DERIVATION OF ELEPHANT INDUCED PLURIPOTENT STEM CELLS

Evan Appleton¹, Kyunghee Hong¹, Cristina Rodriguez¹, Yoshiaki Tanaka¹, Asaf Ashkenazy-Titelman³, Ketaki Bhide², Cody Rasmussen-Ivey¹, Xochitl Ambriz-Pena¹, Nataly Korover¹, Hao Bai¹, Ana Quieroz³, Jorgen Nelson¹, Grishma Rathod¹, Gregory Knox¹, Miles Morgan¹, Nandini Malviya¹, Kairui Zhang¹, James Kehler¹, Amanda Kowalczyk², Austin Bow¹, Bryan McLendon¹, Brandi Cantarel¹,², Matt James¹, Christopher E. Mason⁴, Charles Gray⁸, Karl R. Koehler³,⁵, Virginia Pearson⁶, Ben Lamm¹,², George Church¹,²,³, and Eriona Hysolli¹,⁶

¹ Colossal Biosciences, Dallas, TX, USA
² FormBio, Dallas, TX, USA
³ Department of Genetics, Harvard Medical School, Boston, MA, USA
⁴ Department of Physiology and Biophysics and the WorldQuant Initiative for Quantitative Prediction Cornell University, NY, USA
⁵ Departments of Otolaryngology and Plastic and Oral Surgery, Boston Children’s Hospital, Boston, MA, USA
⁶ Fox Chase Cancer Center, Philadelphia, PA, USA
⁷ Faculty of Medicine, Université de Montréal, Montréal, CA
⁸ African Lion Safari, Hamilton, Ontario, Canada

* Corresponding author [eriona@colossal.com]

ABSTRACT

The crisis of biodiversity loss in the anthropogenic era requires new tools for studying non-model organisms. Elephants, for example, are both an endangered species and excellent models studying complex phenotypes like size, social behavior, and longevity, but they remain severely understudied. Here we report the first derivation of elephant (Elephas maximus) induced pluripotent stem cells (emiPSCs) achieved via a two-step process of chemical-media induction and colony selection, followed by overexpression of elephant transcription factors OCT4, SOX2, KLF4, MYC ± NANOG and LIN28A, and modulation of the TP53 pathway. Since the seminal discovery of reprogramming by Shinya Yamanaka, iPSCs from many species including the functionally extinct northern white rhinocerous have been reported, but emiPSCs have remained elusive. While for multiple species the reprogramming protocol was adopted with little changes compared to model organisms like mouse and human, our emiPSC protocol requires a longer timeline and inhibition of TP53 expansion genes that are hypothesized to confer unique cancer resistance in elephants. iPSCs unlock tremendous potential to explore cell fate determination, cell and tissue development, cell therapies, drug screening, disease modeling, cancer development, gametogenesis and beyond to further our understanding of this iconic megafauna. This study opens new frontiers in advanced non-model organism cellular models for genetic rescue and conservation.

Keywords Stem cell biology · Elephants · Elephas Maximus · Reprogramming · Induced Pluripotent Stem Cells

