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Abstract 11 

Triploidy is very useful in both aquaculture and some cultivated plants as the induced sterility helps 12 

to enhance growth and product quality, as well as acting as a barrier against the contamination of 13 

wild populations by escapees. To use genetic information from triploids for academic or breeding 14 

purposes, an efficient and robust method to genotype triploids is needed. We developed such a 15 

method for genotype calling from SNP arrays, and we implemented it in the R package named 16 

GenoTriplo. Our method requires no prior information on cluster positions and remains unaffected 17 

by shifted luminescence signals. The method relies on starting the clustering algorithm with an initial 18 

higher number of groups than expected from the ploidy level of the samples, followed by merging 19 

groups that are too close to each other to be considered as distinct genotypes. Accurate classification 20 

of SNPs is achieved through multiple thresholds of quality controls. We compared the performance 21 

of GenoTriplo with that of fitPoly, the only published method for triploid SNP genotyping with a free 22 

software access. This was assessed by comparing the genotypes generated by both methods for a 23 

dataset of 1232 triploid rainbow trout genotyped for 38,033 SNPs. The two methods were consistent 24 
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for 89% of the genotypes, but for 26% of the SNPs, they exhibited a discrepancy in the number of 25 

different genotypes identified. For these SNPs, GenoTriplo had >95% concordance with fitPoly when 26 

fitPoly genotyped better. On the contrary, when GenoTriplo genotyped better, fitPoly had less than 27 

50% concordance with GenoTriplo. GenoTriplo was more robust with less genotyping errors. It is also 28 

efficient at identifying low-frequency genotypes in the sample set. Finally, we assessed parentage 29 

assignment based on GenoTriplo genotyping and observed significant differences in mismatch rates 30 

between the best and second-best couples, indicating high confidence in the results. GenoTriplo 31 

could also be used to genotype diploids as well as individuals with higher ploidy level by adjusting a 32 

few input parameters. 33 

Author Summary 34 

To cultivate plants, fish and shellfish more profitable for both farmers and consumers, one can utilize 35 

individuals one can utilize individuals with three chromosome sets instead of the two found in fertile 36 

populations that are diploids. These individuals, called triploids, are generally sterile and then often 37 

exhibit higher growth and quality of products, such as seedless fruits or better flesh quality for fish 38 

and shellfish. To be able to improve performances of the sterile triploids by selective breeding, it is 39 

important to know the versions of the genes present in the three chromosome sets of triploids. Until 40 

now, few methods existed to identify these three versions, and none have been demonstrated as 41 

sufficiently effective. It is the reason why we developed the GenoTriplo software. We demonstrate in 42 

this paper the possibility to accurately genotype triploids, as well as how it can be used to 43 

reconstruct pedigree information of triploid progeny. Ultimately, we expect that it can help select for 44 

reproduction the parents that have the best triploid progeny for the traits of interest such as growth, 45 

vigour or product quality. 46 

 47 
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Introduction 48 

Polyploidy, characterized by the presence of three or more sets of chromosomes in the nucleus, is a 49 

phenomenon that occurs spontaneously across various taxa in the tree of life, spanning from plants 50 

[1–3] to vertebrates [4]. Certain forms of polyploidy, such as triploidy, exhibit noteworthy attributes 51 

relevant to agricultural practices. Triploid individuals, possessing three sets of chromosomes, are 52 

generally sterile, impeding the production of sexual tissues and yielding favourable outcomes for 53 

farmers. In horticulture, the cultivation of seedless fruits is facilitated by the sterility of triploids, a 54 

characteristic appreciated by consumers [5]. Triploidy has also been reported to enhance growth rate 55 

and vigour in plants [6]. In aquaculture, triploid fish demonstrate an accelerated growth rate due to 56 

the energy savings stemming from the lack of sexual maturation [7]. Additionally, the enhanced flesh 57 

quality of triploid fish and shellfish is attributed to the prevention of gonadal maturation [8,9]. From 58 

an environmental perspective, the sterility of triploids serves as a barrier against the contamination 59 

of wild genotypes by selectively bred genotypes in instances of contact between these populations 60 

[10]. Triploidy also can act as a safeguard against theft of genetic progress among competing 61 

producers. 62 

The induction of triploidy has been achieved in various plant species [11], like citrus  [5] and mulberry 63 

[12], as well as in shellfish such as oysters [13] and in finfish, in particular rainbow trout [14,15].  64 

While triploids present advantages over diploids, their widespread production in aquaculture 65 

necessitates that selective breeding programs consider their specific performance. Breeding 66 

programs obviously require fertile broodstock, and are thus performed with diploid selection 67 

candidates. In order to maximize genetic gains on desired traits for triploid production however, it 68 

would be necessary to incorporate the performance of triploids sibs in the evaluation of breeding 69 

values. Indeed, evaluating only diploid performance may be suboptimal as the genetic correlation for 70 

the same trait between diploids and triploids may differ from unity [16–18]. In mixed-family 71 

aquaculture breeding programs, families are mixed at hatching and their pedigree is recovered a 72 
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posteriori using genomic markers [19]. In such designs, selecting for triploid performance implies to 73 

be able to genotype triploids and recover their pedigree, in order to be able to rank diploid selection 74 

candidates using breeding values from their triploid sibs. 75 

Technically, two platforms, Illumina and Affymetrix, have been used for genotyping SNP arrays in 76 

both diploid [20] and polyploid species [21]. As reported by  [21], genotype calling is complicated for 77 

polyploids because these species have more possible genotypes at a SNP locus than diploid species 78 

do (homozygote with reference allele, heterozygote, and homozygote with alternative allele). 79 

