Abstract
Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like Receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small molecule NPYLR7 agonists that suppress host-seeking and blood feeding when fed to mosquitoes at high micromolar doses. Using structure activity relationship analysis and structure-guided design we synthesized 128 compounds with similarity to known NPYLR7 agonists. Although in vitro potency (EC50) was not strictly predictive of in vivo effect, we identified 3 compounds that suppressed blood feeding from a live host when fed to mosquitoes at a 1 μM dose, a 100-fold improvement over the original reference compound. Exogenous activation of NPYLR7 represents an innovative vector control strategy to block mosquito biting behavior and prevent mosquito/human host interactions that lead to pathogen transmission.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
This version has been revised to update the NPYLR7 binding model shown in Figure 1B.