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ABSTRACT

We have measured the visually evoked activity of single neurons recorded in areas V1 and V2 of
awake, fixating macaque monkeys, and captured their responses with a common computational model.
We used a stimulus set composed of “droplets” of localized contrast, band-limited in orientation and
spatial frequency; each brief stimulus contained a random superposition of droplets presented in and
near the mapped receptive field. We accounted for neuronal responses with a 2-layer linear-nonlinear
model, representing each receptive field by a combination of orientation- and scale-selective filters.
We fit the data by jointly optimizing the model parameters to enforce sparsity and to prevent overfitting.
We visualized and interpreted the fits in terms of an “afferent field” of nonlinearly combined inputs,
dispersed in the 4 dimensions of space and spatial frequency. The resulting fits generally give a
good account of the responses of neurons in both V1 and V2, capturing an average of 40% of the
explainable variance in neuronal firing. Moreover, the resulting models predict neuronal responses to
image families outside the test set, such as gratings of different orientations and spatial frequencies.
Our results offer a common framework for understanding processing in the early visual cortex, and
also demonstrate the ways in which the distributions of neuronal responses in V1 and V2 are similar
but not identical.

1 Introduction

In the primate brain, complex visual patterns are processed by a cascade of computations in a set of visual areas
collectively known as the ventral stream of visual cortex [9, 28, 47]. At the beginning of this cascade is primary
visual cortex (V1), where neurons respond selectively to spatially-localized patterns of a specific orientation and scale
[19]. Classically, these cells have been broadly split into two groups. Simple cells respond selectively to the local
phase of an oriented pattern, and are well-described by a linear-nonlinear (LN) model: a single spatial filter followed
by a rectification step[21, 30]. Complex cells respond independently of local phase, and are well-described by the
squared sum of two spatial filters (the energy model) [1, 29]. In practice, many cells in V1 lie on a continuum between
these two extremes [26, 34]. The full set of cells across the spectrum of V1 responses can be described by a unified
model that spatially pools local populations of rectified linear filters [49]. These models, when combined with divisive
normalization and contextual modulation by the receptive field surround, are state-of-the-art in predicting the responses
of V1 neurons to natural images [5].

Extrastriate visual area V2, directly downstream of V1, has been implicated in the processing of visual patterns that are
more complex than simple oriented lines. Like neurons in V1, many neurons in V2 respond selectively to spatially
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localized patterns of specific orientations and spatial frequencies[22]. However, V2 neurons often respond with wider
orientation and spatial frequency bandwidths than neurons in V1, and with higher contrast sensitivities, as would be
expected if V2 neurons were pooling the responses of multiple V1 inputs [22]. Furthermore, lesions to V2 result in
deficits to higher-order feature detection while preserving orientation perception [27], suggesting a specific, causal
role for V2 in the perception of complex form. When probed with more complex stimuli, some V2 neurons respond
selectively to curved contours [16] [2], object boundaries [54], and multipoint correlations in checkerboard textures
[53]. We have recently shown that many neurons in V2 respond selectively to the higher-order statistics of “naturalistic”
textures, while neurons in V1 do not [12].

Fitting models that can capture V2’s selectivity for more complex visual features, ı.e. form, may require a more
sophisticated model structure than would be used in V1. It has long been recognized that a sufficient model of visual
pattern recognition would require a multi-stage network of canonical computations [13, 14], with a first layer that
approximates V1-like linear filters. These multi-stage models can explain perceptual phenomena, such as second-order
texture boundary detection [4, 10, 50].

Models of this type have been fit to the responses of neurons in V2 [23, 36, 44, 51]. However, several factors make
these fits difficult to interpret. First, many of these studies use images of natural scenes [23, 36, 51], which are highly
correlated in the parameter space of these models. While stimulus bias can, in principle, be addressed by estimating the
prior distribution over a parameter space, in practice, this requires many more presentation trials than can be collected
in an awake experimental preparation. Second, these approaches have used rapid sequential stimulus presentations
to estimate a neuron’s receptive field in space and time [8, 31]. Given the dynamic selectivity of V1 neurons[25, 35],
particularly over the extra-classical receptive field [7, 17, 38, 43, 52], it is unclear whether V2 response patterns
measured using rapidly changing stimuli will extrapolate to more natural viewing conditions. Finally, interpreting
model fits can be difficult when filters in intermediate layers do not cleanly map to earlier levels of neural processing
[5].

