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Abstract33

With recent advances in multi-color super-resolution light microscopy34

it has become possible to simultaneously visualize multiple subunits35

within complex biological structures at nanometer resolution. To opti-36

mally evaluate and interpret spatial proximity of stainings on such an37

image, colocalization analysis tools have to be able to integrate prior38

knowledge on the local geometry of the recorded biological complex.39

Here, we present MultiMatch to analyze the abundance and location40

of chain-like particle arrangements in multi-color microscopy based on41

multi-marginal optimal unbalanced transport methodology. Our object-42

based colocalization model statistically addresses the effect of incomplete43

labeling efficiencies enabling inference on existent, but not fully observ-44

able particle chains. We showcase that MultiMatch is able to consistently45

recover all existing chain structures in three-color STED images of DNA46

origami nanorulers and outperforms established geometry-uninformed47

triplet colocalization methods in this task in a simulation study. Further-48

more, MultiMatch also excels in the evaluation of simulated four-color49

STED images and generalizations to even more color channels can be50

immediately derived from our analysis. MultiMatch is provided as a51

user-friendly Python package comprising intuitive colocalization visual-52

izations and a computationally efficient network flow implementation.53

Keywords: multi-marginal optimal unbalanced transport, colocalization54

analysis, super-resolution light microscopy, multi-color imaging55

1 Introduction56

Colocalization analysis aims to unravel the interconnection and interaction57

network between two or more groups of particles based on their spatial prox-58

imity in a microscopy image. By visualizing biological structures, like DNA,59

RNA and proteins, that are only a few nanometers in size, colocalization anal-60

ysis makes it possible to study a wide range of biological processes, such as61

DNA replication and the transcription of genes (Cainero et al, 2021), nuclear62

import of splicing factors (Costa et al, 2021) or the dynamics of cargo sorting63

zones in the trans-Golgi networks of plants (Shimizu et al, 2021), to name only64

a few.65

In the following, we will denote any objects of interest that are depicted66

within a microscopy image, e.g., proteins as well as loci on DNA or RNA67

strands, as particles. In fluorescence light microscopy, such particles are68
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MultiMatch Colocalization 3

stained, i.e., in case they do not already intrinsically fluoresce, they are labelled69

with fluorophores, which in turn are excited by an external light source. The70

emitted fluorescence radiation then can be imaged via several microscopy71

technologies.72

Diffraction unlimited super-resolution fluorescence microscopy technolo-73

gies, also called nanoscopy, are classified into two broad concepts (Sahl et al,74

2017):75

In coordinate-stochastic microscopy, fluorophores within the sample76

are stochastically excited resulting in a temporally resolved blinking dynamic77

(Betzig et al, 2006; Hess et al, 2006; Rust et al, 2006), which allows to spa-78

tially separate fluorophores. Their coordinates are estimated by means of the79

detected radiation peak, yielding a list of coordinates of detected fluorophores80

as output data. If only one fluorophore is detected for one particle, the out-81

put translates into a list of particle coordinates. Else, fluorophore coordinates82

can be aggregated in order to localize the particle of interest in the imaged83

biological sample.84

In scanning-based microscopy methods such as Stimulated Emission85

Depletion (STED; Hell and Wichmann, 1994; Hell, 2007; Klar et al, 2000), the86

fluorescence distribution is stored as an intensity matrix, in which every entry87

encodes the detected radiation within a respective pixel of the microscopy88

image. To obtain coordinate estimates of particle positions, object detection89

algorithms have to be applied to the intensity matrix.90

In order to study possible particle interactions or connections, stainings91

with different fluorescent markers are recorded in different color channels. Par-92

ticles colocalize, if they are spatially closer than or equal to a colocalization93

distance, which heavily depends on the underlying biological setting and might94

be unknown prior to colocalization analysis (Malkusch et al, 2012).95

Colocalization methods are divided in two categories based on the input96

data format they require:97

Pixel-based colocalization methods take an intensity matrix as input98

and compare the pixel intensities across color channels, e.g., by utilizing over-99

lap, correlation or intensity transport analysis. Such approaches are thus only100

applicable for scanning-based images and examples for well-established meth-101

ods are Mander’s Colocalization Coefficient (Manders et al, 1993; Xu et al,102

2016), Pearson’s Correlation Coefficient (Adler and Parmryd, 2010), BlobProb103

(Fletcher et al, 2010), SACA (Wang et al, 2019) and OTC curves (Tameling104

et al, 2021).105

Object-based colocalization methods, which our method MultiMatch106

classifies as, require the coordinates of particles and evaluate their distances.107

Examples for other object-based tools are ConditionalColoc (Vega-Lugo et al,108

2022) and Ripley’s K based methods (Ripley, 1976; Mukherjee et al, 2020) as109

SODA (Lagache et al, 2018).110

Pairwise particle distances can be defined in several ways (Vega-Lugo et al,111

2022). In MultiMatch we implemented the distance between reference points,112

i.e., the center of the detected particle, as default. However, we also allow the113
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4 MultiMatch Colocalization

user to input a pre-defined particle-to-particle distance matrix, in case other114

approaches like the distance between object borders is preferred.115

While nanoscopy for dual-color stainings is well studied for a long time,116

multi-color imaging including three or more stainings has received increased117

attention more recently since it allows simultaneous measurements of multiple118

particle types. There is a steadily increasing number of published multi-color119

STED microscopy datasets (Winter et al, 2017; Spahn et al, 2019; Butkevich120

et al, 2021; Glogger et al, 2022; Gonzalez Pisfil et al, 2022; Wang et al, 2022;121

Saal et al, 2023), of other super-resolution microscopy methods (Andronov122

et al, 2022; Unterauer et al, 2023) and the development of appropriate labeling123

methods allowing for an ever-increasing number of channels is ongoing (Beater124

et al, 2015; Butkevich et al, 2021; Willig et al, 2006; Reinhardt et al, 2023;125