Theoretically, the number of genotypes can be up to p+1 in a species with a ploidy level of p (i.e. 4 in 80 

triploids, 5 in tetraploids, …). So far, genotype calling software accompanying genotyping platforms 81 

cannot identify more than 5 clusters for Illumina and 3 clusters for Affymetrix. More specifically, the 82 

GenomeStudio software from Illumina is able to provide 5 clusters, but it requires manual 83 

adjustment of the cluster boundaries for each marker, which is impractical to use for SNP arrays with 84 

several tens of thousands SNP. The Axiom Analysis Suite (AXAS) software, widely used in both plant 85 

and fish species, is only designed for genotype calling on diploid luminescence output files from the 86 

Thermo Fisher Affymetrix platform, and does not currently support triploids. Up to 2020, there were 87 

only two publicly available software, fitTetra and ClusterCall, initially written for tetraploids [22], 88 

which could call up over three genotypes using output files with allelic signals from SNP array 89 

genotyping platforms. Another software, SuperMASSA, was written for genotype calling from 90 

Genotype-By-Sequencing data for all ploidies [22]. Many methods struggle with low-frequency 91 

genotypes [23] or lack permissiveness when faced with allelic signal shifts in polyploids [24,25]. For 92 

autopolyploids, such as induced triploids in aquaculture, the major complication is distinguishing 93 

between different allele dosages (AAA, AAB, ABB, BBB), as in this case only two alleles per locus are 94 

normally present in their diploid parents. 95 

Therefore, limited options for genotype calling in triploids exist [26] and open source tools are even 96 

more rare. As far as we know, only  the R package fitTetra, initially developed for tetraploid 97 
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individuals [27,28], has been implemented in a more advanced version of the package called fitPoly 98 

to consider any other level of auto-polyploidy. However, our first trial yielded some inconsistent 99 

results using fitPoly to genotype triploids in rainbow trout. Therefore, the first objective of this study 100 

was to devise a clustering method for a better genotype calling of triploid individuals and to compare 101 

our results to those of fitPoly genotype calling on our rainbow trout study case. The second objective 102 

was to implement and disseminate this new method through an R package deposited on the CRAN to 103 

ensure its free accessibility. 104 

 105 

Materials & Methods 106 

Available dataset 107 

To develop this novel genotype calling method for triploids, we used the allelic signals produced by 108 

Thermo Fisher Affymetrix platform for a French research project on genomic selection in rainbow 109 

trout [29]. The experimental stock was established from 190 dams and 98 sires of a commercial 110 

selected all-female line of Aquaculteurs Bretons breeding company (Plouigneau, France) and 1232 111 

triploid offspring and the 190 dams and 98 sires were genotyped for 57,501 SNPs using the medium-112 

density Rainbow Trout Axiom® 57K SNP array from Thermo Fisher [30]. We retained the allelic signals 113 

for 38,033 high quality markers present in both SNP array [31,32]. Luminescence values of probsets A 114 

and B (SA and SB) for each marker and individual were obtained through the AXAS software. 115 

Clustering algorithm 116 

The clustering process aimed at grouping individuals that share the same genotype. To enhance the 117 

efficiency of the clustering method, variable(s) given to the algorithm must be chosen carefully so the 118 

different genotypes are well separated along the axe(s) [25]. In our approach, we decided to use 2 119 

variables (and so 2 axes): the contrast (Eq.1) and the signal strength (Eq. 2), commonly used by AXAS 120 

for diploids. 121 
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Thus, each individual was represented by a pair of coordinates (x, y) for each marker (Fig 1, Stage 1). 122 

For each SNP, the Rmixmod clustering package (version 2.1.8) [33] was then used on R software 123 

(version 4.3.1) [34] to find clusters among individuals for a given marker, with no prior information. 124 

The clustering function of Rmixmod initiates the process by randomly picking individuals as starting 125 

point and uses an expectation-maximization algorithm (EM) to probabilistically update parameters of 126 

the clusters (mean, variance, weight). Ninit initializations were performed and the one that maximized 127 

likelihood passed to the next steps. 128 

During the initialization phase, the clustering function of Rmixmod was asked to find Nclus clusters 129 

among individuals with Nclus greater or equal to the number of possible genotypes for a given SNP (4 130 

in our case) (Fig 1, Stage 2). Nclus values of 4, 8 or 12 were tested to find an optimal value. 131 

When the algorithm failed to find Nclus clusters among individuals (failure of the EM algorithm to 132 

converge with Nclus clusters), it was restarted with Nclus=Nclus-1 clusters and so on, until the algorithm 133 

converged and a non-error solution was obtained. For these retries, Ninit was automatically reduced 134 

by 2 (with a minimum value of 1) to limit computing time. Indeed, when the algorithm failed to find 135 

the initial number of Nclus clusters, it was likely that the marker did not display all possible genotypes. 136 

Thus, a high Ninit was not necessary to find a suitable solution. 137 

As the final Nclus might be higher than the maximum number of genotypes, a single genotype could 138 

be divided into different clusters. If more than 4 clusters remained (the maximum number of 139 

genotypes in triploids), or if two clusters were too close to be considered as distinct genotypes, the 140 

two clusters with the weakest distance in Contrast value were merged into a single one (Fig 1, Stage 141 