1 Introduction

Over the past 10,000 years, humans have had a profound impact on the world’s ecosystems. Humans have completely changed the ecology of nearly every ecosystem in the world and were potentially at least partially responsible for the extinction of more than two thirds of the world’s land megafauna [1,2]. Today we see that many of the world’s remaining megafauna are also edging towards extinction [3]. Among these are the world’s largest remaining land animals - the elephants. In recent centuries, international efforts have formed to conserve and preserve these megafauna.
Figure 1: Derivation of *Elephas maximus* induced pluripotent stem cells. a. Illustration of the reprogramming strategy involved. emEC - *Elephas maximus* endothelial or epithelial cells; emPRC - *Elephas maximus* partially reprogrammed cells; eleOSKM/NL - *Loxodonta africana* POU5F1, SOX2, KLF4, CMYC, LIN28A, and NANOG transgenes; shRNA$_{TP53}$ - shRNAs targeting TP53 and its retrogenes. b.-f. All scale bars = 200 µM, magnification = 10X. b. Brightfield (BF) image of *Elephas maximus* primary endothelial cells. (emEC) c. BF image of partially reprogrammed (pre-iPSC) cells (emPRC). d. BF image of *Elephas maximus* induced-pluripotent stem cells. (emiPSC) e. Immuno-fluorescent detection of NANOG (Texas Red) / SOX2 (AF488) / HOECHST separately and merged. f. Immuno-fluorescent detection of OCT4 (Texas Red) / SOX2 (AF488) / HOECHST separately and merged. g. MA plot of RNA-seq data illustrating the transcriptional differences between elephant endothelial cells (emEC) and pluripotent stem cells (emiPSC). Key canonical pluripotency genes are labeled. h. PCA plot comparing emECs (C1EmMEn WT), emPRCs (C1EmMEn pre-iPSC), and emiPSCs (C1-loxC4/5/6-SV40 and C1-loxC4-TP53shRNA2). i. RNA-seq and ATAC-seq signals of OCT4 (POU5F1) for emECs, emPRCs, and emiPSCs. Shown are peak calls of one representative sample.
Until the last decade, a majority of these efforts were operational, but recently multiple groups have considered using biotechnology as a conservation tool [4]. Moreover, biotechnology is now being developed as a ‘de-extinction’ solution to bring back species that have gone extinct and left gaps in their respective ecosystems, like the woolly mammoth [5].

A key component of these conservation and de-extinction workflows is the generation of induced pluripotent stem cells (iPSCs). iPSCs share the molecular and phenotypic features of embryonic stem cells (ESCs) and can, in principle, be converted into any other type of cell in an organism’s body — including embryonic cells needed for de-extinction and conservation. iPSCs were first derived from somatic cells from mouse [6], and, shortly after, humans [7]. At present, mouse and human iPSCs have been studied and engineered extensively, but iPSCs from other species lag behind. iPSCs have been demonstrated for many animals such as cows, pigs, goats, sheep, horses, marmosets, dogs, rabbits, rhinoceroses, naked mole rats, and bats [8,9,10,11,12], however, for many animal species such as elephants and whales, iPSC-creation has remained elusive. To this end, scientists have begun biobanking tissue samples and cell lines from many endangered species in the hopes that iPSCs may someday be derived.

With iPSCs from each species, doors are opened to understanding their biology and engineering their survival or re-birth. In recent years, stem cell biologists have engineered cell-fate with stem cells to differentiate them into many different types of cells for therapeutic or diagnostic purposes [13,14,15,16,17]. By creating stem cells and diverse differentiated cell types from stem cells, biologists can explore the features of specific cell types in vitro and identify key features unique to that species. Stem cell biologists have also created entire organisms from iPSCs using 4N-complementation [18], chimeric embryos from stem cells originating from two different species [19], and embryo models from iPSCs [20,21]. These advances make the idea of species conservation and de-extinction ever more feasible, but require the creation of iPSCs from each species and the re-solving of frame solutions demonstrated from others.

Beyond their ecological relevance, elephants have very interesting biological capabilities — they are highly intelligent [22], exhibit interesting molecular aging features common to humans [23,24], and rarely get cancer [25]. Their resistance to cancer has drawn significant attention in recent years — given their huge size, elephants should get cancer at a much high rate than they do, a paradox called Peto’s paradox [26]. While this paradox has been studied in elephants before [27], the way in which elephants solve this paradox has remained unsolved. Creation of elephant stem cells could shed light into solving this problem given the overlap of many core gene networks involved in stem cells and cancer cells. Moreover, Asian elephants have 29 TP53 and 8 LIF polymorphic gene copies in the genome [28,29], both of which are established key genes in both pluripotency and cancer [30].