Unterauer et al, 2023).126

However, most pixel- and object-based colocalization tools are designed127

for and therefore limited to the analysis of two-color stainings. Applying128

them to multi-color images is not an obvious task: Particle arrangements129

with more than two different particle types can occur in different config-130

urations (Figure 1B), and depending on the biological context, some may131

be of interest and others may simply not exist in the imaged sample. A132

geometry-uninformed, pairwise analysis of all possible channel combinations133

(Smallcombe, 2001), as well as the few established methods that are explicitly134

presented as multi-color pixel-based (Sastre et al, 2019; Goucher et al, 2005;135

Humpert et al, 2015; Fletcher et al, 2010) and object-based (Haas and Peau-136

celle, 2021; Lagache et al, 2018; Vega-Lugo et al, 2022) colocalization tools137

are prone to overestimate colocalization, as soon as the biological complex of138

interest has a fixed geometry and stoichiometry, as we can show in a simula-139

tion study (Figure 2A). To exploit the full potential of multi-color microscopy140

imaging in such a situation, it is therefore beneficial to actively incorporate141

prior knowledge of the local geometry into the colocalization analysis.142

To this end, we introduce MultiMatch, a widely applicable colocalization143

methodology based on optimal transport theory, which is especially tailored144

to detect chain-like, one-to-one particle arrangements. Integrating this type145

of colocalization geometry optimizes the multi-color colocalization analysis of146

quadruples, triplets, pairs, and singlets, as they appear when marking different147

loci of a chain-like molecule with multi-color stainings.148

One exemplary biological framework, in which the localization of such149

arrangements is especially insightful, is the highly condensed mammalian mito-150

chondrial genome: It is transcribed from both strands of the mitochondrial151

DNA as long polycistronic transcripts that have to undergo multiple processing152

steps, including endonucleolytic cleavage, in order to get to the different func-153

tional RNA species. Transcription of the heavy strand leads to polycistronic154

primary transcripts containing the premature mRNAs of 12 of the 13 OXPHOS155

subunits encoded in the mitochondrial genome. Labeling more than two of156

the mRNAs within such a primary construct, in combination with our novel157

colocalization approach, can significantly contribute to our understanding of158
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MultiMatch Colocalization 5

the post-transcriptional processing steps and their dynamics, that lead to the159

generation of matured mRNA molecules (Boettiger et al, 2016; Miron et al,160

2020).161

However, even if the biological complex of interest itself is not chain-like,162

chain detection still can give substantial insights on the abundance and loca-163

tion of colocalization events inside a microscopy image as soon as the chain is164

a substructure of the colocalization geometry (Figure 1B). The converse, on165

the other hand, does not hold true in general.166

We consider a particle arrangement as chain-like when exactly one particle167

of each type is stringed together in an ordered fashion and pairwise distances of168

chain-neighbors are smaller than or equal to a maximal colocalization thresh-169

old t. To fix the chain order of particles, we will refer to color channels, in170

which the respective particle type was imaged, as channel A, B, C, D etc.. For171

simplicity, we will explain the main methodology for a three-color setting in172

what follows, but MultiMatch is applicable to an arbitrary number of color173

channels, which we showcase in the evaluation of simulated four-color STED174

images (Section 2.5). We stress, that our software (see Section 4.8) is already175

designed to process any number of channels.176

All configurations resulting from a three-color staining of an chain-like177

molecule are sketched in Figure 1C, where we assume the following unknown178

abundances n = (nABC , nAB , nBC , nA, nB , nC) of chain-like assemblies, where179

nABC is the number of true ABC triplets,180

nAB , nBC is the numbers of true AB and BC pairs,181

nA, nB , nC is the numbers of true A, B and C singlets.182

MultiMatch outputs detected abundances w =183

(wABC , wAB , wBC , wA, wB , wC) for a known colocalization distance t and184

depicts configuration positions on the respective microscopy image allowing185

further investigation on the spatial distribution of recorded biological com-186

plexes. If t is unknown (optionally channel-wise scaled) abundance curves187

w(t) are output for a user-defined range of t values. MultiMatch is compatible188

with the interactive Graphical User Interface of napari (Figure 1D) enabling189

the visual evaluation of structure locations for different t values in form of a190

colocalization threshold slider.191

The differentiation between triplets, pairs, and singlets within a microscopy192

image is additionally hindered by incomplete labeling efficiencies and point193

detection artifacts. This is a notorious problem in fluorescence microscopy,194

e.g., described in Hummert et al (2021), and missing detections can add an195

unpredictable bias towards systematic underestimation of triplet numbers and196

overestimation of singlet abundances, if not corrected. Currently, the problem197

of incomplete labeling efficiency is barely addressed in the field of colocalization198

analysis.199

Therefore, we propose a statistical framework to correct for incomplete200

labeling efficiencies and introduce an unbiased estimator n̂(t) of true chain-201

structure abundances and confidence statements on the estimated quantities.202
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6 MultiMatch Colocalization

interaction geometry biases colocalization analysis

nanoruler design MultiMatch output in napari viewer

tripletsABC

pairsAB

BC pairs
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singletsB

singletsC
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C D

A
Find triplets first: Find pairs second:

3. OT based particle matching 

wABC

wABC

nABC

nAB

nBC

nA

nB

nC
n

Find triplets & pairs 
simultaneously:

Mode I

Mode II

4. abundance curves 
for a range of t

t

5. abundance correction 
for incomplete labeling efficiencies

0. particle imaging 1. object detection 2. pairwise distances

t

t

triplet

pai

chain structure

nABC

...