3 to Stage 4). Two clusters were declared as too close if: 142 
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Where DClus1,Clus2 represented the distance between the center of cluster 1 and the center of cluster 2 143 

in Contrast value (abscissa), and ContrastClusi represented the mean Contrast value of cluster i. As the 144 

standard deviation along the Contrast axis of a genotype increased when ContrastClusi moved away 145 

from 0 (to positive or negative value), the distance criteria to merge clusters had to increase the 146 

more ContrastClus1 and ContrastClus2 differed from 0. The factor of 0.28 was empirically determined 147 

using a trial and error assay. 148 

To assess the impact of the number of initializations i.e. random starting points on the final 149 

clustering, the algorithm was tested with three modalities for Ninit: 1, 5 and 10 different 150 

initializations. 151 

The algorithm was also tested for three other modalities to assess the impact of Nclus on the 152 

outcome: 4, 8 and 12, i.e. a number greater or equal to the number of possible genotypes for a given 153 

SNP (4 in our case). Other existing methods for genotyping usually look for a maximum number of 154 

clusters which exactly corresponds to the number of possible genotypes. However, by increasing the 155 

initial number of clusters (8 and 12), we aimed to enable the algorithm to identify clusters gathering 156 

only a few individuals, which can happen frequently in case of a low frequency genotype. 157 
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 158 

Figure 1: Algorithm stages for the clustering phase 159 

Genotype calling 160 

Two situations must be accounted for to assign genotypes to clusters depending on the origin of the 161 

samples: i) either all samples originated from a same population or ii) they come from various 162 

populations that can be genetically distant. The right situation must be specified to our algorithm as 163 

they involve different hypotheses. In our case, the samples originated from a single population, and 164 

we only used the corresponding method for genotype calling. 165 

In the situation of a unique population, genotypes were attributed by considering the mean Contrast 166 

of each cluster and its position relative to other clusters. The most extreme cluster, identified by the 167 

absolute value of its contrast mean (x), was designated as a homozygous genotype (AAA if mean(x)>0 168 

and BBB if mean(x)<0) (Fig 2). Other clusters were ordered by their mean contrast values, and 169 

genotypes were subsequently assigned based on the first cluster that had been assigned (Fig 2). For 170 

example, if the mean contrast was positive for the most extreme cluster (i.e. assigned as AAA), 171 

genotypes were then assigned depending on their mean contrast values in the order AAB, ABB and 172 

BBB, from the closest to the furthest cluster from the AAA homozygous genotype. On the contrary, if 173 
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the mean contrast was negative for the most extreme cluster (i.e. assigned as BBB), genotypes were 174 

then assigned depending on their mean contrast values in the order BBA, BAA and AAA, from the 175 

closest to the furthest cluster from the BBB homozygous genotype (Fig 2). 176 

We assumed that when the outcome of clustering was a single cluster for a given SNP, it could only 177 

correspond to a homozygous genotype; 2 or 3 clusters indicated a homozygous genotype and the 178 

closest heterozygous or the two heterozygous genotypes; and 4 clusters represented all 4 possible 179 

genotypes for triploids. Note that our algorithm can also be used for genotype calling in diploids as 180 

the same reasoning could be applied with a maximum of 3 possible genotypes for diploids as long as 181 

it is specified in the input parameters to the algorithm. 182 

 183 

Figure 2: Illustration of genotype determination for 1; 2 or 3; and 4 clusters identified for a given SNP 184 

In case of 3 clusters encountered for a given SNP in triploids, an additional step was added to address 185 

the case of a highly shifted signal. This implies markers where genotypes are all shifted toward either 186 

positive or negative contrast value making, leading to having a cluster corresponding to a 187 

heterozygous genotype in the most extreme position, and thus being wrongly identified as a cluster 188 

corresponding to a homozygous genotype. To minimize the error due to that rare behaviour, if the 189 
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most extreme cluster had less than half the number of individuals as the opposing cluster, it was 190 

assigned as a heterozygous genotype, and the opposite cluster was designated as the homozygous 191 

genotype (Fig 3, Before to After). In this case however, the next step of the algorithm concerning SNP 192 

quality control and decision criterion to retain or remove a SNP would frequently reject the marker. 193 

However, we had to first decide the most likely genotypes in this case. In a population in which the 194 

number of apparent AAA is less than half the number of apparent ABB (equivalent to freqA < 0.55) 195 

(ex. Fig 3), the probability to have no BBB in the population (freqB ≥ 0.46) is extremely low as the 196 

expected frequency of BBB is ≥ 0.1, i.e. it is more probable that apparent AAA might be an AAB 197 

shifted genotype and apparent ABB might be a BBB shifted genotype. In this corrected situation, the 198 

frequency of A was less than 0.2 making the AAA genotype extremely rare (with an expected 199 

frequency < 0.01 and even not present here) and B higher than 0.8 (explaining the high number of 200 