In this study, we sought to overcome these challenges and to produce an interpretable account of neuronal receptive
fields in macaque V1 and V2. We designed a stimulus set – droplets – to robustly activate neurons in V1 and V2
while containing only limited correlations in image space, allowing for unbiased modeling. We presented stimuli at
an ethologically relevant cadence, similar to the typical primate inter-saccade interval [3]. To aid interpretability, we
designed a model structure that fits neurons as a sparse combination of rectified filters that are selective for orientation
and spatial frequency. Neurons in both V1 and V2 were well driven by the droplet stimuli and well fit by the model.
Neurons in V1 were more tightly tuned in orientation and spatial frequency. In V2, but not V1, we found a population
of neurons that pool broadly across different orientations and are selective for more complex image features.

2 Methods

2.1 Stimulus design

Visual stimuli were constructed by superimposing patches of orientation energy across the region of visual space
encompassing a neuron’s receptive field. In practice, spatial frequency elements were positioned on hexagonal latices of
different spatial scales, comprised of three (coarse), five (mid-range), and seven (fine) elements to a side (Fig. 1a). These
latices were scaled such that the central element of the coarse lattice occupied the estimated classical receptive field of
the recorded unit (Fig. 1c). Each element was constructed from a sinusoidal grating subject to a raised cosine spatial
envelope. Element orientation is randomly chosen from six equally-spaced orientations (30◦) along the half-circle,
including the cardinal horizontal and vertical. Similarly, each element’s phase is randomly chosen from one of four
quarter-cycle increments. Each element’s spatial frequency was defined in units of cycles-per-element and thus varies
across latices. However, each element could be of two spatial frequencies, either σ or 2σ, where σ is a free parameter
chosen to agree with the unit’s preferred spatial frequency from a set of previously generated stimuli families. The
amplitude of an element was set to maximum luminance contrast, or zero, by randomly sampling a binomial random
variable of probability chosen such that each lattice had an equal expected coverage of elements. In practice, we found
cells to exhibit robust responses to a sparse sampling of elements (20%) across a lattice. The elements were spaced such
that the raised cosine envelope produced an approximately uniform expected contrast across the stimulus. Elements
were linearly summed in luminance and clipped to the dynamic range of the display.

2.2 Neuronal recordings

Neurophysiology data was collected from area V2 of two awake-and-fixating adult male rhesus macaques. Before
experimentation, a custom headpost was surgically implanted for head stabilization using a standard design and methods
described previously (Grey Matter Research. In a subsequent surgical procedure, a recording chamber was implanted
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over the Lunate sulcus of the right hemisphere. Chamber placement was guided with structural magnetic resonance
imaging (MRI) and visualization software (Brainsight, Rogue Research) to design a chamber with legs matched to the
curvature of the monkey’s skull above the lunate sulcus. All procedures complied with the National Institute of Health
Guide for the Care and Use of Laboratory Animals, with the approval of the New York University Animal Welfare
Committee.

We acclimated each monkey to his recording chair and experimental surroundings. After this initial period, he was
head-restrained and rewarded for looking at the fixation target with dilute juice or water. Meanwhile, we used an
infrared eye tracker (EyeLink 1000; SR Research) to monitor eye position at 1000 Hz via reflections of infrared light on
the cornea and pupil. The monkey sat 57 cm from the display.

The monkey initiated a trial by fixating on a small white spot (diameter 0.1-0.2◦), after which he was required to
maintain fixation for a 200-500ms interval. A random droplet stimulus would appear for 200ms, followed by a 200ms
inter-stimulus interval (Fig. 1c). The monkey was rewarded if he maintained fixation within 1-1.75◦ from the fixation
point for the entire stimulus duration of 4-8 presentations. No stimuli were presented during the 300–600 ms in which
the reward was delivered. If the monkey broke fixation prematurely, the trial was aborted, a timeout of 2000 ms
occurred, and no reward was given.