Here, we describe the generation of *Elephas maximus* induced pluripotent stem cells (emiPSCs) with our multidimensional reprogramming protocol, a chemical-based approach followed by transgene overexpression. Next, we studied the key pluripotency molecular features of emiPSCs and characterized their ability to differentiate. Via comparative genomics we were able to establish a comparison to stem cells of other mammals and showed that their features align closest with rhino and cattle, two other large living land mammals.

2 Results

2.1 Asian elephant reprogramming

Elephant induced pluripotent stem cells were created only after an exhaustive span of generated using chemical-based pluripotency media with selected colony expansion, followed by overexpression of key pluripotency transcription factors OSKM(LN) and oncogene SV40LT and/or short hairpin RNAs (shRNAs) against elephant TP53. Multiple attempts with current standard reprogramming methods were tried, and failed, and resulted in no, or incomplete, reprogramming. First, we attempted to reprogram *Elephas maximus* cells via the use of over-expression of standard ‘Yamanaka reprogramming factors’: *OCT4*, *SOX2*, *KLF4*, and *MYC* (OSKM) in different vector formats. This included transgene expression via episomal [31], lentivirus [32], Sendai-virus [33], and PiggyBac [34] in a variety of different variations with transcription factor (TF) sequences from either mouse or human. These transgene expression methods were also tested in tandem with the over-expression of shRNAs that target TP53, SV40 T-antigen, NANOG, and/or LIN28A. While some of these methods yielded some potential morphological differences from primary cells at different parts of the process, ultimately all of these types of attempts failed as a result of either cell death, senescence, or no observed morphological changes compared to starting primary parental lines (Supplementary Figure 1-9).

In addition to transgene-dependent methods, we also explored a growing set of chemical reprogramming methods that do not require the use of transgenes. We tested a set of published cocktail sets [35,36,37] that we further customized by testing multiple variations of chemical cocktails. These approaches resulted mostly in cell death, senescence, or no observed change, but in a small set of experiments also appeared to yield encouraging morphological changes (Supplementary Figure 1-9).
It was through integration of these two types of approaches that ultimately yielded our successful generation of *Elephas maximus* induced pluripotent stem cells (emiPSCs). More specifically, we derived emiPSCs by first partially reprogramming primary endothelial cells (emECs) to an intermediate ‘pre-iPSC’ state (emPRC) with a derivative chemical reprogramming protocol based on prior work [5], and then using elephant-specific transgene (Elephant AA sequence homology percentages to human Yamanaka factors are: *OCT4* - 88.4%, *SOX2* - 98.1%, *KLF4* - 88.6%, *MYC* - 91.1%) over-expression to complete the reprogramming process ([Figure 1](#))a. While encouraging changes to morphology compared to primary cells was observed through chemical treatment alone ([Figure 1](#)c), we observed a canonical stem cell morphology and growth rate only after introduction of pluripotency transgenes ([Figure 1](#)f). However, even this final transition was difficult to establish, as transgene amino acid sequences from mouse and human were not fruitful. Furthermore, no meaningful change was observed in either growth, morphology or molecular composition until a final component was added - a transgene to modulate the *TP53* expression. We achieved the latter by over-expression of SV40 T-antigen or an shRNA that targeted RNA only from *TP53* retrogenes and not the full-length *TP53* gene ([Supplementary Figure 5](#)). Interestingly, in the reverse order, when primary cells were treated to induce transgenes before the treatment with the chemical cocktail, cells quickly senesced and underwent apoptosis in all tested conditions.