BBB) (Fig 3). 201 

 202 
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Figure 3: Example of implementation of the additional step to account for highly shifted contrast 203 

signal 204 

In the situation where samples originate from distinct populations, there is an additional issue to 205 

solve for genotype calling when only two clusters are identified for a SNP. In that case, it is likely that 206 

the two clusters correspond to the two homozygous genotypes and not to a SNP to be put in the rare 207 

category of “No Minor homozygote”. Indeed, the SNP is likely to be monomorphic within a given 208 

population, but different populations may have fixed alternative alleles. 209 

To solve this case, we used the approach proposed by [26). We derived reference values for the 210 

mean contrasts of all possible genotypes by averaging them across markers with the maximum 211 

number of clusters identified (i.e. 4 for triploids). These reference values were used to attribute 212 

genotypes for the remaining markers (with a number of clusters below the maximum). For these 213 

latter markers, the mean contrast of each cluster was compared to the reference set of values, and 214 

the genotype was assigned based on the closest reference value. If two clusters pointed to the same 215 

reference value, the genotypes were assigned based on their relative positions. For example, if two 216 

clusters pointed toward the negative reference value corresponding to BBB homozygote, the one 217 

with the most negative contrast was assigned to the BBB homozygote while the other was assigned 218 

to the nearest possible heterozygous genotype BBA. 219 

All the steps of our algorithm (from clustering to genotype calling) can also be used for diploids as the 220 

approach can be applied with a maximum of 3 possible genotypes for diploids by indicating the 221 

ploidy level of the population under study. 222 

Quality control for genotypes and SNP categorization 223 

Following the approach proposed by AXAS, seven criteria were employed to enhance cluster 224 

precision and identify low-quality markers in the genotype calling phase. Three criteria were used to 225 

decide whether or not individuals or clusters were assigned to a given genotype or not assigned (NA):  226 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583188doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583188
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

1) No call for individuals. During clustering, individuals were assigned to a cluster number with a 227 

certain probability. Individuals with a probability of belonging to their cluster below 0.85 for a given 228 

marker were marked as NA to limit incorrect genotyping. 229 

2) Distance between individual and its cluster center. This criterion aimed to avoid wrong genotyping 230 

by identifying individuals far from all clusters while still assigned to a cluster. The distance between 231 

an individual and the center of its cluster was monitored to not exceed 2.8 times the standard 232 

deviation of the cluster along the Contrast axis (SDcluster). An individual genotype was set to NA above 233 

this threshold. The choice of a 2.8 factor was based on the property that under the assumption of a 234 

normal distribution of individuals within a cluster, 99.5% of the observed values should fall within 235 

±2.8 times the standard deviation. This factor can be modified in the R package to allow for more 236 

flexibility. 237 

3) Cluster Standard Deviation (SDcluster). A cluster was set to NA if its SDcluster exceed 238 

0.28*(1+0.5*abs(Meancluster)). This criterion imposed a maximal standard deviation to a cluster to 239 

limit the risk of genotype calling for a cluster gathering multiple genotypes (in case the algorithm 240 

failed to do the correct clustering). The factor of 0.28 was empirically determined through a trial and 241 

error assay. The objective was to establish a minimal SDcluster of 0.28 and to progressively increase 242 

this minimum as the cluster moved farther away from 0. 243 

The remaining four criteria acted as filters to assess the SNP quality, similar to criteria implemented 244 

in the AXAS software, before categorization of the markers: 245 

4) Marker Call Rate (CR). The minimum CR was fixed to 0.97. 246 

5) Marker Fisher’s Linear Discriminant (FLD). The FLD is a measure of the distance between the two 247 

nearest genotypes along the x axis (Contrast) and the quality of the clusters. It is defined as: 248 

01� � �%	�������	������ . ������	�������
�������,�����

 ���. 6� 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583188doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583188
http://creativecommons.org/licenses/by-nc/4.0/


13 

 

Where ContrastGenoi represented the mean Contrast of genotype i and SDGeno1,Geno2 represented the 249 

pooled standard deviation of genotype 1 and 2. If the FLD was 3.4 or lower, two genotypes were 250 

considered too close to be reliable. 251 

6) Marker Heterozygous Strength Offset (HetSO). The HetSO measures the offset between 252 

homozygous and heterozygous genotypes along the y axis (Signal Strength). Heterozygous clusters 253 

are expected to be positioned higher on the y axis than homozygous clusters (i.e. HetSO value > -0.3).  254 

7) Marker Homozygous Ratio Offset (HomRO). The HomRO represented the position of the 255 

homozygous cluster along the x axis (Contrast). The threshold value depended on the number of 256 

clusters like so: 0.6, 0.3, 0.3, -0.9 for 1, 2, 3 and 4 clusters, respectively (adapted from [35]). 257 

Markers failing to pass one of these criteria were labelled according to the filter they failed: “Call rate 258 

below threshold” for call rate threshold, “Off target variant” for HetSO threshold, and “Others” 259 

otherwise. Those are rejected markers, meaning markers with low genotyping confidence that 260 

should not be used for further analyses. 261 

Markers passing all four filters were categorized based on their number of genotypes: “Mono high 262 

resolution”, “No minor homozygote” and “Poly high resolution” for respectively, 1 genotype, 2 or 3 263 

genotypes, and 4 genotypes. Those are accepted markers, meaning markers with high genotyping 264 

confidence that could be used for further analyses. 265 

Comparison strategy between GenoTriplo and fitPoly 266 

To evaluate the efficiency of our method in contrast to an existing alternative, we conducted a 267 

comparative analysis between GenoTriplo and fitPoly, the sole package available on the CRAN that 268 

handles triploid genotyping. 269 

First, we assessed the overall concordance between GenoTriplo and fitPoly by comparing the 270 

genotypes assigned by both methods per individual and marker. Then, we examined the number of 271 

genotypes identified by each method for all markers and categorized markers by a pair of integers 272 
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representing the respective number of genotypes identified by GenoTriplo and fitPoly (for instance 273 

category (2;3) corresponded to 2 genotypes found by GenoTriplo and 3 by fitPoly) separating 274 

markers in 16 categories. 275 

Categories of equal integer pair (both methods found the same number of genotype) were visually 276 

and numerically compared based on the overall genotype concordance rate and the mean contrast 277 

value of each genotype for the 4 corresponding categories from (1;1) to (4;4). For the visual 278 

comparison, mean cluster position of each genotype for each marker was displayed on a graph to 279 

compare genotype global position for each 4 categories. 280 

The genotypes given by GenoTriplo and fitPoly were compared marker-by-marker and the best one 281 

was noted based on human visual observation. This was done for all markers in categories gathering 282 