wABC = 1
wAB = 1
wBC = 1
wA = 0
wB = 1
wC = 1

wABC = 0
wAB = 2
wBC = 2
wA = 0
wB = 0
wC = 1

MultiMatch workflow

Fig. 1 MultiMatch workflow to detect chain-like particle arrangements and
experimental nanoruler design. A. After microscopy imaging (0) and object detection
(1), the distances between channel-specific lists of reference points or a user-defined dis-
tance matrix are input to the optimal matching procedure. Restricted on particle pairs with
distance smaller or equal than colocalization distance t (2), MultiMatch either outputs the
maximal number of triplets and subsequently pairs (Mode I) or simultaneously searches
for triplets and pairs (Mode II) (3). MultiMatch provides the localization and number of
detected chains for a known or abundance curves for a range of colocalization distances t (4).
For known incomplete labeling efficiencies true abundances can be estimated with confidence
statements (5). B. If more than two different particle types are involved, multiple geometric
colocalization patterns can emerge. In case the chain is a substructure of the colocalization
geometry of interest, its detection will help to localize and quantify colocalization events.
C. Structures of interest in three-color colocalization analysis for chain-like, one-to-one par-
ticle interactions and fixed particle type order. All pairwise distances between neighboring
particles in a chain are smaller or equal than colocalization distance t. D. Exemplary Mul-
tiMatch output for an experimental STED image of DNA origami nanoruler structures (as
sketched in C) in the interactive napari viewer.

An overview on the full workflow of MultiMatch from microscopy image to203

abundance curves is depicted in Figure 1A.204

2 Results205

2.1 Chain-like Particle Assembly Detection with206

MultiMatch207

Optimal transport (OT) theory (Villani, 2009) has a wide range of applications208

throughout statistics (Panaretos and Zemel, 2019), data science and machine209

learning (Peyré and Cuturi, 2020). Generally, OT aims to allocate (transport210

plan) one mass distribution into another by minimizing the transportation211

cost arising from moving one mass unit from one location to another. Applied212
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MultiMatch Colocalization 7

to fluorescence intensity distributions on a pixel grid and using the euclidean213

distances between pixels as transportation cost, OT introduces an intuitive214

distance between two microscopy images and could already successfully be uti-215

lized in the context of pixel-based, dual-color colocalization methods (Zaritsky216

et al, 2017; Tameling et al, 2021).217

For object-based analysis, reference points of detected particles can also218

be interpreted as support points of mass one of a (discrete) two-dimensional219

distribution. For only two color channels with the same number of particles the220

standard OT problem simply assigns each particle from the first channel to one221

particle from the second channel while minimizing the total sum of Euclidean222

matching costs. We can obtain an optimal matching between more than two223

particle types by multi-marginal OT (Kim and Pass, 2014; Pass, 2015) and224

at the same time account for the not necessarily equal numbers of support225

points per channel by utilizing an unbalanced OT formulation (Chizat et al,226

2018). A combination of both OT generalizations, i.e., multi-marginal optimal227

unbalanced transport problems, have been recently discussed in the literature228

(Friesecke et al, 2021; Heinemann et al, 2022; Beier et al, 2022; Le et al, 2022).229

In this manner, the basic concept of MultiMatch can be interpreted as linear230

assignment problem as described, e.g., in the field of object tracking (Schulter231

et al, 2017; Chari et al, 2015; Jaqaman et al, 2008; Zhang et al, 2008). In232

contrast to methods of this research field, we explicitly formulate the matching233

problem as a function of the colocalization threshold, allowing to plot the234

chain abundances dependent on a range of t. Furthermore, we develop a novel235

statistical framework specific to labelled marker colocalization to infer on the236

statistical influence of incomplete labeling efficiency. We utilize the equivalence237

of the optimal transport methodology to a network flow problem to overcome238

the otherwise prohibitively high computational complexity of its corresponding239

linear program formulation (Lin et al, 2022; Supplementary Material A.2).240

MultiMatch provides two different modes to solve the particle matching241

problem (Figure 1A(3)):242

Mode I: By restricting a k -marginal optimal unbalanced transport prob-243

lem to particle pairs with a distance smaller than t and introducing a chain-cost244

that only considers distances between neighboring particle types (Supplemen-245

tary Material A.1), the resulting OT plan encodes the maximal number of, for246

k = 3, triplets within the nanoscopy image. If requested, the matching process247

is subsequently repeated on the remaining particles to detect yet unresolved248

AB and BC pairs, respectively.249

Mode II: This mode only detects AB, BC, etc. pairs by solving respective250

two-marginal unbalanced OT problems. Subsequently, the two-marginal OT251

matchings are coupled to chain structures: For k = 3, all pairs occupying the252

same intermediate particle are redefined as respective ABC triplet.253

Depending on the underlying biological experiment, the user can select the254

appropriate mode for colocalization analysis: Mode I prioritizes the detection255

of a predefined chain structure of choice. For example, if a user aims to analyze256

triplets, Mode I will detect a triplet as soon as three particles A, B, and C are257
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8 MultiMatch Colocalization

close enough to each other – even if another particle A or C is nearby that would258

allow to match two pairs instead of one triplet (as depicted in Figure 1A(3)).259

