Care
Use Committee at Princeton University.

Surgery

Prior to the start of the surgery, mice received a preoperative antibiotic (5 mg/kg Baytril) and
analgesic (10 mg/kg Ketofen). Postoperative analgesic (10 mg/kg Ketofen) was administered
daily for 3 days from the day of the surgery.

Headbar implantation: For all stereotaxic surgeries, mice underwent sterile stereotaxic surgery
under anesthesia (5% isoflurane for induction, 1.5-2% for maintenance). Briefly, the scalp and
underlying periosteum was removed. Bregma and lambda were leveled, and a small steel
headbar was centered at -6.9 mm Anterior-Posterior relative to bregma and cemented to the
skull with Metabond (Parkell). Headbar implantation was followed by virus infusion and/or
optical fiber implantation (see sections below).
Optical fiber implantation: For fiber photometry experiments (data shown in Fig. 1-3),
low-autofluorescence optical fibers encased in a ferrule (0.37 NA, ⌀200 µm core, 1.25mm
ferrule, Neurophotometrics) were implanted at each of the following locations (fiber tip location
relative to bregma):

● DLS: 2.6 mm (Medio-lateral, M-L), 0 mm (Anterior-Posterior, A-P), -2.8 mm
(Dorso-ventral, D-V).

● DMS: 1.5 mm M-L, 0.74 mm A-P, -2.4 mm D-V.
● NAc: 1 mm M-L, 1.45 mm A-P, -4.5 mm D-V.

In each mouse, fibers targeting DLS and NAc were always inserted in the same hemisphere,
the DMS fiber was positioned in the opposite hemisphere. The hemisphere allocation was
counterbalanced across mice. For DLS, the location above was targeted with a fiber rotated at
10° in the M-L/D-V plane. For the optogenetics experiments (Fig. 4), fiber optic fibers (⌀300 µm
core/0.39 NA, 2.5 mm ferrule, ThorLabs) were implanted bilaterally to target the DMS at the
following coordinates: +/- 1.5 mm M-L, 0.74 mm A-P, -2.4 mm D-V. These locations were
reached with a 10° M-L/D-V rotation. .

Virus injections: For the optogenetics experiments (Fig. 4),
AAV2/5-EF1a-DIO-ChRmine-mScarlet-WPRE-hGHpA (opsin virus, titer: 9e12 genome copies/ml,
Princeton Neuroscience Institute viral core) or AAV2/5-EF1a-DIO-EYFP-WPRE-hGHpA (control
virus, titer: 1.5e14 genome copies/ml, Princeton Neuroscience Institute viral core) was infused
bilaterally in the VTA-SNc (+/- 1 mm M-L, -3.1 A-P, -4.66 D-V) of ~4-6 weeks old mice. 500 nl
were infused in each hemisphere at a speed of 75 nl/min. In order to achieve sufficient terminal
expression by the start of training (3/4 months), all viral injections were performed a minimum of
8 weeks in advance of training and prior to the headplate implantation surgery.

Behavioral task
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Behavioral apparatus:We used the standardized behavioral apparatus from the International
Brain Laboratory. For detailed instructions on the components and operations of behavioral
apparatus used please see 76. Briefly, the rig consisted of an LCD screen (LP097Q × 1, LG) and
a custom 3D-printed mouse holder and head fixation system that held the mouse in front of the
screen such that its forepaws rested on a rubber steering wheel (86652 and 32019, LEGO). A
spout was positioned in front of the holder, which the mouse could reach it with its tongue but it
did not occlude the field of vision. The spout was connected to a water reservoir and water flow
was controlled with a solenoid pinch valve (225P011-21, NResearch). The rig was constructed
with Thorlabs parts inside a small soundproof cabinet (9U acoustic wall cabinet 600 × 600,
Orion). A speaker (HPD-40N16PET00-32, Peerless by Tymphany) positioned on top of the
screen was used to play task-related sounds, and an ultrasonic microphone (Ultramic UM200K,
Dodotronic) was used to record ambient noise from the rig. Wheel position was recorded with a
rotary encoder (05.2400.1122.1024, Kubler) controlled by the Bpod Rotary Encoder Module
(Sanworks). Video of the mouse was recorded with a USB camera (CM3-U3-13Y3M-CS, Point
Grey). All task-related devices were controlled by a Bpod State Machine (Sanworks) and
synched with a data acquisition board (USB201, Measurement Computing). The task logic was
programmed in Python and the visual stimulus presentation and video capture was handled by
Bonsai77 and the Bonsai package BonVision78.