200 or more markers except when both methods found the same number of genotypes. Among the 283 

12 remaining categories, 8 were analysed. 284 

For categories exceeding 1,000 markers, a subset of 1,000 random markers was retained for visual 285 

inspection.  286 

For these 8 tested categories, we compared markers acceptance (when a marker passed all quality 287 

threshold) and rejection (when a marker did not reach all quality threshold) by the methods to 288 

identify any differences. For each category, markers were split into two groups according to the best 289 

method to genotype them (GenoTriplo or fitPoly) and an overall genotype concordance rate between 290 

the two methods for all the 16 categories was computed. 291 

Both methods had high marker call rate on average (0.98 (± 0.044) for GenoTriplo and 0.97 (± 0.122) 292 

for fitPoly). To ensure fair comparison, all NA were removed and not considered as different between 293 

methods, recognizing that some NA may be attributed for quality purpose when samples did not 294 

clearly belong to a genotype while others may result from misidentification of clusters by one or the 295 

other method. This approach aimed to provide a robust comparison while considering the nuances of 296 

missing data especially for those methods that provided few NA. 297 
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Parentage assignment assessment 298 

To validate the utility of GenoTriplo, we conducted a parentage assignment of the triploid individuals 299 

using the R package APIS with the newly available function that enables parentage assignment on 300 

triploids (https://cran.r-project.org/web/packages/APIS/index.html). The assignment was done using 301 

the 1,000 best markers selected based on their Minor Allele Frequency (MAF) and CR. These markers 302 

were chosen from the 32,325 markers that successfully passed through all applied filters, including 303 

“Poly high resolution”, “Mono high resolution” and “No minor homozygote”. 304 

While the true parents of the offspring were not available to fully validate the parentage assignment, 305 

we had access to the mating plan, which is composed of 10 independent factorial matings, each 306 

being composed of 8 to 10 sires crossed one-by-one with 17 to 24 dams, producing a theoretical 307 

number of 1862 full-sib families (or 1862 valid parent pairs). However, parental assignment by 308 

exclusion considers all possible parental pairs from the 98 sires and 190 dams [36], and thus a 309 

theoretical number of 98*190=18620 possible parent pairs, which is 10 times more than the valid 310 

ones. In case of inaccurate assignments, we would thus expect that approximately 9 out of 10 would 311 

fall out of the declared mating plan. 312 

R package and shiny application 313 

For enhanced accessibility, we developed a R package called ‘GenoTriplo’ available on CRAN. The 314 

package incorporates functions for executing both the clustering phase (‘Run_Clustering’) and the 315 

genotype calling phase (‘Run_Genotyping’). Additionally, to make the usage easier for beginners and 316 

experts, a shiny interface was implemented (‘launch_GenoShiny’), organized into four steps. 317 

First, the raw dataset from AXAS requires formatting before progressing through the clustering 318 

phase. A list of markers or/and a list of individuals can be provided to select specific markers or/and 319 

individuals. 320 
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The clustering phase starts with the refined dataset obtained at the previous step. Users are 321 

prompted to input the ploidy level (default set to 3) of the population and the number of cores for 322 

parallelization (default set to Ncomputer_cores-2). An option to fine-tune parameters is available through 323 

the 'Add more control' button, allowing adjustments of the number of initializations for the Rmixmod 324 

clustering function (default set to 5) and the minimal contrast distance between two clusters (default 325 

set to 0.28). 326 

The genotype calling process is applied to the output of the clustering phase. Users have the option 327 

to provide a CSV file containing the correspondence between A/B signals of AXAS and ATCG bases. 328 

Inputs such as the ploidy of individuals (default set to 3), the number of cores for parallelization 329 

(default set to Ncomputer_cores-2), and whether or not individuals originate from the same population are 330 

requested (default set to same population). The latter is introduced for simplification, assuming that 331 

individuals from the same population cannot exhibit both homozygous genotypes without a 332 

heterozygote (as described in Genotype Calling section). This step provides flexibility with various 333 

adjustable parameters, including no-call threshold for individuals, distance between cluster centres, 334 

cluster standard deviation threshold, FLD threshold, HetSO threshold, and CR threshold for markers. 335 

The final step is optional and enables users to visualize the genotyping results through graphs and 336 

statistics. 337 

All graphics were made using ggplot2 [37] via R code [34]. 338 

 339 

Results 340 

Clustering and genotype calling phases 341 

A “Poly high resolution” marker was characterized by the maximum number of genotype and well-342 

separated clusters (Fig 4, “Poly high resolution”) whereas a “No minor homozygote” marker shared 343 

these characteristics but lacked one of the homozygous genotypes (Fig 4, “No minor homozygote”). 344 
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Occasionally, despite apparent separation of clusters, they failed to meet all established thresholds 345 

and did not pass filters; for example, in Fig 4, “Others (FLD threshold)” exhibited a FLD of 3.36, 346 

slightly below the set threshold of 3.4. 347 

The methodology demonstrated robustness in identifying issues related to the position of the 348 

heterozygote cluster (Fig 4, “Off target variant”), where the BBA genotype exhibited lower signal 349 

strength than the BBB genotype, and in detecting mixed or uncertain clusters by augmenting the 350 

number of NA among individuals between clusters (Fig 4, “Call rate below threshold”). 351 