If k > 3 and the user wants to detect multiple chain structures, one needs to260

set a prioritization order for Mode I. For example, for k = 4 and after ABCD261

quadruplet detection, one can search either for ABC or BCD triplets next.262

Depending on the order, the final matching results may change as soon as263

some particles cannot be uniquely assigned to one particle arrangement.264

Mode II, on the other hand, does not need a predefined prioritization order265

of structures for subsequent matching steps, hence it does not overemphasize266

structures that are matched in the earlier steps. It is useful in case we do not267

have any prior knowledge on which structures might appear in the microscopy268

image and we do not want to prioritize any chain structures.269

In the evaluation of experimental (Section 2.4 and Supplementary Material270

D, Figure D4) and simulated three-color STED microscopy images (Figure 2271

and Supplementary Material E.1, Fig. E5) we show that for sparse particle272

distributions and mixed singlets, pairs, and triplet ratios the differences in273

detected abundances between the two modes is neglectable. However, in case274

of dense particle distributions (see Supplementary Material E.2, Fig. E6 and275

Supplementary Material E.3, Fig. E7 B-D), or in case we know in advance that276

only one chain structure exists in the biological context, the multi-marginal277

approach of Mode I, which is also the default setting in the MultiMatch tool,278

outperforms the pairwise matching approach of Mode II.279

2.2 Simulation Study280

To systematically evaluate the performance of MultiMatch against compati-281

ble colocalization methods, we simulated 100 microscopy images for each of282

three scenarios with different combinations of singlets, pairs, and triplet abun-283

dances. For this simulation study, we decreased the noise level to a minimum to284

allow a fair comparison despite different point detection tools implemented in285

the respective colocalization tools. Also, we amplified simulating linear triplet286

structures over randomly folded triplets (see simulation setup in Section 4.4).287

For every simulated image,288

Scenario 1: 50 singlets of each type A, B and C were simulated.289

Scenario 2: 50 A, B and C singlets and 50 AB and BC pairs were simulated,290

respectively.291

Scenario 3: 100 triplets and 50 AB and BC pairs and 50 A, B and C292

singlets were simulated, respectively.293

Exemplary, simulated images and the results of the simulation study for a294

fixed colocalization threshold of t = 5 pixels are shown in Figure 2. Analysis295

results for all considered methods across a range of colocalization thresholds296

are presented in Supplementary Material E.1, Figure E5.297

As a representative of pixel-based methods, we include BlobProb (Fletcher298

et al, 2010), which counts the number of colocalized intensity blobs, i.e., groups299

of neighboring pixels with high intensity. In each channel, blobs are detected300
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MultiMatch Colocalization 9

via image segmentation and for each blob the local intensity maximum is301

defined as reference particle coordinate. A blob pair colocalizes if the first302

reference point lies within the second blob and vice versa. Triplet colocaliza-303

tion is detected if all involved reference points are included in all three blobs.304

SODA (Lagache et al, 2018) is an object-based method, which uses the Rip-305

ley’s K function (Ripley, 1976) and computes the coupling probability of point306

pairs based on marked-point process theory. In the most recently published307

method ConditionalColoc (Vega-Lugo et al, 2022) particles are defined as colo-308

calized as soon as their distance is below a maximal colocalization radius.309

Then, utilizing Bayes’ Theorem, (conditional) probabilities are computed and310

assigned for triplet and pair colocalization. We experienced that Condition-311

alColoc, although aiming to output probabilities, in some cases yields values312

greater than one and hence the errors in relative abundance detection are not313

bounded by one as well. For a better comparison, we restricted the respective314

results to values between -0.5 and 1 in Figure 2 and show ConditionalColoc315

outliers in Supplementary Material C (Figure C3).316

In none of the above methods triplet colocalization is restricted to one-to-317

one interactions. This has barely any negative effect on the detection of singlets318

in Scenario 1, where no additional pairs and triplets occur. Apart from few319

outliers of overestimation in pairs and triplet abundances in ConditionalColoc320

and SODA, all considered colocalization measures show consistently low errors321

with small variability. The maximal median error in relative abundances of322

0.03 in Scenario 1 is obtained by ConditionalColoc in the detection of AB as323

well as BC pairs.324

In Scenarios 2 and 3 on the other hand, we observe a consistent overestima-325

tion of relative pairs and triplet abundances in object-based methods SODA326

and ConditionalColoc, since one particle can be included in several structures327

at the same time. Additionally, in Scenario 2 SODA exhibits a larger varia-328

tion in pairs abundances, resulting in median errors 0.14 in both AB and BC329

pairs with interquartile ranges of 0.16, respectively. In Scenario 3 the variation330

in abundance detection decreased and median errors are 0.1 for ABC triplets331

and 0.04 for AB as well as BC pairs. ConditionalColoc performances worst in332

Scenario 3 yielding a median error of 0.48 for ABC triplets.333

The pixel-based method BlobProb mostly obtains zero relative abundances334

of triplets and pairs across all three scenarios and hence severely underesti-335

mates the triplet and pair configurations within the simulated images. This336

is due to the high resolution in the simulation setup, which was chosen to337

mimic conventional STED imaging. If particles are small and their respective338

intensity blobs do not overlap, BlobProb does not detect any colocalization.339

MultiMatch on the other hand searches for optimal matches on a global340

scale while considering the local geometry of chain-like particle assemblies. It341

consistently recovers the ground truth abundances for each simulation scenario.342

The maximal median error across all scenarios and chain structures for both343

Modes of MultiMatch is 0.03 with a maximal interquartile range in errors of344

0.04.345
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Fig. 2 Simulation study for three combinations of chain structures. In each
Scenario 100 STED images and different abundances of triplets, pairs, and singlets were sim-
ulated with 100% labeling efficiency. A. Method specific boxplots of the errors in detected
relative (scaled by the total number of points in channel B) structure abundances are dis-
played. The error is computed by subtracting true relative abundance from detected relative
abundances. In Scenario 1 only A,B and C singlets, in Scenario 2 all possible singlets as
well as AB and BC pairs and in Scenario 3 ABC triplets, AB, BC pairs and A, B and C
singlets were simulated. B. Simulated STED images for Scenarios 1, 2 and 3 with respective
image details.