Upon clear establishment of correct stem cell morphology, we pursued a full stem cell characterization. We demonstrated that our cells express core pluripotency proteins via immunofluorescence (IF) ([Figure 1](#)f) and confirmed via RNA-seq that these core genes and others are indeed present in four derivative emiPSC lines ([Figure 1](#)g). Interestingly, upon a further examination of the transcriptome of our emiPSC lines, emPRCs, and emECs, we saw nearly 90% of the transcriptome differences were accomplished with the chemical cocktail alone ([Figure 1](#)h). Finally, we wanted to examine *OCT4* (*POUSF1*) epigenetic and transcriptomic read-mapping to determine if perhaps the chemical pre-treatment yielded increased regions of open chromatin upstream of the *OCT4* locus ([Figure 1](#)i). It appears that this indeed was not the case, confirming that the chemical cocktail does a lot of work bears the brunt of modulating the overall epigenetic landscape of these cells ([Supplementary Figure 8,9](#)), but it is not sufficient to open up the chromatin upstream of *OCT4*.

While we successfully conducted a multitude of molecular and functional tests for our emiPSCs, interestingly, we did not observe a significant upregulation of *NANOG* expression in our emiPSCs. This expression pattern is unusual for iPSCs of species studied to date. To address this point, we performed another round of nucleofection with pluripotency genes to attempt to boost *NANOG* expression in these cells. We added extra copies of both elephant Yamanaka factors (OSKM), and *NANOG* individually ([Supplementary Figure 10](#)). In order to show increased expression of endogenous *NANOG* (not simply transgene expression), we performed RT-qPCR with primers that bridge intron-exon gaps of mRNA, otherwise not found in transgenes. Our results demonstrate that we are able to boost endogenous *NANOG* (and endogenous *SOX2*) expression in our emiPSC lines.

2.2 Asian elephant pluripotent stem cells

Our emiPSCs express multiple naïve pluripotency markers, and are capable of differentiation into three germ layers as assessed by embryoid body differentiation and teratoma formation. Once the expression of core pluripotency markers was established, we wanted to evaluate the basic growth and chromosomal normality of the cells. To do this end, we performed a simple nuclei isolation, lysis, and chromosomal counting methodology to confirm that our cells indeed expressed core pluripotency proteins via immunofluorescence (IF) ([Figure 1](#)f) and confirmed via RNA-seq ([Supplementary Figure 10](#)). In order to show increased expression of endogenous *NANOG* (and endogenous *SOX2*) expression in our emiPSC lines.

Our emiPSCs express multiple naïve pluripotency markers, and are capable of differentiation into three germ layers as assessed by embryoid body differentiation and teratoma formation. Once the expression of core pluripotency markers was established, we wanted to evaluate the basic growth and chromosomal normality of the cells. To do this end, we performed a simple nuclei isolation, lysis, and chromosomal counting methodology to confirm that our cells indeed expressed core pluripotency proteins via immunofluorescence (IF) ([Figure 1](#)f) and confirmed via RNA-seq ([Supplementary Figure 10](#)). In order to show increased expression of endogenous *NANOG* (and endogenous *SOX2*) expression in our emiPSC lines.

However, across the board with most naïve cell markers, we see significant upregulation of emiPSCs compared to emECs ([Figure 2](#)a). There are indeed some canonical primed markers seen significantly upregulated (*ZIC2* and *GRHL2*), but it is known that primed and naive pluripotency markers vary somewhat across species. Taken together, these observations indicate a more naïve rather than primed pluripotent state.

Since our emiPSC lines demonstrated expected molecular and phenotypic qualities of stem cells and a normal karyotype, we next probed their differentiation potential. First, we performed an embryoid body (EB) formation assay. We demonstrate that all our cell lines form EBs in 5-7 days, and that they contain cells that express early differentiation markers from each of the three germ layers - *PAX6* (ectoderm), *GATA4* (mesoderm), and *FOXA2* (endoderm) ([Figure 3](#)a). Since they consistently formed these EBs (note that emPRCs were never capable of creating EBs), we performed
Figure 2: Characteristics of *Elephas maximus* induced pluripotent stem cells. a. Karyotyping staining of emiPSC nuclei show 56/56 chromosomes b. Doubling time for emiPSC cell lines and hiPSCs as originally derived in 2007. Statistical tests show all emiPSCs are not statistically significantly slower growing that originally derived hiPSCs. c. Expression of a canonical primed pluripotency markers *THY1* and a d. canonical naive pluripotency marker *TBX3*. All emiPSC lines significantly higher expression than WT controls (p < 0.01). e. MA plot showing a large set of canonical naive and primed pluripotency markers for C1-loxC4-SV40. A vast majority of naive markers are up-regulated and most primed markers are down-regulated.