 352 

Figure 4: Examples of distribution on the axes of contrast and signal strength of genotypes identified 353 

by GenoTriplo for each category of markers 354 

 355 

Number of initializations and maximal number of clusters 356 
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To assess the impact of the numbers of initializations and of maximum clusters in GenoTriplo, we 357 

conducted a quantitative comparison of the marker distribution across various categories following 358 

the completion of the clustering and genotyping phases. 359 

The number of initializations positively impacted the performance of the algorithm. The number of 360 

markers in “Poly high resolution” category increased steadily from 1 to 10 initializations (+18% from 361 

1 to 5 and +5% from 5 to 10), while numbers in “No minor homozygote” and “Call rate below 362 

threshold” categories decreased. The supplementary “Poly high resolution” markers identified with 363 

10 initializations, compared to 5, originated partly from the “Call rate below threshold” category. This 364 

subset of markers may have encountered call rate issues due to cluster standard deviation 365 

thresholds. If the low-frequency genotype was not found, it might have been erroneously grouped 366 

with another genotype, significantly increasing the standard deviation of the cluster and resulting in 367 

NA assignments for all individuals in that cluster. Another subset originated from the “No minor 368 

homozygote” category, where individuals belonging to a smaller, low-frequency genotype might 369 

have been inaccurately grouped with a higher frequency genotype. This led to a lesser increase in 370 

standard deviation or NA assignments due to the distance-to-centre threshold. “Others” category 371 

showed less sensitivity to changes in the number of initializations (Table 1). 372 

Increasing the initial number of clusters defined for Rmixmod clustering function also helped to get 373 

more markers included in the “Poly high resolution” category, especially when increasing from 4 to 8 374 

clusters and, to a lesser extent, from 8 to 12 clusters (Table 1). Conversely, the number of SNPs in the 375 

“No minor homozygote” category decreased, respectively from 8,480 to 4,452 markers with 4 and 12 376 

initial clusters, respectively. Notably, the number of markers in the “Mono high resolution” category 377 

decreased substantially for 12 clusters (3,132), while it remained stable around 4,300 for 4 and 8 378 

initial clusters. The number of markers in the “Call rate below threshold” category strongly decreased 379 

from 4 to 8 initial clusters (12,513 to 4,734), but increased from 8 to 12 initial clusters (4,734 to 380 

6,516), indicating an optimal number of initial clusters of 8 as compared to 4 and 12 clusters. 381 
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Although the number of SNPs put in “Others” category increased with the number of clusters, it did 382 

not counterbalance the decrease of SNPs in “Call rate below threshold” category, indicating that 383 

some markers were pulled out of the low-quality categories towards the high-quality categories 384 

(Table 1). 385 

In summary, utilizing 5 initializations, 8 clusters, and default parameters and thresholds for quality 386 

control of the genotyping resulted in 85% of markers falling into high quality marker categories i.e. 387 

“Mono high resolution”, “No minor homozygote” and “Poly high resolution”. 388 

Table1: Number of markers by categories for the different parameters used in clustering phase 389 

Runs Categories 

Ninit Nclus Poly high 

resolution 

No minor 

homozygote 

Mono high 

resolution 

Call rate below 

threshold 

Off target 

variant 

Others 

1 8 18307 7126 4315 7451 411 423 

5 8 21715 6233 4377 4734 421 553 

10 8 22501 5838 4299 4344 438 613 

5 4 11867 8480 4612 12513 400 161 

5 12 22875 4452 3132 6516 403 655 

 390 

Comparison between GenoTriplo and fitPoly genotyping 391 

The overall concordance rate between genotypes derived from GenoTriplo and fitPoly was 85%, 392 

reaching 89% after exclusion of all NA. Notably, 26% of the SNPs showed differences in the number 393 

of genotypes identified by the two methods. GenoTriplo found less SNPs with four genotypes, while 394 

fitPoly found less monomorphic SNPs (Table 2). 395 

Table 2: Table with the respective number of SNPs with 1, 2 3 or 4 genotypes identified with 396 

GenoTriplo or fitPoly.  397 

GenoTriplo\fitPoly 1 genotype 2 genotypes 3 genotypes 4 genotypes 

1 genotype 2333 1429 644 86 

2 genotypes 28 493 542 783 

3 genotypes 28 210 2289 4333 

4 genotypes 38 640 966 23001 

 398 
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In categories for which both GenoTriplo and fitPoly identified the same number of genotypes, the 399 

genotype concordance was not as high as expected. For a single genotype found, the concordance 400 

was 25%, increasing to 81% with two genotypes found, 94% with three genotypes found, and 401 

exceeding 99% with four genotypes found. The difference in the case of a unique genotype assigned 402 

was due to fitPoly frequently assigning a heterozygous genotype rather than a more likely 403 

homozygous genotype. Out of 2428 markers with a single genotype assigned by fitPoly, 1752 were 404 

identified as heterozygous (Fig 5). 405 

A similar pattern emerged, to a lesser extent, when fitPoly identified two genotypes. In contrast, 406 