Apart from above considered, already established colocalization methods,346

we also implemented a Nearest Neighbor Matching as comparable object-based347

method. We can show that greedily matching particle pairs based on local348

optima leads to underestimation of ABC triplets in dense particle distributions349

(Supplementary Material E.2, Figure E6A-C).350

2.3 Incomplete Labeling Efficiencies and Point Detection351

Errors352

In experimental STED microscopy, typically it is impossible to record all exist-353

ing particles of interest. This can, for example, be due to the fluorescent marker354

not being successfully attached to the probe or a flawed point detection. All355
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such scenarios resulting in a failure of particle detection for simplicity will be356

summarized under incomplete labeling efficiency hereafter.357

If only singlets were to be counted in multi-color images with the same358

labeling efficiency across channels, the relative abundance could still be esti-359

mated consistently. However, as soon as configurations of two or more particle360

types are to be recovered, incomplete labeling efficiencies can lead to under-361

and overestimation of structures. Figure 3A shows that a triplet can be erro-362

neously detected as pair or singlet or not at all, which can introduce a severe363

bias. However, if the labeling efficiencies are known, the detection success of364

a particle can be modeled with a Bernoulli distribution, which allows the365

definition of an unbiased estimator n̂ for the vector of true chain structures366

abundances n. This approach allows for constructing multi-dimensional joint367

confidence ellipsoids covering n with a given significance level, e.g., α = 0.1368

(Figure 3B,C). The multi-dimensional confidence ellipsoid then can be respec-369

tively projected onto one dimension to obtain structure-specific confidence370

intervals or bands for a range of t values, while fixing the estimated abun-371

dances of all other considered structures. For more details on the statistical372

framework see Supplementary Material B.373

2.4 Evaluation of Experimental STED Images374

Chain-like particle structures occur within several biological complexes. To375

showcase the performance of our method on experimentally retrieved data we376

used one-, two- and three-color nanorulers. Nanorulers are DNA-origamis with377

a predefined distance between spots at which 20 fluorophores are attached378

and hence, as their name suggests, can be used as rulers inside a microscopy379

image (Cainero et al, 2021; Schmied et al, 2014, 2012; Rothemund, 2006). For380

this experimental setup, we chose nanorulers with pairwise distances between381

neighboring spots of 70 nanometers (nm). For each chain structure (as depicted382

in Figure 1C), respective nanoruler origamis are available in separate solutions,383

which allows us to control whether in an experiment we record singlets, pairs384

or triplets only or a combination of those structures. We performed three385

experiments:386

Setting 1: The experiment consists of all three single marker nanorulers387

(22 images in total). We expect to detect no pairs or triplets, i.e., wABC =388

wAB = wBC = 0.389

Setting 2: The experiment consists of all three singlets, two pairs and390

triplet marker nanoruler solutions (22 images in total). We expect to detect391

all possible configurations, i.e., A, B and C singlets, AB and BC pairs as392

well as ABC triplets.393

Setting 3: The experiment consists of only triplet marker nanorulers (12394

images in total). We expect to detect ABC triplets only, i.e., wAB = wAB =395

wA = wB = wC = 0.396

For each experimental setting we recorded STED images of size 400 × 400397

pixels with a pixel size of 25 × 25 nm. In channel A, stainings with Star Red398
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Fig. 3 Incorporating incomplete labeling efficiency. A. Because of channel-specific
incomplete labeling efficiencies, triplets and pairs can erroneously counted to other structure
abundances. B. For entrywise large enough n, estimator n̂ is approximately multi-
dimensional normally distributed: Estimated abundances of 10,000 simulations with labeling
efficiencies sA = sB = sC = 0.95 and true abundances nABC = 500, nAB = nBC = nA =
nB = nC = 50 (see Supplementary Material B.2). The respective 3-dimensional, normal
90% quantile ellipsoid is plotted. C. Estimated abundance curves for one of the experimen-
tal multi-color STED images in Setting 3 with additional confidence bands for significance
level α = 0.1. D. Restricted image resolution and 3-dimensional rotation of particle arrange-
ments lead to variability in the observed colocalization thresholds: Simulation study of 100
images only containing one triplet with pairwise distances set to 70 nm = 2.8 pixels per
image (100% complete labeling efficiency, see Section 4.4).

640 nm are recorded, in channel B, stainings with Alexa 488 and in channel C,399

stainings with Alexa 594. Note, however, that the exact numbers of nanorulers400

within a recorded STED image is unknown. Due to misfolding and clump-401

ing of nanorulers and different nanoruler immobilization rates for each STED402

image one cannot compute a fixed unit of nanorulers per microscopy image403

and experiment.404

The results of the colocalization analysis for all three settings (with default405

MultiMatch Mode I) are shown in Figure 4 via relative abundance curves with406

standard deviation bands quantifying variation across images within the same407

setting. Here, we used MultiMatch Mode I and included the analysis with408

Mode II showing comparable results, but slightly underestimating the number409

of triplets in Setting 3, in Supplementary Material D, Figure D4.410

For Setting 1 we can appreciate that, as expected, across a range of t val-411

ues only a few pairs and triplets are detected (Figure 4A). The rise of relative412

abundance curves is unavoidable for large t, since the probability increases413

that randomly scattered particles are matched. In Setting 2, despite exper-414

imental variation, we clearly recover all supplied nanoruler structures. Even415
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Fig. 4 MultiMatch Mode I relative abundance curves w(t) for experimental
STED images. For each setting the solid curves are mean relative abundances with stan-
dard deviation bands across a range of colocalization threshold t from 0 to 10 pixels (25 nm
= 1pixel). The abundances are scaled by the total number of points detected in channel B.
Additionally, incomplete labeling efficiency (90% in each channel) corrected abundances are
plotted as dotted curves. The true colocalization distance of 70 nm within nanoruler struc-
tures is depicted as vertical line. A. Setting 1: Mean abundance curves for only singlets
consistently show the expected 0% relative triplet and pair abundances. Setting 2: Triplets,
pairs, and singlet nanoruler are detected with stable abundances for approximately t ≥ 4
pixels. Setting 3: Mean abundance curves for analyzing the triplet nanoruler solution only.
The incorporation of incomplete labeling efficiency clearly corrects the relative triplet abun-
dance towards the in this setup expected 100%. B. Representative STED images for Settings
1,2 and 3 with image details.