Behavioral task and training:We used a standardized visual decision-making task7,38. In this
task, mice are head fixed in front of a LCD screen. A visual grating (Gabor patches, 0.1 spatial
frequency) whose contrast varied across trials (100%, 50%, 25%, 12.5%, 6.25%) appeared on
either the right or left side of the screen (+/- 35° azimuth), accompanied by a 0.1 s tone (5 kHz
sine wave, 10ms ramp). A steering wheel that could be used to move the visual grating along
the horizontal axis was placed under the mouse’s paws (4° of visual grating movement /mm of
wheel movement). The mouse could obtain a small reward of 10% sucrose water (3 μl) by
moving the visual grating to the center of the screen. On the contrary, if the mouse steered the
grating away from the center (35° from initial position) or failed to center the grating in 60 s, the
trial was considered an error. Errors were signaled by the lack of reward delivery and a brief
noise (0.5 s, 65 dB, white noise). After a choice was completed (correct or incorrect), wheel
movements could no longer move the visual grating for 1 or 2 seconds on correct versus
incorrect trials, respectively. After this timeout, all trials were followed by a 0.5 s inter trial
interval where no gratings were presented. In order for a new trial to start, the steering wheel
had to be still for a “quiescent period”, whose duration was randomly sampled on a trial by trial
basis from an exponential distribution of mean 0.55 s and truncated from 0.4 to 0.7 s.

To simplify the interpretation of neural activity correlates of behavior across learning, mice
experienced the full extent of the task (no shaping or debiasing protocol) from the first session.
All mice were trained for a minimum of 18 sessions, 5-7 days a week, for a 1h session each
day. In order to motivate the mice to do the task, mice had restricted water access from 1 week
before starting training until the end of the experiment. We monitored that their weight never
dropped more than 20% from their pre-water restriction weight, and ensured that they
consumed a daily minimum of 1 ml of water per 25 g of weight. Most mice were able to obtain
their daily allocation of water through the task alone after a few sessions. When this minimum
was not achieved, mice were supplemented at the end of the day. Mice did not have a limit on
how much water they could obtain in the task (See Supp. Fig. 1a for average trials completed
across training). Mice were video recorded every session.

Stimulus pre-exposure: For the experiment in Fig. 3, before training on the task (1-10 days prior
to the start of training), 18 mice underwent two 1h pre-exposure sessions where we measured
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neural responses to task features in the absence of reward. In the first pre-exposure session,
mice were presented with the same visual gratings used in the task (with the same range of
contrasts) on either side of the screen for 250-272 trials with a 10 seconds inter-trial interval.
The stimulus contrast and side in each trial was randomly sampled between the 8 possible
combinations. As in the standard task, presentation of the visual gratings was accompanied by
a brief 0.1 s tone. However, during this pre-training session the wheel was locked and the visual
gratings remained static on either side of the screen. In the second session (data not shown),
mice were allowed to move the wheel and move the visual grating but no rewards were given.

Fiber photometry

Data acquisition:We simultaneously recorded GCaMP6f signals from DA terminals in DMS,
DLS and NAc with a multi-fiber photometry system (FP3002, Neurophotometrics) controlled with
the Bonsai Neurophotometrics module79. Briefly, the system consists of a CMOS camera
acquiring fluorescence emissions and an LED exciting with 470 nm light of 10 ms width pulses
at 50Hz (464/476 sessions) or 20 Hz (12/476 sessions). At the tip of the patch cable, the
excitation light was ~0.4 mW. The camera acquisition epochs were timed with the emission
lights. We used a Low Autofluorescence Patch Cord with 3 branches
(BBP(3)_200/220/900-0.37_2m_SMA-3xMF1.25_LAF , Doric) to be able to image DMS, DLS
and NAc simultaneously. Prior to each recording day, we passed 0.5 mW 470 nm light through
the patch cord for 1 hour in order to photobleach autofluorescence within the patch cord, and
improve recording quality.