GenoTriplo exhibited the expected behaviour, with each distinct genotype forming distinct clusters, 407 

displaying distinct mean contrast values regardless of the number of genotypes identified (Fig 5). 408 

 409 

Figure 5: Mean contrast and signal strength values for genotypes of SNP with 1, 2, 3 and 4 different 410 

genotypes (from left to right) for fitPoly (above) and GenoTriplo (under) methods 411 
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When the numbers of possible genotypes were different across the two methods, two discernible 412 

patterns emerged from the analysis based on visual observation of the clusters, showcasing scenarios 413 

where fitPoly outperformed GenoTriplo and vice versa (Table 3). FitPoly showed better results in 414 

categories where it identified a greater number of genotypes compared to GenoTriplo, specifically in 415 

categories (2;3), (2;4), and (3;4). For these 3 categories however, the genotypes provided by 416 

GenoTriplo closely matched those from fitPoly when ignoring NA calls, with concordance rates of 417 

99%, 99%, and 97%, respectively. Notably, for 292 markers out of the 1,000 in the (3;4) category, 418 

fitPoly identified a lone individual for the minor homozygous genotype, which GenoTriplo 419 

categorized as NA. 420 

Conversely, in categories where GenoTriplo exhibited superior performance (categories (1;2), (3;2), 421 

(4,2), and (4,3)), fitPoly's genotypes deviated significantly from the expected outcomes, resulting in 422 

concordance rates of 49%, 49%, 34%, and 40%, respectively. 423 

In the (1;3) category, a balanced performance between the two methods was observed. When fitPoly 424 

outperformed, GenoTriplo's genotypes closely matched fitPoly's (achieving 100% concordance after 425 

removing all instances of "NA"). However, when GenoTriplo was better, only 30% of fitPoly's 426 

genotypes aligned with the decisions made by GenoTriplo. 427 

Table 3: Number of markers visualized per category, number best genotyped by GenoTriplo, by 428 

fitPoly; and corresponding rate of concordant genotypes between methods. 429 

 Number of markers Rate of concordant 

genotypes for markers with 

Category 

(GT;FP) 

Total visual 

observation 

Best 

genotyping: 

GenoTriplo 

Best 

genotyping: 

fitPoly 

No best 

method or 

bad marker 

Best 

genotyping: 

GenoTriplo 

Best 

genotyping: 

fitPoly 

(1;2) 1000 946 6 48 0.49 1 

(1;3) 644 330 282 32 0.30 1 

(2;3) 542 61 354 127 0.69 0.99 

(2;4) 783 37 657 89 0.60 0.99 

(3;2) 210 126 5 79 0.49 0.78 

(3;4) 1000 105 784 111 0.89 0.97 

(4;2) 640 582 0 58 0.34 - 

(4;3) 966 841 50 75 0.40 0.72 
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 430 

When examining the SNP acceptance/rejection categorization, we found that GenoTriplo retained 431 

the majority of SNPs where fitPoly performed better, aligning with expectations due to the close 432 

similarity between GenoTriplo and fitPoly. However, most SNPs within the (2;4) category were 433 

rejected by GenoTriplo and no by fitPoly, particularly for call rate considerations. Notably, most 434 

markers rejected by fitPoly in these categories were also rejected by GenoTriplo. 435 

In the case of SNPs where GenoTriplo exhibited superior performance, fitPoly retained nearly half of 436 

them, despite having low concordance with GenoTriplo. For instance, in the (1;2) category, out of the 437 

936 SNPs retained by GenoTriplo, 632 were also retained by fitPoly, even though they were likely 438 

incorrect, given the 50% concordance with GenoTriplo. Notably, almost every SNP rejected by 439 

GenoTriplo was also rejected by fitPoly. 440 

Parentage assignment assessment by APIS 441 

To evaluate the genotyping performance for pedigree retrieval, we utilized the exclusion method of 442 

APIS (https://cran.r-project.org/web/packages/APIS/index.html) for parentage assignment of triploid 443 

offspring genotyped with the described method, alongside parents genotyped by AXAS software. All 444 

offspring were successfully assigned to a couple of parents belonging to the correct factorial mating 445 

plan. 446 

For the best couples assigned, a maximum of 19 mismatches occurred among the 1000 markers, with 447 

a mean mismatch of 6.9, representing less than 1% of mismatches between parents and progeny (Fig 448 

6). The second-best couples exhibited a minimum of 47 mismatches, with a mean of 85.6. Therefore, 449 

a substantial gap in mismatch numbers existed between the best and second-best couples, with 450 

distributions clearly exhibiting no overlap, showing the very high quality of the assignments obtained 451 

(Fig 6).  452 
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 453 

Figure 6: Number of offspring as a function of the number of mismatches for the best couple (blue) 454 

and the second-best couple (red) found by APIS parentage assignment 455 

 456 

Discussion 457 

Our method for genotype calling of triploids from luminescence datasets demonstrated its quality to 458 

genotype triploid fish, leading to its integration into the R package GenoTriplo, freely accessible to 459 

the scientific community: https://cran.r-project.org/web/packages/GenoTriplo/index.html. 460 
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Our approach demonstrated a good accuracy for parentage assignment of triploid offspring with 461 

diploid parents. This was validated using the top 1000 markers based on MAF and Call Rate. The 462 

method performed well even with fewer markers or randomly selected markers (as few as 200). 463 