more, colocalization curves are still stabilizing for a colocalization threshold t416

greater than approximately 4 pixels (= 100 nm): For t > 100 nm ABC triplets417

are approximately detected with relative abundance of 0.32, AB pairs with418

0.16 and BC pairs with 0.42 relative abundance, yielding a relative amount419

of 0.1 unmatched B singlets. The relative abundance curves of all structures420

reach a plateau at approximately t ≥ 4 pixels (= 100 nm), i.e., the slope of421

all curves within the same setting decreases rapidly. In Setting 3, as expected,422

the relative abundances of AB and BC pairs converge to zero while triplets423

are the dominantly detected structure for t ≥ 4 pixels.424
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14 MultiMatch Colocalization

Notably, in Settings 2 and 3 stable abundance curves are reached at around425

100 nm, which is 30 nm more than the experimentally fixed, maximal distance426

between neighboring fluorophore spots in the nanoruler structures. This effect427

can be explained by the still limited resolution in the microscopy image and428

can be reproduced via simulation: We simulated 100 STED images containing429

only one triplet (nABC = 1) in Figure 3D and can reproduce this stabilizing430

behavior of abundance curves in Figure 2.431

Limited resolution alone does not explain why 20%–30% of detected B432

particles (for t ≥ 5 pixels) are not matched to a triplet in Setting 3: The433

attachment of a single fluorophore to a nanoruler spot is expected to have a434

success probability of 85% to 90% and hence at least one fluorophore should435

be attached to each spot in almost 100% of all cases. Still, due to the above436

described experimental variation in nanoruler imaging and additional errors437

in point detection, especially due to nanoruler clumping, the overall success438

rate of fluorophore spot detection is incomplete. Hence, we erroneously detect439

pairs instead of triplets or singlets due to noise. As in Setting 1 those artifacts440

will be matched into triplets for large enough t.441

For simplicity, we model a 90% labeling efficiency across all three-color442

channels in the experimental STED setup. The estimated abundance curves443

n̂(t) (dotted lines in Figure 4), in Setting 3 visibly correct the measurements444

towards the expected relative abundances. Additional confidence bands around445

n̂ allow to infer on the robustness of the abundance estimation as presented446

in (Figure 3C) for one of the experimental STED images of Setting 3.447

2.5 Evaluation of Simulated Four-Color STED Images448

MultiMatch is applicable to an arbitrary number of color channels, which we449

showcase in the following with an adapted simulation setup for quadruples,450

triplets, pairs, and singlets in simulated four-color STED microscopy images.451

In contrast to the simulation study in Section 2.2, we additionally challenged452

our MultiMatch tool with an increased noise level and by allowing arbitrarily453

curled chain structures (see simulation setup in Section 4.4). In Figure 5 we454

show the colocalization analysis results of two simulation scenarios:455

Scenario I: We simulated 50 ABCD quadruples, 30 ABC triplets, 20 AB456

pairs and 30 C and D singlets, respectively, to mimic a chain-like molecule457

being split at loci C and D.458

Scenario II: We simulated 100 ABCD quadruples and no triplets, pairs459

nor singlets460

Three additional simulations setups are shown in Supplementary Material461

E.3 and analysis results are plotted in Figure E7. For each scenario we simu-462

lated 100 images with full labeling efficiencies (sA = sB = sC = sD = 1) and463

100 images with incomplete labeling efficiencies (sA = sB = sC = sD = 0.95)464

by randomly deleting 5% of points simulated in the prior, full labeling efficiency465

simulation in each channel.466
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Fig. 5 MultiMatch Mode II abundance curves w(t) and estimation results n̂(t)
for simulated four-colour STED images. Scenario I: A mixture of ABCD quadru-
plets, ABC triplets, AB pairs and C,D singlets were simulated. Scenario II: Only ABCD
quadruplets were simulated. A. For each scenario images with complete labeling efficiency
(left) and with incomplete labeling efficiency (middle) were simulated. Solid curves are mean
absolute detected abundances with standard deviation bands across a range of colocaliza-
tion thresholds t from 0 to 10 pixels (25 nm = 1pixel). All curves stabilize at approximately
t = 4 pixel close to the true simulated number of structures. For images with incomplete
labeling efficiency (95% in each channel) uncorrected detected abundances plus standard
deviation bands are plotted as solid curves showing consistent underestimation of quadru-
ples. Corrected abundances are plotted as dotted curves recovering the true number of
simulated structures. For one exemplary STED image simulated with incomplete labeling
efficiency, corrected abundance curves and corresponding confidence bands are shown (right).
B. Representative STED images for Scenarios I and Scenario II with image details.

For this analysis we applied MultiMatch Mode II, i.e., allowing the detec-467

tion of both ABC as well as BCD triplets and AB, BC and CD pairs without468
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16 MultiMatch Colocalization

any prioritization order of chain structures. Again, also in the case of four-469

color images, we can appreciate that MultiMatch consistently recovers true470

abundances of quadruplets in case of full labeling efficiencies. Absolute abun-471

dance curves, as also described in the analysis of our experimental dataset in472