Recordings were conducted by advancing a 6-10 MΩ impedance tungsten-epoxy microelectrode (FHC) through a
23 Gauge stainless steel guide that was stabilized with a customized 3D-printed grid insert affixed to the recording
chamber. Both the grid and guide tube were held in contact with the dura during electrode penetration. We distinguished
V2 from V1 based on depth from the cortical surface and changes in the receptive field location of recorded units.
To obtain an unbiased sample of single units, we made extracellular recordings from every single unit with a spike
waveform that rose sufficiently above background noise to be isolated. Data are reported from every unit for which we
completed characterization. The receptive fields of most units were between 1◦ and 5◦ eccentricity, but our estimates of
eccentricity and size were not sufficiently precise to include in analyses.

After isolating a single-unit spike waveform, receptive field location and size were estimated by hand. Tuning for
orientation and spatial frequency is performed by presenting localized sinusoidal gratings at six orientations (0− 160◦),
five spatial frequencies (.25− 4 cyc/◦), and four equidistant phases, randomly interleaved at 200ms on/off intervals.
The set of droplet stimuli was chosen to match the cell’s preferred range of spatial frequencies.

Neural response to each stimulus was determined from the mean evoked activity, estimated from each unit’s peristimulus
time histogram (PSTH) computed for stimulus-present and stimulus-absent (baseline) trials (Fig. 1b). The response is
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Figure 1: Stimulus design and recording
paradigm. (a) Droplet stimuli are constructed
from multi-scale patches of gratings tiling space
on hexagonal grids. (b) Example V1 and V2
neuron responses to an interleaved presentation
(c) of droplet stimuli. (d) By localizing contrast
in space, orientation, and scale, this stimulus
class sparsely activates a V1-like afferent space
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determined by calculating the expected number of spikes within a time window beginning at the unit’s response latency
and lasting for the stimulus duration (200 ms).

2.3 An afferent model of visual computation

We consider an image-computable two-layer linear-nonlinear network resembling a neural unit that receives input from
a population of rectified linear filters tuned in orientation and scale. For a set of K stimuli, We denote the observed
response to the kth stimulus Sk as rk. The prediction p of the model is defined by

p (Sk) = fθ (g (Sk) · w) (1)

where fθ denotes the output nonlinearity parameterized by θ, and g denotes the first-layer activation of stimulus Sk to
be pooled via linear combination with connection weights w. We choose fθ to be a piece-wise linear two-sided rectifier,

fθ(x) = β + α+ max(0, x) + α− max(0,−x), (2)

with parameters θ = {α+, α−, β} encoding the positive gain, negative gain, and offset, respectively.

To model first layer responses g we utilize the steerable pyramid transform [40], spatially convolving a bank of linear
filters tuned in orientation and scale. This decomposes an image into multiple spectral bands, each localized to a
preferred orientation and spatial frequency, thereby mimicking a population of V1-like oriented units that tile both
spatial and spectral domains of the image (Fig. 1d). We denote the pyramid coefficients for M spectral bands of the
stimulus Sk as

g (Sk) = X = {x1, . . . , xM} . (3)
Thus, X is a collection of steerable pyramid coefficient vectors. To mimic V1 simple cell activation, coefficient vectors
for each band are positive and negative half-wave rectified, i.e.,

xi = {x+
i , x

−
i } = {max(0, xi),max(0,−xi)}, (4)

resulting in 2M coefficient vectors, written X =
{
x+
1 , . . . , x

+
M , x−

1 , . . . , x
−
M

}
. Intuitively, X represents the activity

from a population of V1-like simple cells, each tuned in orientation and scale, that tile horizontal and vertical space.
Next, to pool first-layer activity, a connection weight vector w, operating across each spatial dimension and rectified
band, computes the linear combination of transformed pyramid coefficients. Specifically, for every band m ∈ M , the
inner product is taken between a pair of filters, w+

m and w−
m, and the corresponding rectified spectral band coefficients,

x+
m and x−

m. The activity of the second layer unit is therefore computed by summing this weighted response over all
bands, passing the resulting generator signal through the output nonlinearity fθ. Thus, the output response of a model
unit to stimulus Sk is governed by

p(Sk;w, θ) = fθ

(∑
m∈M

x+
m · w+

m + x−
m · w−

m

)
, (5)

parameterized by rectified connection weights w = {w+, w−} and output nonlinearity terms θ = {α+, α−, β}.