RNA sequencing on these populations to look for the presence of additional early-differentiation markers (Figure 3b). We highlight the expression of endoderm markers *PRDM1*, *FOXA2* and *EOMES*; ectoderm markers *PAX6*, *PAPLN* and *POU4F1*, and mesoderm markers *CDX2*, *GATA4* and *HAND1* (Figure 3c). We also show that the upregulation of these early differentiation markers in EBs increases over time to further confirm these trends (Supplementary Figure 14). While many of these were indeed present and clearly upregulated compared to wild type cells, as with naive versus primed pluripotency markers, species differences should be expected.

After confirming the presence of many of the expected early differentiation markers in EBs, we performed tri-lineage differentiation assays to verify the presence of marker genes in their respective lineages. We observed up-regulation of early differentiation markers in these differentiated cells compared to both their originating emiPSC line and emECs (Figure 3d).

Given that our iPSC lines could form EBs and differentiate into the early three germ layers, we tested whether these lines could form teratomas. To this end, we injected emiPSCs into hind-leg of immuno-compromised mice and observed growth for 4-6 weeks. We could detect formation of teratomas, and furthermore, multiple tissue types were observed in the teratomas formed from each cell line (Figure 3e). Interestingly, while the differences between our emiPSC lines was relatively minor, we appeared to see more variety of cell types in the cell line that contained an shRNA against *TP53* retrogene, than the lines which required SV40 T-antigen.

2.3 Comparative transcriptomics

Upon establishment of our iPSC lines and their differentiation capacity, we performed a comparative analysis of stem cells from a diverse set of other mammalian stem cells [10]. First, we looked at core pluripotency and naive pluripotency genes from humans, marmosets, mouse, rabbits, cattle, and elephants (Figure 4a). We found that while some of the expression of core pluripotency genes *OCT4*, *SOX2*, *NANOG*, and *LIN28A* was much lower in some of the emiPSC lines than all others, expression of some naive factors such as *TFAP2C*, *KLF4*, and *MYC* was higher than most. Furthermore,
Figure 3: Differentiation potential of *Elephas maximus* induced pluripotent stem cells.

a.-b. All scale bars = 200µM, magnification = 10X

a. Immunofluorescence (IF) microscopy images of embryoid bodies (EBs) formed by emiPSC line C1-loxC5-SV40 co-stained with antibodies detecting the expression of lineage-specific markers *PAX6* (ectoderm) and *GATA4* (mesoderm).

b. IF microscopy images of EBs formed by emiPSC line C1-loxC5-SV40 stained with an antibody detecting the expression of lineage-specific markers *FOXA2* (endoderm).

c. Representation of canonical germ-layer differentiation marker genes in EBs formed from each emiPSC line, emPRCs, and emECs. (LEFT) Endoderm markers, (RIGHT) ectoderm markers, and (BOTTOM) mesoderm markers.

d. Expression of early differentiation markers *PAX6* (ectoderm), *GATA4* (mesoderm), and *PRDM1* (endoderm) following tri-lineage differentiation in emiPSC line C1-loxC5-SV40. Statistical t tests show ** = p < 0.01 and * = p < 0.05.

e. Microscopic images of hematoxylin-eosin-stained sections of tumor tissue after injection of emiPSCs (to form teratoma) into the upper hind-leg of immuno-compromised mice. Teratomas formed from each emiPSC line resulted in different cell types being developed (marked by color in sub-panels).
3 Discussion

Here we demonstrated the first documented successful protocol for generating induced pluripotent stem cells in elephants. Our protocol, which required complex chemical media formulations to partially reprogram primary cells, and elephant-specific transgenes to fully reprogram, is capable of creating emiPSCs with variable sets of transgenes that each exhibit slightly different characteristics. Furthermore, we validated their karyotypic integrity, measured their high growth rate at negligible spontaneous differentiation rates, and determined that these cells are probably more naïve-like than primed in nature.

