Abstract
Specialized cellular protrusions facilitate local intercellular communications in various species, including mammals. Among these, airinemes play a crucial role in pigment pattern formation in zebrafish by mediating long-distance Notch signaling between pigment cells. Remarkably, airinemes exhibit large vesicle-like structure at their tips, which are pulled by a macrophage subpopulation and delivered to target cells. The interaction between macrophages and Delta-ligand carrying airineme vesicles is essential for initiating airineme-mediated signaling, yet the molecular detail of this interaction remains elusive. Through high-resolution live imaging and genetic in vivo manipulations, we found that adhesive interactions via the extracellular domain of CD44, a class I transmembrane glycoprotein, between macrophages and airineme vesicles are critical for airineme signaling. Mutants lacking the extracellular domain of CD44 lose their adhesiveness, resulting in a significant reduction in airineme extension and pigment pattern defects. Our findings provide valuable insights into the role of adhesive interactions between signal-sending cells and macrophages in long-range intercellular signaling.
Competing Interest Statement
The authors have declared no competing interest.