2.4 Model training and regularization

To optimize the afferent model, we seek to find the connection weights w and nonlinear parameters θ to minimize the
squared error between model predictions r̂w,θ and observed responses r for all K stimulus-response pairs:

∥r − r̂w,θ∥2 =

(
K∑

k=1

(rk − p(Sk;w, θ))
2

) 1
2

(6)

Since each model can have thousands of connection weight parameters, much greater than the number of unique stimuli
presented to a neuron, this optimization problem is undetermined and susceptible to over-fitting. To address this, a
sparsity L1 regularization term is introduced to penalize the magnitude of model connection weights, i.e., λ∥w∥ for
penalty magnitude λ. Since coefficients at every spatial location and spectral band are matched across rectification
channels, a group regularization constraint is employed to combine weights across channels. Here, the magnitude of
filter weights is to be penalized, but the relative contribution of positive and negative rectified channels is unconstrained.
Said another way, the model may freely choose the scaled rectification of each V1-like unit of the first layer. The
connection weight magnitude for regularization is defined by

w∗
i,m =

√(
w+

i,m

)2
+
(
w−

i,m

)2
(7)
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for the ith pyramid coefficient of band m ∈ M . However, the magnitude of connection weights can be made arbitrarily
small while maintaining prediction accuracy by increasing the gain parameters α+ and α− of the output nonlinearity. To
remove this degree of freedom from the solution space, we normalize connection weight sparsity by the total connection
energy. To fit a model neuron, we optimize for w and θ, minimizing

∥r − r̂w,θ∥2 + λ
∥w∗∥
∥w∗∥2

. (8)

Under this formulation, the regularization strength λ constrains the dimensionality of connection weights w, forcing
|w| → 0 as λ → ∞. It is important to note, however, that each weight is regularized independently, disregarding
relationships between spectrally- or spatially-neighboring coefficients. We therefore wish to bias the regularization in
such a way as to prefer afferent maps that are localized in the space of afferents. To achieve this, we approximate the
spectral and spatial dispersion of coefficient magnitudes from the marginal variances of weights. First, spectral bands
are referenced in octaves, and spatial coordinates are scaled such that an octave represents twice the estimated receptive
field diameter to equate the units of these variances. Regularization enforcing afferent sparsity and locality is therefore
computed via

λ

[
∥w∗∥
∥w∗∥2

+ γ

(√
σ2
s + σ2

o +
√

σ2
h + σ2

v

)]
, (9)

where afferent dispersion is denoted σ2
s , σ2

o for scale and orientation, and σ2
h, σ2

v for horizontal and vertical space,
respectively. Note that locality bias parameter γ is empirically chosen to penalize afferent dispersion at approximately
1% the magnitude of coefficient sparsity. This regularization formulation had the qualitative effect of biasing optimized
models toward sparse and local afferent maps without significantly impacting convergence or validation performance.

Given that there are many more connection weight parameters than stimulus-response data points, we can choose λ to
constrain the solution space and prevent over-fitting. We then select an optimal λ using a cross-validation method to
guarantee that constrained solutions generalize across our dataset. Here, stimulus-response pairs are randomly assigned
to one of ten equally sized partitions. For each partition, a model is trained from the remaining stimulus-response
pairs, then used to predict the held-out responses. This process is repeated for multiple regularization strengths λ.
Training (fitting) and testing errors are computed from the sum of squared error between observed responses and model
predictions, normalized by the variance of observed responses. For each neuron, we choose λ′ for each neuron to
maximize the withheld (testing) variance explained, limiting the dimensionality of w while ensuring a robust fitted
model.

3 Results

3.1 V1 and V2 neurons are well explained by sparse & localized combinations of afferent activity

We quantify the ability of our two-layer linear-nonlinear model to explain V1 and V2 activity by plotting the mean
variance explained (V.E.) across training and testing partitions. Fig. 2a,c depicts training performance as a function
of testing performance, demonstrating both measures to be highly correlated across our population, inconsistent with
model over-fitting. A fraction of the cells in our population were poorly fit by the model (V1:n = 12 of 69, V2: n = 20
of 120) exhibited a low training (< 0.1) and testing (< 0) performance. Upon inspection, these units had too few
stimulus repetitions or low evoked activity to allow for effective model fitting. Moreover, some of these units were most
active at the offset of a stimulus, which was not captured by the response activity window and thus was not accounted
for in our analysis. To simplify our analyses and comparison of units, we consider a subset of well-fit V1 and V2
units (testing V.E > 0.1). The mean training/testing performance by our model to this population is 0.36/0.27 for V1
(n = 32), and 0.38/0.26 for V2 (n = 56), respectively.