Although the true pedigree was unknown, the very low numbers of mismatches for the best couple 464 

suggested highly accurate assignments. 465 

The method did not depend on prior information on genotype position relative to their own contrast 466 

value when identifying genotypes among SNP. This characteristic enhanced efficiency, particularly 467 

when contrast values were shifted from the expected values as a same genotype would manifest at 468 

different value of contrast dependant on the marker [24,25]. This also allows to genotype new SNPs 469 

with no need of human action to set reference genotypes for each SNP, in this way differentiating it 470 

from AXAS that relies on reference genotype. 471 

The clustering method underlying the genotyping call was efficient using well-fitted input 472 

parameters. Notably, the number of initializations significantly enhanced the clustering algorithm's 473 

efficiency by identifying clusters with few individuals, i.e. representing low-frequency genotypes. In 474 

our case study, the occurrence of markers with low-frequency genotypes was limited, and most of 475 

the different genotypes were thus well-identified with only 5 initialization runs. 476 

Increasing the number of initializations will maximize the probability of identifying clusters 477 

corresponding to low-frequency genotypes. However, this increase results in longer computation 478 

time, forcing a trade-off between computation time and additional identification of very low-479 

frequency genotype for few SNPs. In our case, using 5 initializations was a good compromise, but this 480 

parameter should be optimized for other triploid populations and species. 481 

In addition, the initial number of clusters also significantly influenced the clustering algorithm 482 

outcomes. Requesting only 4 clusters for triploids resulted in miss-detection of low-frequency 483 

genotypes, leading to a shortage of “Poly high resolution” SNPs and an excess of “No minor 484 

homozygote” markers. Conversely, too high a number of clusters led to inappropriate creation of 485 
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clusters composed of very few individuals, and resulting in a scarcity of the “Mono high resolution” 486 

category. Optimal results were achieved with an intermediate number of clusters, specifically twice 487 

the number of possible genotypes (8 for triploids). This configuration allowed for the identification of 488 

most of the low-frequency genotypes without generating artefacts. Therefore, our strategy using 489 

twice the maximum number of possible genotypes facilitated genotype calling for low-frequency 490 

genotypes without the need for of large number of individuals to genotype together as suggested by 491 

[23,24]. 492 

In the genotyping process, the method employed assumed that individuals originated from the same 493 

population. Using Hardy-Weinberg hypothesis, our approach did not accept that both homozygous 494 

genotypes coexisted without the two heterozygous genotypes for a given SNP, contributing to the 495 

efficiency of our genotype attribution. When informed that the samples can come from various 496 

populations, our method involved the comparison of mean contrast values of each current cluster to 497 

the values of reference clusters. Those reference values are derived on the same dataset from 498 

markers with the maximum number of genotypes. Given the common occurrence of contrast value 499 

shifts (when all contrast values of a SNP are all shifted toward positive or negative value), the 500 

recommended approach, when possible, is to analyse together pools of individuals originated from 501 

the same population. 502 

The overall concordance of genotypes between GenoTriplo and fitPoly was notably high. However, 503 

differences emerged when comparing the number of genotypes identified by each method. When 504 

both methods identified the same number of genotypes, differences were the result of the 505 

fundamentally different approaches to assigning genotypes to clusters of individuals. GenoTriplo 506 

relied on stringent assumptions, like assigning a homozygous genotype when only one cluster was 507 

identified. In contrast, fitPoly lacked such guidelines, leading to substantial discordance, especially in 508 

cases where only one genotype was expected. 509 
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GenoTriplo encountered difficulties in identifying all 4 genotypes, often settling for 3 when very few 510 

individuals formed the second homozygous genotype. Those few individuals usually were not 511 

assigned a genotype, avoiding genotyping errors. Besides, for 292 markers among the 784 markers 512 

where fitPoly identified 4 genotypes while GenoTriplo found only 3, a single individual represented 513 

the homozygous low frequency genotype in FitPoly. The credibility being low for a single individual to 514 

represent a genotype, we consider it preferable to assign the individual to NA, thus avoiding a 515 

possible genotyping error. 516 

On the contrary, fitPoly faced difficulties in identifying a limited number of genotypes (below the 517 

maximum possible) for a given SNP, particularly when the SNP was monomorphic. This challenge 518 

could come from the method per se which prioritizes a high number of genotypes, leading to the 519 

creation of unwanted clusters. While some of these SNP were rejected by fitPoly for excess of NA, 520 

half were retained even for those with low concordance with GenoTriplo, causing substantial 521 

genotyping errors. 522 

While most of the disagreement were minor when fitPoly performed better, GenoTriplo’s accuracy 523 

outperformed fitPoly’s, especially for low number of genotypes and detection of wrong genotypes. 524 

This paper focuses on the genotyping of triploids, but it is essential to note that the method was also 525 

successfully tested on diploids, providing similar results to the AXAS software. Furthermore, its 526 

application could potentially be extended to higher ploidy levels. The key parameter for the 527 

clustering phase would be the minimal distance between two clusters. Notably, the mean contrast 528 

value for a homozygous diploid genotype matched that of a triploid homozygous genotype. 529 

Consequently, with higher ploidy levels, the insertion of additional heterozygote genotypes is 530 

expected between the contrast values of homozygotes, resulting in diminishing distances between 531 

clusters as ploidy levels increase, making the discrimination between different allelic dosages more 532 

difficult. Currently, the genotyping phase is implemented for diploid and triploid individuals, and 533 

further work would be required to extend it to higher ploidy levels. 534 
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Data availability statement 535 
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project.org/web/packages/GenoTriplo/index.html 537 
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