We then functionally characterized these emiPSC lines and showed that they were able to form EBs and differentiated into the three germ layers. Next, we showed that these lines are also capable of producing teratomas with diverse cell type-populations within, indicating comprehensive differentiation potential. Finally, we compared these cells to iPSCs from a diverse set of other mammal iPSCs and showed that our cells seem to cluster closest to other large-massed bodied mammals.

This study provides the first successful report of producing emiPSCs, and it marks the beginning of more follow-up work. Further analysis into the implication of the TP53 pathway in road-blocking elephant pluripotency is required. Of particular interest is disentangling the canonical versus the retrogene TP53 contribution to determine the molecular features conferring reprogramming resistance.

The duration of reprogramming, which tends to be 5-10 days for model organisms like mouse, and over 3 weeks for large mammals including humans, was longer for the Asian elephant, at 2 months. We are further exploring whether alternative strategies can mitigate the longer reprogramming process observed in this study. For instance, in the study deriving naked mole rat iPSCs [38], the authors reduced reprogramming time by almost half, from one month to just slightly over two weeks.
Additionally, observed differences in pluripotency marker expression and differentiation potential between species merit a deeper look into whether reprogramming methods or species differences are responsible for these observations. For example, the initially relatively low expression of NANOG was puzzling and boosting elephant iPSCs with more OSKM and NANOG did increase the overall endogenous NANOG and SOX2 expression. We are further exploring whether this boost translates to more functional observations in ‘stemness’ and differentiation potential. For conservation purposes and gametogenesis studies, validating truly naïve iPSCs is a critical step. Exploring the features of elephant stem cells that are unique to elephants, and endow cell-derived embryo models of development ex utero in a similar fashion to pioneering work in mouse and human embryos [39][40], can shed much needed light in the gestation of complex higher mammals.

Bio-banking requirements such as freshly derived cells and choice of the parental cell lineage can also predict successful reprogramming outcomes, which further build the foundation of the conservation pipeline. Following this work, additional efforts into generating iPSCs from all extant species and subspecies of Proboscideans is critical for their conservation and understanding the similarities and differences between these iconic megaherbivores.

4 Methods

RNA sequencing RNA extraction was performed using the RNeasy Plus Universal Mini Kit (Qiagen 73404). After RNA preparation, RNA was sent directly to NovoGene for external QC and sample sequencing. For ATAC-seq sample, a frozen cell pellet was sent to NovoGene and all assays, library prep, and sequencing was performed by NovoGene.

NGS analysis RNA-seq analysis was performed using the Expression Analysis in RNASeq workflow on the Form Bio platform. Reads are trimmed using TrimGalore, to remove low quality (qual < 25) ends of reads and remove reads < 35bp. Trimmed reads are aligned to a reference genome using STAR2 (default) or HiSAT. BAMs from the same sample generated by multiple runs are merged using Samtools. The abundance of transcripts and genes are assessed using FeatureCount to generate raw gene counts, StringTie to generate FPKM and Salmon to generate raw transcript counts. Sample comparisons and differential gene/transcript expression analysis are performed using EdgeR, DESeq2 and IsoformSwitchAnalyzeR. ATAC-seq analysis is performed in a similar workflow. Specifically, reads are trimmed using TrimGalore, to remove low-quality (qual < 25) ends of reads and remove reads < 35bp. This workflow can be run with native open-source tools (NOST) or with Parabricks. With NOST, trimmed reads are aligned to a reference genome using BWA mem or Minimap2. BAMs from the same sample generated by multiple runs are merged using Samtools. Alignment quality is assessed using FastQC, Samtools, and Bedtools. With Parabricks, trimmed reads are aligned, duplicate reads are marked and alignment quality is accessed using fq2bam. Quality metrics are summarized with MultiQC.