Signal processing: Fluorescence signals recorded during each session from each location were
transformed to dF/F using the following formula:

𝑑𝐹
𝐹 =

𝐹 − 𝐹
0

𝐹
0

was the +/- 30 s rolling average of the raw fluorescence signal. Finally, dF/F signals were𝐹
0

z-scored per-session, using a mean and standard deviation calculated based on all the data
from each session. To be included for analysis, every recording (i.e. one session from one fiber
location) had to have at least one >=1% dF/F & > 3 standard deviation transient for every 10
min of recording (55/1440 recordings excluded). All data were sampled or resampled at 50 Hz
for analysis.

Histology:

To confirm the locations of the opticals fibers and viral expression (Supp. Fig. 2), mice were
anesthetized with pentobarbital sodium (2 mg/kg, Euthasol) and transcardially perfused first with
10 ml of ice-cold phosphate buffered saline (PBS) followed by 25 ml of 4% paraformaldehyde
(PFA) in PBS. Brains were then dissected and post-fixed in 4% PFA overnight at 4°C. After
fixation, brains were sliced with a vibrating blade microtome (Vibrotome VT100S, Leica) and
mounted with DAPI Fluoromount-G (Southern Biotech). All slices were imaged with an
automated slide scanner (NanoZoomer S60, Hamamatsu).

Optogenetic stimulation:

For the optogenetic experiment in Fig. 4, fibers were implanted bilaterally in the DMS to avoid
potential behavioral biases related to an asymmetrical surgery. Stimulation was delivered
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unilaterally to DMS terminals expressing the red-shifted opsin ChRmine. The stimulated
hemisphere was chosen randomly and kept constant throughout training for any given animal.
The group identity of the mice (opsin vs control) were blinded to the experimenter throughout
the duration of training. The stimulation procedure consisted of a 200 ms laser train timed to the
onset of any visual stimulus presentation contralateral to the stimulated hemisphere. Each 200
ms train of stimulation consisted of 20 Hz and 5 ms width light pulses at a wavelength of 532 nm
(Shanghai Laser and Optics & Co). The light power was adjusted daily to 0.25 mW at the fiber
tip (in the brain). Light power was chosen to ensure activation of the terminals immediately
below the fiber tip but minimize off-target activation outside DMS. ChRmine can reliably be
activated with an irradiance of >= 0.1 mW/mm2 80. Therefore, we chose a stimulation power that
ensured irradiance above this threshold within but not outside of DMS. According to 81 the
chosen power and fiber (~0.25 mW 532nm light through ⌀300 µm core/0.39 NA fiber) yields an
irradiance of 0.88 mW/mm2 (above threshold) just below the fiber tip (DMS) and 0.01 mW/mm2

(below threshold) at the DMS/NAc border (1.7 mm ventral from the fiber tip).

Behavioral model:

Our approach in modeling behavior aims to descriptively characterize the relatively long
time-scale dynamics of learning that would be required to correctly associate stimuli, actions,
and outcomes, particularly in the absence of shaping, de-biasing, or other experimental
protocols. This relates to previous modeling efforts of similar datasets; however, instead of
focusing on trial-to-trial fluctuations in psychophysical weights82 or the emergence of multi-state
behavior83, we focus on session-level changes in psychophysical weights. We leveraged
advances in MCMC84–86 to infer a set of parameters and weights for Bernoulli generalized linear
models (GLM) that were expressive enough to capture the full set of behaviors that mice in our
task explored.

To model the behavioral data, we built a hierarchical Bernoulli GLM to describe the relationship
between the animal’s choices and a variety of task covariates. The dependent variable was
per-trial choice (a Bernoulli variable). The covariates included the stimulus presented to the
animal on each trial (capturing the classic psychometric curve) together with two additional
effects: the animal’s exponentially filtered choice history, and a side-specific bias. We
parameterized the stimulus using two regressors, xL and xR, corresponding to the contrast of the
left-side and right-side stimulus on each trial; because the stimulus only appeared on a single
side in each trial, one of these regressors was zero on each trial. We transformed each contrast
regressor using a tanh function: , where is either xL or xR and is a positive𝑥