While the reported variance explained appears modest, it is masked by the intrinsic variability of neurons and the
limited number of repeated trials of a given stimulus. To measure the amount of explainable variance, i.e. the predictive
power of a model up to independent neuronal variability, we first estimate the noise ceiling of each recording. Here,
for each neuronal dataset, we identify stimuli with three or more repeated trials, computing the mean and variance of
response for each stimulus. To model trial-to-trial variability, we assume scaled-Poisson noise and find the optimal
scalar mapping between a neuron’s response mean and variance for each repeated stimulus. Then, we simulate a
synthetic recording session, sampling firing rates under the fitted noise model for every recorded trial. By averaging
across repeated stimulus trials, we effectively sample neuronal activity from an identical set of trials as was recorded.
This process is boot-strap repeated and compared against observed responses to estimate the distribution of the expected
recording error. In essence, this procedure estimates expected variability having repeated an identical recording session,
serving as an upper bound for the response variance that is resolvable by any model. By normalizing the testing variance
explained by this noise ceiling, we plot in Fig. 2a,c this explainable variance. Many neurons generalize well to capture
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Figure 2: Model Performance and example unit fits. Training and testing performance of models fit to (a) V1 and (c)
V2 neurons in our population. (b) Each model optimized the connection weights projecting from a V1-like afferent
representation. (c) Model fits are visualized by an afferent map and output nonlinearity for three example V1 and V2
cells. The hue and saturation of afferent weights convey the connection strength of the on and off rectification channels,
simultaneously.

a considerable fraction of the stimulus-response variance expected to be explained by a model. Of units that were
sufficiently driven by our stimulus for the model to converge, the average explainable variance captured by the model
was 40% (V1: 43%, V2: 38%). For well-fit units considered further for analysis, the average explainable variance was
51% (V1: 56%, V2: 48%).

To visualize optimized model parameters, we depict in Fig. 2d a representation of the connection weights w and
output nonlinearity fθ of example V1 and V2 units. Connection weights are grouped into spectral bands of orientation
(columns) and spatial frequency (rows). Within each band, weights are arrayed in their natural horizontal and vertical
spatial position, i.e. each band represents the same region of visual space. We then superimpose the two independent
rectified channels for each spectral band, using saturation to denote absolute connection magnitude and hue to encode
the relative contribution of each channel. We denote this representation of projection weights, pooling contrast across
spectral and spatial domains, the afferent map.

3.2 Linear and separability of afferent maps

The afferent map of connection weights, representing a linear combination of basis elements tuned in orientation and
spatial frequency that tile visual space, is segregated into positively and negatively rectified terms. However, given
that afferents are linearly combined, we can change the basis to organize afferent activity along arbitrary axes in the
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afferent space. One natural basis for consideration is the linear and energy space, constructed from half-wave rectified
coefficient vectors x+ and x− via {

xl = 1√
2
(x+ − x−)

xe = 1√
2
(x+ + x−)

. (10)

By similarly transforming the optimized connection weights w to yield wl and we, we can explore how each model
pools linear and nonlinear stimulus features.

Specifically, we determine the fraction of response variance explained by the afferent map is attributed to the linear
and energy components in isolation. To do this, we project stimulus activity g (Sk) for each k ∈ K against wl and we,
computing the squared correlation coefficient (Pearson’s r2) between recorded neuronal activity. The linear and energy
component map r2 is normalized by the total afferent map r2, up to the output nonlinearity, independently for each
model. This fraction of variance explained by each model’s linear and energy map components is given as Fig. 3a.
Note, the fraction variance explained by the linear and energy components is approximately equal to 1 due to the output
nonlinearity and coefficients shared between components. We define a linearity index by the difference of variance
explained from the linear and energy component maps.