Figure 4, stabilize for approximately t = 4 pixels. For images simulated with473

incomplete labeling efficiencies, the colocalization curves show underestima-474

tion of quadruplets as expected. With our statistical framework we again can475

visibly correct the colocalization curves towards the true, simulated structures476

abundances and additionally gain confidence bands confirming the stability of477

our estimator.478

For denser distributions, as shown in Supplementary Material E.3, Fig.E7479

B-D, we can observe that 1. MultiMatch II misses quadtruples for the sake480

of closer particle pairs, and 2. similar to the experimental nanoruler anaylsis481

depends on the performance of the point detection and hence the noise level482

in the microscopy image. If consistent noise challenges the point detection,483

abundance curves still stabilize, but the plateau shows a smaller number of484

matched quadtruples than simulated in absolute numbers. Hence, we advise485

user of MultiMatch to check the noise level of the microscopy image and the486

point detection result with the interactive napari viewer (Figure 1D and Sup-487

plementary Material E.3, Fig E7 D) and if necessary evaluate channel-wise488

scaled, relative instead of absolute abundances.489

3 Discussion490

In this article we introduce multi-marginal optimal unbalanced transport491

methodology for geometry-informed, multi-color colocalization analysis. We492

are able to show, that for the analysis of more than two color channels, it493

is crucial to take into account the colocalization geometry of the biological494

complex.495

By either choosing chain-costs in a multi-marginal OT problem (Mode I) or496

coupling consecutive two-marginal OT matchings (Mode II), MultiMatch suc-497

cessfully detects k-chain particle assemblies such as quadruples, triplets, pairs,498

and singlets, as they appear when staining multiple loci on chain-like molecules499

like DNA or RNA strands. Both modes have their advantages, which depend500

on the number of particles imaged and prior knowledge on the biological con-501

text: Mode I is best for detecting one chain structure of choice and is more502

robust in dense particle distributions. When the particle distribution is sparser503

and multiple chain structures in the imaged biological setting are of interest,504

Mode II is suited to detect them without any predefined prioritization order.505

Since often the true colocalization distance is unknown, MultiMatch results506

can be output as structure-wise relative or absolute abundance curves across507

a range of colocalization thresholds t. In our simulation studies as well as508

our experimental settings we could show, that output curves stabilize close to509

ground truth abundances.510
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However, as for all object-based colocalization methods, the performance511

MultiMatch scales with the noise level of the microscopy image, the perfor-512

mance of the object detection and the resolution of the microscopy. Abundance513

curve plateaus can be less clear in case the microscopy image contains detected514

singlets of different particles types. In this case, the larger t, the more far away515

singlets are matched. In such cases it might be unclear, whether singlets truly516

exist in the biological sample or whether they are an artifact of the experi-517

ment and image processing. For such cases, we advise to observe the quality518

of the microscopy image with the MultiMatch compatibale, interactive napari519

viewer.520

Our network flow implementation significantly decreases computational521

costs compared to standard approaches solving comparable OT problems and522

comparable colocalization tools (Section 4.3, Supplementary Material A.2 and523

E.1). The simulation studies show that as soon as we have prior knowledge524

on the chain colocalization geometry, MultiMatch, in contrast to other triplet525

colocalization methods, is robust against overestimation of triplets with chain526

geometry since it only considers one-to-one interactions. MultiMatch is also527

tested on experimental STED images of different nanoruler combinations and528

can correct structure abundances for predefined incomplete labeling efficien-529

cies and point detection errors, where confidence bands allow further inference530

on the estimated abundances.531

All experimental studies have been performed for k = 3 color channels.532

However, in many scientific fields the detection of k-chains for larger k is of533

interest. The mathematical and statistical frameworks allow straight-forward534

generalization (Details in Supplementary Material A.1) and we exemplarily535

show successful detection results for simulated four-color STED images. With536

current technical standards, the experimental setup of multi-color nanoscopy537

imaging is still challenging, costly and time consuming, but in view of further538

technological improvements our algorithm is already applicable for the evalu-539

ation of this type of experimental setups, and especially promising in view of540

recent developments in super-resolution microscopy with a resolution of a few541

nanometers and below (Balzarotti et al, 2017; Gwosch et al, 2020).542

In the same way channel specific colocalization thresholds as tAB , tBC and543

tCD can be considered within the OT problem. Although we only present the544

evaluation of 2D STED images with constant labeling efficiencies across chan-545

nels, our software package can directly be applied to multi-color 3D microscopy546

images with channel-specific labeling efficiencies.547

Limitations: If the microscopy image shows especially dense point clouds,548

MultiMatch necessarily will have difficulties in differentiating between random549

and biological reasonable proximity. Note, however, that this is not a specific550

weakness of MultiMatch, but any other method will face this identifiability551

problem, which is caused by missing linkage information. It can only be over-552

come with additional prior information of the underlying biological sample.553

However, MultiMatch Mode I is especially robust against dense particle dis-554

tribution in comparison to pairwise matching approaches as implemented in555
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18 MultiMatch Colocalization

MultiMatch Mode II or greedy Nearest Neighbor Matchings. An adaption to556

tree like particle arrangements and the inclusion of additional constraints, e.g.,557

incorporating regions of interest are future research objectives.558

4 Methods559

4.1 Point Detection560

In order to locate the positions of the particles in STED images, we perform561

point detection via the Python package scikit-image (Walt et al, 2014) (ver-562

sion 0.19.1). This is provided as an optional analysis step in our MultiMatch563

implementation for the evaluation of intensity matrices.564

4.2 Interactive Napari Viewer565

Multi-color microscopy images, point detection results and MultiMatch output566

can be loaded into the interactive napari viewer. MultiMatch is compatible567

with Python package napari (napari contributers, 2019) (version 0.4.18) and an568

exemplary use-case is described on our repository https://github.com/gnies/569

multi match.570

4.3 Network Flow Implementation571

We utilize the minimum-cost flow solver provided in the package ortools (ver-572

sion 9.4.1874) (Perron and Furnon, 2019). For an image containing around573

1,000 points in each color channel, a solution of the min cost flow problem can574

be computed for about 10 different values of t in around 1 seconds on a stan-575

dard laptop. Details on the network architecture and its numerical complexity576

are given in Supplementary Material A.2.577

4.4 Simulation Study Setup578

In the simulation study discussed in Section 2.2 a predefined number of triplets,579