𝑠𝑖𝑑𝑒
 = 𝑡𝑎𝑛ℎ(α 𝑆)

𝑡𝑎𝑛ℎ(α ) 𝑆  α
constant governing the shape of the nonlinear transformation. Dividing by ensures that𝑡𝑎𝑛ℎ(α)
at 100% contrast trials . This parametrization allowed the model to saturate at contrast𝑥

𝑠𝑖𝑑𝑒
 =  1

levels below 100%, sidestepping the need to use lapse parameters to account for the flattening
of the psychometric function at high contrast levels 87–89. We generated the choice history
regressor by exponentially filtering previous choices with time constant :𝑐

𝑡
π

, where choice takes values of -1 and +1 for left and right𝑐
𝑡

= 𝑐
𝑡−1

+ π (𝑦
𝑡−1

 −  𝑐
𝑡−1

) 𝑦
𝑡

choices, respectively. We inferred the time constant using MCMC sampling, along with theπ
other model parameters. (See below.)

We took the parameters governing this model (see table below) as constant within each session
and mouse. For each mouse we built a hierarchical model over sessions, instantiating a
separate set of choice parameters for each session. We placed broad prior distributions on the
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means of the choice weights on the first session. For all subsequent sessions, we assigned the
choice weights a prior centered around the previous session’s inferred values.

In particular, choice weight priors for session took the form of a Student’s t-distribution:𝑑
, where is the degrees-of-freedom parameter for the Student T prior.β

𝑑
 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(ν,  β

𝑑−1
,  Σ) ν

This allowed the model to partially pool data across sessions (smoothing the estimates), but to
do so adaptively per-animal, taking on larger values of for animals that steadily and slowlyν
learned the task, and smaller values for for animals that had sudden and large changes inν
their learning. We also inferred the covariance of the StudentT priors, allowing parameters to
change across sessions in coupled fashion. Unlike the choice weights, we used a single shared
covariance across all sessions. This covariance was parameterized as the quadratic-form
product of a diagonal matrix: and a correlation matrix : . The diagonal𝐷 =  σ ⊙ 𝐼 Ω Σ =  𝐷Ω𝐷
had a truncated Gaussian prior. The correlation matrix was constructed from a lowerΩ
triangular matrix , which is a cholesky factor of the correlation matrix. These factors had a prior𝐿
distribution . The prior itself has a parameter that tunes the strength of𝐿𝐾𝐽𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 𝐿𝐾𝐽𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦
the correlations of the cholesky factor, which we also inferred. Functions and distributions
specified here were from the STAN probabilistic programming language, and all model fits were
performed in STAN90.

We summarize the behavioral model below, (we note below that refers to only the contrast𝑥
𝑠𝑖𝑑𝑒

regressors, while refers to the vector of all regressors e.g. intercept, contrast, choice history):𝑥

Model Variable Description
Student T degrees of freedomν ~ 𝐺𝑎𝑚𝑚𝑎(2,  0. 2)
LKJ correlation parameterη ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  10)+

Lower triangular factor𝐿 ~ 𝐿𝐾𝐽𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦(η)
Diagonal scale of covarianceσ ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  1)+

Correlation MatrixΩ =  𝐿𝐿'
Scale Matrix𝐷 =  σ ⊙  𝐼
Covariance MatrixΣ =  𝐷 Ω𝐷
Initial prior meanµ ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(ν,  0,  5)
First session choice weight vectorβ

1
~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(ν,  µ,  Σ)

d’th session choice weight vectorβ
𝑑
 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(ν,  β

𝑑−1
,  Σ)

Pre-transformed alpha𝑙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(− 2,  0. 5)
Scale factor on stimulusα = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑙)

Transformed stimulus𝑥
𝑠𝑖𝑑𝑒

 =  
𝑡𝑎𝑛ℎ(α 𝑆 )

𝑡𝑎𝑛ℎ(α)

Probability of right choice𝑝
𝑡, 𝑑

 =  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥
𝑡,𝑑

'β
𝑑
)

Distribution over choices𝑦
𝑡, 𝑑

 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝
𝑡,𝑑

)

Neural model:

To model the dopaminergic signals across learning, we built a linear-Gaussian regression
encoding model to describe the relationship between task events such as the visual stimuli,
actions, and reward delivery with the measured dopamine (DA). Since these events can be
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correlated in time and their effects on DA are partly overlapping, estimating such an encoding
model helps to tease apart their individual contributions.