We next assess to what extent the connection weight maps are separable along the cardinal dimensions of afferent
tuning. To achieve this, we approximate each afferent map with the product of three functions computed from the
marginal of connectivity in 2D-space, orientation, and scale. We define a separability ratio of each model unit as the
fraction of variance explained by the separable afferent map relative to that of the original map. For V1 and V2 model
units, we find in Fig. 3b a significant relationship between afferent separability and linearity, with linear units tending to
be inseparable along afferent tuning dimensions. This relationship appears most significant in V1, with no well-fit V1
model units being nonlinear and inseparable or separable and linear.

3.3 Visualizing model selectivity: the afferent field

As our analysis of the afferent map shows V2 model units to be well-characterized by their constituent linear or energy
components, we seek a method to interpret the spatial and spectral organization of each component beyond the afferent
map representation illustrated in Fig. 4a. Since the steerable pyramid basis is a linear transformation of pixels, the linear
map wl of pyramid coefficients can be inverted to visualize its contribution to model response in image coordinates. We
denote the visualization of this component to be the model’s linear receptive field, analogous to that achieved via reverse
correlation to depict V1 simple cells. A solid circle is overlaid to depict the hand-mapped receptive field location and
the field cropped to depict the spatial extent of the droplet stimuli.
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Figure 4: (a) Linear and energy components of example V1 and V2 afferent maps (see Fig. 2d). (b) Afferent field
visualization of each unit’s selectivity. Circles overlaying the linear and energy fields denote the cell’s receptive field
diameter as estimated from hand-mapping (solid) and droplet stimulus extent (dashed). Scale bars denote 1 degree of
visual angle.

Interpretation of the energy component weights, however, cannot be achieved with the same visualization technique
as multiple pixel representations of spectral energy exist up to the sign of all non-zero we terms. Instead, the spectral
and spatial arrangement of we is depicted by producing a separate receptive field image for excitatory (we > 0) and
inhibitory (we < 0) terms. A characteristic image is chosen that limits destructive interference due to the phase (sign) of
pyramid coefficients. The sinusoidal image components are depicted with warm and cool hues to convey phase-invariant
spectral power of the excitatory and inhibitory energy fields, respectively. Finally, the contrast of linear and energy
receptive fields are scaled to convey their relative contribution to the model’s response as determined from the variance
explained by wl and we, respectively, preserving the relative difference in magnitude between excitatory and inhibitory
fields. Together, this afferent field, depicted in Fig. 4b, yields a spatial representation of a model unit’s linear and energy
components that comprise its selectivity.
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Figure 5: Spectral bandwidth of afferent connection weights from well-fit units from our population of (a) V1 and (d)
V2 neurons. The bandwidth of (b,e) spatial frequency (c,f) and orientation is plotted as a function of the afferent map’s
spatial frequency centroid.

3.4 Spectral bandwidth of model afferents

To localize afferent connectivity, we compute the mean and variance of model weights in both orientation and spatial
frequency. In Fig. 5, we plot spectral bandwidth as a function of preferred spatial frequency for well-fit units from our
V1 and V2 populations. Fig. 5a,d shows our population to uniformly cover preferred orientations, with a distribution of
spatial frequency coverage expected at the eccentricity of our recordings. As expected, we find a strong relationship
between the bandwidth of spatial frequency connections and their mean (Fig. 5b,e). Conversely, no relationship is
found between the mean of spatial frequency afferents and the bandwidth of orientation tuning (Fig. 5c,f).

An inspection between our V1 and V2 populations reveals no apparent qualitative difference between the spectral
bandwidth of well-fit model afferents, with a similar distribution of units being more circular (e.g., a2 and b249) or
more elongated (e.g., b241 and a35). This analysis, however, this analysis considers only two of the four dimensions of
connection weights and ignores the potential covariance structure of the afferent map. We now assess the covariance
structure of the afferent connectivity from well-fit model units.

3.5 Dimensionality of the afferent field

To assess the structure of afferent weight magnitudes in the four dimensions of selectivity, we compute the expected
covariance between each pair of tuning dimensions. This calculation is complicated by the differing coordinates across
dimensions, with only horizontal and vertical space being comparable. Within the limits imposed by its periodic nature,
the orientation dimension can be represented in octaves, allowing a natural comparison to its spectral pair, spatial
frequency (scale). To factor out the extent of each receptive field in visual space, we normalize the spatial covariance
of each model to have unit norm. This representation is unique up to an arbitrary scaling of the spectral and spatial
dimensions. We choose this scaling empirically from our population data to equate the mean spectral and mean spatial
covariance across all well-fit model units from V1 and V2.