pairs, and singlets are generated as follows:580

Step 1: Draw the coordinate for channel B as b ∼ U([0, 400 · r]2), where U581

is the continuous uniform distribution.582

Step 2a: Draw angle α ∼ U [0, 2π] and normally distributed distance dA ∼583

N (t, 0.5). Set a = b (cos(α)dA + sin(α)dA).584

Step 2b: Draw ε ∼ N (0, 0.2) and set angle β = α + π + ε. Draw dC ∼585

N (t, 0.5) and set c = b (cos(β)dC + sin(β)dC).586

Step 3: Round a, b and c to match the pixel grid [0, 400]2 ⊆ N2
≥0.587

This design favors to simulate triplets of an approximately linear structure.588

Pairs are simulated by skipping either Step 2a or 2b. Singlets are drawn as in589

Step 1.590

For Section 2.5, quadruples, triplets, pairs, and singlets n are generated591

similarly, but replacing and adding592

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the29, 2024. 

this version posted February; https://doi.org/10.1101/2024.02.28.581557doi: bioRxiv preprint 

https://github.com/gnies/multi_match
https://github.com/gnies/multi_match
https://github.com/gnies/multi_match
https://doi.org/10.1101/2024.02.28.581557


MultiMatch Colocalization 19

Step 2b: Draw angle β ∼ U [0, 2π] and dC ∼ N (t, 0.5) and set d =593

b (cos(β)dC + sin(β)dC).594

Step 2c: Draw angle γ ∼ U [0, 2π] and dD ∼ N (t, 0.5) and set d =595

c (cos(γ)dD + sin(γ)dD).596

This simulation setup allows arbitrarily curved chain-structures. The distance597

threshold is always fixed to t = 70 nm.598

To obtain intensity images close to an experimental STED setup from the599

simulated point sets we followed the simulation setup introduced in Tameling600

et al (2021), to mimic experimental STED images of 400 × 400 pixels with601

full-width at half-maximum (FWHM) value of 40 nm (approximately the reso-602

lution of the STED microscope) and pixel size 25 nm = 1pixel). In the second603

simulation study in Section 2.5 the Poisson noise level was on average increased604

by a factor of 10.605

4.5 Methods Included in the Simulation Study606

For the Ripley’s K based Statistical Object Distance Analysis (SODA, Lagache607

et al, 2018) we used the triplet colocalization protocol SODA 3 Colors in ICY608

(version 2.4.0.0, de Chaumont et al, 2012). For the analysis we used default609

input parameters and set scale threshold per channel to be 100. The plugin610

BlobProb (Fletcher et al, 2010) was called in ImageJ/Fiji (version 2.3.0/1.53q,611

Schindelin et al, 2012) and the number of colocalized blobs were considered.612

We set voxel size to 25 nm in every dimension and the threshold per channel613

to 100. The ConditionalColoc (Vega-Lugo et al, 2022) from GitHub (https://614

github.com/kjaqaman/ConditionalColoc) was executed on MATLAB (version615

R2023a). Particles were detected using the “point-source detection” algorithm616

provided via the integrated u-track package (https://github.com/DanuserLab/617

u-track).618

For all implementations but ConditionalColoc the detected chain-structure619

abundances were output as integers. Therefore, we scaled abundances, i.e.,620

divided them by the total number of particles detected in channel B. Con-621

ditionColoc already aims to output probabilities that are scaled by detected622

particles per channel, hence no further transformation of the output was per-623

formed by us. Since for all simulated Scenarios the same number of particles624

was generated in every channel, we ensured that both scaling procedures are625

comparable. The maximal colocalization threshold is set to t = 5 pixels = 125626

nm throughout all considered methods.627

4.6 Nanoruler Samples628

Custom-made DNA nanoruler samples featuring one, two, or three fluorophore629

spots, each consisting of 20 fluorophores (Alexa Fluor488, Alexa Fluor594,630

Star Red), with a distance between the spots of 70 nm, were purchased from631

Gattaquant - DNA Nanotechnologies (Gräfelfing, Germany). The biotinylated632

nanorulers were immobilized on a BSA-biotin-neutravidin surface according to633

the manufacturer’s specifications.634
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4.7 Stimulated Emission Depletion (STED)635

Super-Resolution Light Microscopy636

Image acquisition was done using a quad scanning STED microscope (Abberior637

Instruments, Göttingen, Germany) equipped with a UPlanSApo 100x/1,40638

Oil objective (Olympus, Tokyo, Japan). Excitation of Alexa Fluor 488, Alexa639

Fluor 594 and Star Red was achieved by laser beams featuring wave lengths of640

485 nm, 561 nm and 640 nm nm respectively. For STED imaging, a laser beam641

with an emission wavelength of 775 nm was applied. For all images, a pixel642

size of 25 nm was utilized. Except for contrast stretching and increasement of643

image brightness, no further image processing was applied.644

4.8 Data and Code Availability645

The Python package MultiMatch is available on GitHub repository https:646

//github.com/gnies/multi match. Code and data to create the main and sup-647

plementary figures can be accessed via Zenodo archive https://doi.org/10.648

5281/zenodo.7221879. Scripts were implemented in R (version 4.1.0) and649

Python (version 3.8.5).650

Supplementary Material. Theoretical framework of the multi-marginal651

optimal unbalanced transport matching with chain costs and formulation as652

network flow (Supplementary Material A), statistical inference on labeling653

efficiencies (Supplementary Material B), comments on the output from our654

usage of ConditionalColoc (Supplementary Material C), output of MultiMatch655

Mode II on the experimental STED images (Supplementary Material D), and656

additional analyis and simulations scenarios for three-color images and four-657

color images (Supplementary Material E).658
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