The regression model was defined by a set of temporal kernels that describe the DA impulse
response to different task-related events, namely “stimulus”, “action”, and “reward”. For stimulus
onset events, we used contrast-specific right and left temporal kernels, giving us 4 temporal
kernels per side. All kernels were strictly causal, lasting for a period of 1 second (50 Hz).

Similarly, we used contrast-specific action kernels triggered at the onset of the first significant
wheel movement for left and right choices (first movement larger than 0.1 radians after the end
of the quiescent period). In addition to separating these kernels by contrast and side (right / left
choices) we separated them by correct and incorrect trials, resulting in 8 temporal kernels per
side. Separating the action kernels in this manner provided an estimate of the DA response to
the interacting effects of initial stimulus location and the movement of the stimulus towards or
away the center of the screen. Finally, we defined reward kernels corresponding to the moment
when the animal received a water reward or a short time-out period in the same fashion as the
action kernels, giving us another 8 temporal kernels per side. Thus, in total we had 40 temporal
kernels in the encoding model.

We parameterized the temporal kernels in this model using a basis of linearly scaled “raised
cosine” functions spanning a 1-second window after each event 91. The cosine basis
significantly reduces the dimensionality of the design matrix (compared to a full series of𝑋
individual lagged event dummies). The effect on estimation of using a cosine basis is
regularization. Use of a temporally smooth basis is also justified by the observation that
temporally adjacent responses are strongly correlated.

We used ridge regression to estimate the model parameters, with ridge parameter andγ
observation noise estimated via evidence optimization 92. We optimized for the vector ofσ

𝑓
2

weights , and the two scalars , , which are related to the vector of neural response asβ σ
𝑓

2 γ 𝑓

follows: ,Σ =  (σ
𝑓

−2 𝑋'𝑋 +   γ𝐼)−1 β = σ
𝑓

−2Σ𝑋'𝑓 

All weights that made up the entire set of temporal kernels were denoted by , and could beβ
indexed by their corresponding event type. For example the vector of weights containedβ

1:50
the weights for the temporal kernel for stimulus appearing on the right at 6.25% contrast (after
one transforms them into the standard basis). The vector of weights contained theβ

51:100
weights for the temporal kernel for stimulus appearing on the right at 12.5% contrast, and so on
for all remaining contrast levels, and event types. We further computed summary statistics of
these temporal kernels, specifically the L2-norm for the stimulus responses. These summary
statistics gave us a scalar measure of neural response for each training session that we then
related to the estimates from the Bernoulli GLM.

The encoding model for figure 3 was fit as described above, however we only modeled the
stimulus responses, and so the full set of coefficients that made up the kernels was restricted to
an intercept, the 4 temporal kernels for stimulus appearing on the right, and 4 temporal kernels
for stimulus appearing on the left side of the screen.

Statistical analysis:
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All statistics reporting a correlation coefficient and a p-value on that correlation coefficient were
computed using robust regression, in order to reduce the sensitivity of our statistical conclusions
to outliers. Robust regression was performed using the rlm function from the RobustModels
package in the Julia programming language. We used MM-estimators with a Geman Loss 93.
For the robust regressions, we computed correlation coefficient-like statistics analogous to
Pearson’s R for classic regression. In particular, we computed a pseudo- statistic, and its𝑅2

signed square root , using the RobustModels package deviance and nulldeviance functions:𝑟

, . Deviance is a𝑝𝑠𝑒𝑢𝑑𝑜 𝑅2 =  1 −  𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑚𝑜𝑑𝑒𝑙)
𝑛𝑢𝑙𝑙𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑚𝑜𝑑𝑒𝑙) 𝑟 =  𝑠𝑖𝑔𝑛(β

1
) × 𝑝𝑠𝑒𝑢𝑑𝑜 𝑅2

generalization of the residual sum of squares for linear models, and null deviance is a
generalization of the total sum of squares.