Having established a common coordinate frame to examine the structure of the afferent weight envelope, we next
consider the eigenstructure of the unified covariance matrix calculated from each model unit. Qualitative inspection of
the eigenvalue spectrum revealed units existed on a continuum between being were nearly spherical in four dimensions
(i.e., all eigenvalues of similar magnitude), and being elongated along in one dimension (i.e., dominated by a single
principal eigenvalue). To quantify this observation, we define the dimensionality of each unit in afferent space to be the
(linearly-interpolated) number of eigenvectors required to capture 75% of coefficient weight variance. Fig. 6 depicts
this dimensionality across visual areas, plotting the standard deviation of each afferent field in both scale and orientation
(Fig. 6a,b). Interestingly, while the distribution of afferent dimensionality has a similar central tendency between V1
and V2 (Fig. 6c,e), a notable difference exists at the tails of each distribution: V1 has a higher frequency of units of
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high dimensionality, i.e., more spherical in afferent space, while V2 has more units that are more prolate, or elongated
along a single afferent axis (Fig. 6d).

To investigate model unit prolation we examine the alignment of the principle axis for units that are highly elliptical in
afferent space (i.e., below a dimensionality of 1.4). We find prolate V1 units more aligned along spatial dimensions,
having significant afferent weight covariance in space; e.g. unit a2 which has an elongated receptive field in the direction
of its orientation tuning. In contrast, prolate V2 units have alignments spanning the orientation dimension, e.g. unit a35
which exhibits an afferent map highly correlated in space and orientation that is clearly evident in the linear component
of its afferent field (Fig. 6g).

4 Discussion

Many different model structures have been used to fit the activity of neurons in V1. Early attempts used unbiased
strategies to estimate the receptive field structure of V1 neurons, such as spike-triggered averaging [21] or spike-
triggered covariance [11, 37]. These estimates suggested a simple, shared structure for most V1 receptive fields: most
neurons could be described as the rectified sum of a set of self-similar, spatially shifted filters. A model that takes these
assumptions into account uses fewer parameters than earlier methods, and fits V1 receptive fields more effectively and
efficiently than previous methods [49].

The structure of receptive fields in V2 is not yet well established. However, we found it logical that V2 receptive fields
should be parsimoniously described as a combination of V1-like inputs. Consistent with the model proposed by Vintch
et al. [49], we find that many cells in V1 and V2 are well described as a local spatial pooling of self-similar, rectified
filters. However, unlike the prior model, our model also has the flexibility to uncover a population of neurons in V2 that
pool broadly across filter orientations. This is consistent with previous results showing that neurons in V2 were more
often fit with combinations of orientations than neurons in V1 [23].
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Modeling populations of orientation- and scale-selective units for image representation has demonstrated that V1
neurons form an efficient code of natural visual scenes [32, 33, 39, 41, 48]. Efficient coding has also been used to
predict the structure of neurons in V2 [6, 15, 18, 20].

We find many neurons in V2 that appear V1-like when probed with our stimuli. However, our stimuli were optimized to
map the form-processing properties of these neurons. Some neurons in V2 display novel selectivities not observed
in V1, such size-invariant chromatic selectivity [43], and relative disparity selectivity in three-dimensional scenes
[45]. Anatomical studies illustrating the partition of V2 into different stripe compartments based on staining for the
respiratory chain enzyme cytochrome oxidase [42], which suggests that there might be different functional clusters
with distinct selectivities [23, 24, 46]. It may be that the “V1-like” neurons we observe in V2 are simply selective for
features other than form.

Alternatively, V2 may just contain a large population of “V1-like” cells, and these complex selectivities might cluster
within the same subpopulation of cells. In this case, neurons of V2 could be described as spanning a functional
continuum from simpler to more complicated response properties, analogously to how V1 contains both “simple” and
“complex” response properties. Future studies mapping multiple functional properties of these neurons be able to shed
light on this question.
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