Statistics in Fig. 2f were computed with the OneSampleTTest, and EqualVarianceTTest
functions in the HypothesisTests package from the Julia programming language. Significance
was determined at p < 0.05, and all p-values reported are two-sided unless otherwise noted.
See Table 2 for detailed results of these tests.

Statistical tests for group differences in behavioral trajectories in Fig. 3e-g and 4c, were carried
out with the MixedModels and AnovaMixedModels packages in the Julia programming
language. Linear Mixed Models from the MixedModels package were used to test simple effects
such as the relationship between session 0 DMS stimulus response on behavioral weight
values within each training period (early, middle, late). We further used type-3 F-test ANOVAs
from the AnovaMixedModels package to test the overall effects in the model, such as, across
training periods, is there an influence of session 0 DMS strength on behavioral weight
trajectories. For all Linear-Mixed Models and ANOVAs, a*b*c expands into a + b + c + a*b + a*c
+ b*c + a*b*c.

Linear Mixed Models variable coding: Across tables 3.1 to 4.2, the variable “session” is a
transformation of sessions 1 to 20. Sessions are split into 3 categories: early, middle, and late.
The early category contains sessions 1 to 7, the middle category contains sessions 8 to 14, and
the late category contains sessions 15 to 20. This categorical coding of sessions is motivated by
the non-linear trajectory of accuracy in Fig. 4c. LinearMixedModels package in Julia uses the
first session category as the reference category. Thus in these tables “dms” can be interpreted
as “session early & dms”.

In tables 3.1 to 3.6 the variable dms is the mean-subtracted session 0 DMS contrast dependent
stimulus response magnitude. (L2-norm of the difference of the 100% contralateral stimulus
contrast response to the 6%). session & dms denotes the interaction of the variables session
and dms. The dependent variables: , , correspond to the behavioral model choiceβ

𝑐𝑜𝑛𝑡𝑟𝑎
β

𝑖𝑝𝑠𝑖
β

𝑏𝑖𝑎𝑠
weights.

In tables 4.1 to 4.2 the variable cohort denotes the group identity of each mouse, either Chrmine
or YFP. The variable contra denotes whether the trial corresponded to a stimulus contralateral
from the recording site. The dependent variable is the side-specific (contra or ipsi)𝑐𝑜𝑟𝑟𝑒𝑐𝑡 
accuracy. Interactions and reference levels are as described above, thus the term: cohort:
chrmine & contra:ipsi is the 3-way interaction of the reference level for session (sessions 1-7,
e.g. “session early”), cohort, and contra.
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Supplemental Figures:

Supplemental Figure 1 | Session statistics throughout training, including sessions with
optogenetic stimulation (related to figure 1 and 4). a. Trials completed, b. Total water
obtained across sessions. c. Decision latencies (time between the go cue and the outcome
delivery) across sessions. d. Histogram of decision latencies across all mice in Fig. 1-3 (n=22).
Red line denotes the end of the optogenetic stimulation trains (0.2 s from the go cue) in Fig. 4.
e. Comparison of decision latencies across sessions across ChRmine stimulation (red, n=7, Fig.
4), no opsin control (YFP, black, n=6, Fig. 4) and the fiber photometry (blue, n=22, Fig. 1-3)
cohorts. Dashed line represents the end of the optogenetic stimulation (200 ms). Across all
panels, lines and shading represent mean +/- s.e.m across mice.
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Supplemental Figure 2 | Optical fiber location for dopaminergic terminal recordings and
terminal optogenetic stimulation (related to Figure 2 - 4). Received fiber tip locations for the
fiber photometry recordings in Fig. 2-3 in a., NAc, b., DMS and c., DLS. Each line (200µm)
represents a fiber tip and their color relays their assigned striatal subregion: Blue - NAc, Orange
-DMS, Green - DLS. d. Recovered fiber tip locations for the optogenetic terminal stimulation
experiment in Fig. 4. Each line (300µm) represents a reconstructed fiber tip and their color
relays their assigned group: Black - YFP (no opsin control) or Red - ChRmine. All fibers were
located to the closest 100 µm section in the Paxinos-Franklin atlas 94. Sections are ordered by
anterior-posterior (a-p) distance from Bregma.
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Supplemental Figure 3. | Encoding model schematic & average explained variance
(related to Figure 2)
a. Encoding model schematic (see Methods for details). We convolved delta functions defining
task relevant events such as stimulus onset, action onset, and feedback onset with temporal
kernels of those events, then summed up all components to get the predicted response.
Example 100% contrast trial is shown. b. Explained variance in the fluorescence data (dF/F) by
the model predictions, averaged across mice per training session. is the variance explained𝑅2

across all trials within a session (from stimulus onset to 1 second after feedback for each trial).

Supplemental Figure 4 | Throughout training, contrast-dependent contralateral DMS DA
stimulus responses predict later contralateral stimulus-dependent behavior (related to
Figure 3). a. For each region, and for each session, correlation across animals of the average
contralateral stimulus sensitivity weight from the behavioral model at the end of training
(sessions 16-20) with the contrast-dependence of the contralateral stimulus kernel (difference of
L2-norm of the highest and lowest contrast contralateral stimulus response). Session 0 denotes
the pre-exposure session before the start of training, described in Fig. 3. b. Same as a,
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however for ipsilateral (rather than contralateral) neural and behavioral weight estimates. In both
panels, correlations and p-values are computed with robust regression, as described in the
Statistical Analysis section of Methods.
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Tables

Table 2 | Statistics for Fig 2.f
p-value t-value df se n

Contra correlations: test against 0

NAc 0.0140 2.67 21 0.084 22

DMS <1e-05 6.5 21 0.073 22

DLS 0.0063 3.05 21 0.08 22

Ipsi correlations: test against 0

NAc 0.0006 4.06 21 0.08 22

DMS 0.897 0.13 21 0.09 22

DLS 0.001 3.79 21 0.07 22

Contra & Ipsi comparison: test difference in means

NAc 0.357 -0.93 42 0.11 [22, 22]

DMS 0.0003 3.92 42 0.11 [22, 22]

DLS 0.869 -0.16 42 0.11 [22, 22]

Contra minus Ipsi: test difference in means

NAc & DMS 0.0004 -3.84 42 0.14 [22, 22]

DMS & DLS 0.003 -3.15 42 0.15 [22, 22]
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Table 3.1 | Statistics for Figure 3.e (individual coefficients)
β

𝑐𝑜𝑛𝑡𝑟𝑎
 ~  1 + 𝑑𝑚𝑠 * 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑚𝑜𝑢𝑠𝑒)

Variable Coef. Std. Error z Pr(>|z|)
Intercept 0.348517 0.176679 1.97 0.0485

session: middle 1.53946 0.395762 3.89 0.0001

session: late 3.14228 0.655547 4.79 <1e-05

dms 0.11926 0.073055 1.63 0.1026

session: middle & dms 0.44442 0.163799 2.71 0.0067

session: late & dms 1.22895 0.271316 4.53 <1e-05
Variable coding: See variable coding in statistics section

Table 3.2 | Statistics for Figure 3.e (ANOVA, type 3)
β

𝑐𝑜𝑛𝑡𝑟𝑎
 ~  1 + 𝑑𝑚𝑠 * 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑚𝑜𝑢𝑠𝑒)

Variable DOF Res.DOF F value Pr(>|F|)
Intercept 1 337 3.8259 0.0513

session 2 15 11.5722 0.0009

dms 1 15 2.6203 0.1263

session & dms 2 337 10.2875 <1e-04
Variable coding: See variable coding in statistics section

Table 3.3 | Statistics for Figure 3.f
β

𝑖𝑝𝑠𝑖
 ~ 1 + 𝑑𝑚𝑠 * 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑚𝑜𝑢𝑠𝑒)

Variable Coef. Std. Error z Pr(>|z|)
Intercept 0.912165 0.261839 3.48 0.0005

session: middle 1.97641 0.539155 3.67 0.0002

session: late 3.90767 0.972914 4.02 <1e-04

dms 0.083602 0.108319 0.77 0.4402

session: middle & dms -0.27578 0.223162 -1.24 0.2165

session: late & dms -0.181152 0.402711 -0.45 0.6528
Variable coding: See variable coding in statistics section

Table 3.4 | Statistics (ANOVA, type 3) for Figure 3.f
β

𝑖𝑝𝑠𝑖
 ~ 1 + 𝑑𝑚𝑠 * 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑚𝑜𝑢𝑠𝑒)

Variable DOF Res.DOF F value Pr(>|F|)
Intercept 1 337 11.9327 0.0006

session 2 15 9.7095 0.002

dms 1 15 0.5857 0.456

session & dms 2 337 0.7703 0.4637
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Variable coding: See variable coding in statistical analysis section of Methods.

Table 3.5 | Statistics for Figure 3.g (individual coefficients)
β

𝑏𝑖𝑎𝑠
 ~ 1 + 𝑑𝑚𝑠 * 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑚𝑜𝑢𝑠𝑒)

Variable Coef. Std. Error z Pr(>|z|)
Intercept 0.023347 0.375064 0.06 0.9504

session: middle -0.126425 0.253667 -0.5 0.6182

session: late 0.323096 0.423532 0.76 0.4455

dms 0.163736 0.155245 1.05 0.2916

session: middle & dms -0.185426 0.104978 -1.77 0.0773

session: late & dms -0.184996 0.175278 -1.06 0.2912
Variable coding: See variable coding in statistical analysis section of Methods.

Table 3.6 | Statistics for Figure 3.g (ANOVA, type 3)
β

𝑏𝑖𝑎𝑠
 ~ 1 + 𝑑𝑚𝑠 * 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑚𝑜𝑢𝑠𝑒)

Variable DOF Res.DOF F value Pr(>|F|)
Intercept 1 337 0.0038 0.9508

session 2 15 1.3924 0.2788

dms 1 15 1.0937 0.3122

session & dms 2 337 1.579 0.2077
Variable coding: See variable coding in statistical analysis section of Methods.

Table 4.1 | Statistics for Figure 4.c (individual coefficients)
𝑐𝑜𝑟𝑟𝑒𝑐𝑡  ~ 1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 * 𝑐𝑜ℎ𝑜𝑟𝑡 *  𝑐𝑜𝑛𝑡𝑟𝑎 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 * 𝑐𝑜𝑛𝑡𝑟𝑎 | 𝑚𝑜𝑢𝑠𝑒)

Variable Coefficient Std. Error z Pr(>|z|)
Intercept 0.598551 0.093143 6.43 <1e-09

session: middle 0.0968696 0.0682439 1.42 0.1558

session: late 0.0780368 0.0923531 0.84 0.3981

cohort: chrmine -0.276154 0.126932 -2.18 0.0296

contra: ipsi -0.19325 0.17514 -1.1 0.2699

session: middle & cohort: chrmine 0.0453335 0.0930008 0.49 0.6259

session: late & cohort: chrmine 0.195543 0.125856 1.55 0.1203

session: middle & contra: ipsi 0.0907977 0.139328 0.65 0.5146

session: late & contra: ipsi 0.227952 0.183541 1.24 0.2142

cohort: chrmine & contra: ipsi 0.51202 0.238676 2.15 0.0319

session: middle & cohort: chrmine & contra: ipsi -0.229823 0.189872 -1.21 0.2261

session: late & cohort: chrmine & contra: ipsi -0.432753 0.250124 -1.73 0.0836
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Variable coding: See variable coding in statistical analysis section of Methods.

Table 4.2 | Statistics for Figure 4.C (ANOVA, type 3)
𝑐𝑜𝑟𝑟𝑒𝑐𝑡  ~ 1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 * 𝑐𝑜ℎ𝑜𝑟𝑡 *  𝑐𝑜𝑛𝑡𝑟𝑎 +  (1 +  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 * 𝑐𝑜𝑛𝑡𝑟𝑎 | 𝑚𝑜𝑢𝑠𝑒)

Variable DOF Res.DOF F value Pr(>|F|)
Intercept 1 498 40.3425 <1e-09

session 2 10 0.9958 0.4033

cohort 1 10 4.624 0.057

contra 1 498 1.1894 0.276

session & cohort 2 498 1.2345 0.2919

session & contra 2 498 0.7554 0.4703

cohort & contra 1 498 4.4959 0.0345

session & cohort & contra 2 498 1.5 0.2241
Variable coding: See variable coding in statistical analysis section of Methods.
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