Comparative transcriptomics Public RNA-seq data for human, marmoset, mouse, rabbit, cattle and rhinoceros [10] were downloaded from NCBI Short Read Archive (SRA). We used GRCh38, mCalJa1.2.pat.X, GRCm38, OryCun2, BosTau9, NRM-Dsumatrensis-v1 as human, marmoset, mouse, rabbit, cattle, and rhinoceros reference genome, respectively. The count matrices from all species were subsequently merged by homologous gene sets that were downloaded from BioMart. Technical biases across datasets were then minimized by RUVg function with top 5,000 empirical controls in RUVSeq Bioconductor package (v1.28.0)

Sendai virus reprogramming Elephas maximus endothelial and epithelial cells were transduced with Sendai virus (Thermoﬁsher Scientiﬁc, A16517) following manufacturer’s instructions, with an MOI of 5:5:3 and an MOI of 10:10:6. Different cell densities were tested, with 1 x 10^5, 1.5 x 10^5 and 3 x 10^5 cells transduced per reaction, with the addition of 5µg/mL of protamine sulfate (Sigma, P3369-10G). Cells were seeded on 3T3-J2 cells (StemCell Technologies: 100-0353) and Geltrex (Thermoﬁsher Scientiﬁc, A1413302).

Lentivirus reprogramming Elephas maximus endothelial and epithelial cells were transduced with Lentivirus (Sigma, SCR5451) following manufacturer’s instructions, with an MOI of 2, 5, 10, and 20. A total of 1 x 10^5 and 1.5 x 10^6 cells were transduced per reaction, with the addition of 5µg/mL of protamine sulfate (Sigma, P3369-10G). Cells were seeded on 3T3-J2 cells (StemCell Technologies: 100-0353) and Geltrex (Thermoﬁsher Scientiﬁc, A1413302). Lentivirus reprogramming (Sigma, SCR5451) with an MOI of 10 was also tested in Elephas maximus endothelial and epithelial cells, following manufacturer’s instructions, with the addition of transcription factors OCT4, LIN28A, and NANOG (Cellomics, PLV-10012-50, PLV-10015-50, and PLV-10075-50 respectively), each at an MOI of 10. A total of 1 x 10^5 and 1.5 x 10^6 cells were transduced per reaction, with the addition of 5µg/mL of protamine sulfate (Sigma, P3369-10G). Cells were seeded on 3T3-J2 cells (StemCell Technologies: 100-0353) and Geltrex (Thermoﬁsher Scientiﬁc, A1413302).
Cellular reprogramming
Primary *Elephas maximus* endothelial cells were used as the starting cell line for reprogramming. These cells are maintained in 30% FBS/1% antibiotic/antimycotic/1% Non-essential AA/EGM-2 media (Lonza) with Laminin521 coating (5 µg/ml; Gibco A29248). Once the cells became approximately 70% confluent, a chemical cocktail medium was used for partial reprogramming to emPRCs - KO DMEM (Gibco 10829-018) + 10% KOSR (Invitrogen) + 55 µM 2-mercaptoethanol (55 mM (1000X); Gibco 21985023) + 50 ng/ml bFGF (20 µg/ml; heat stable; Life technologies PHG0369) + 0.5 mM VPA (EtOH; Selleckchem S3944) + 5 µM CHIR-99021 (DMSO; Selleckchem S1263) + 2 µM RepSox (DMSO; Selleckchem S7223) + 10 µM Tranylcypromine (2-PCPA) HCl (DMSO; Selleckchem S4246) + 20 µM Forskolin (DMSO; Selleckchem S2449) + 1 µM Ch 55 (DMSO; Tocris 2020) + 5 µM EPZ004777 (DMSO; Selleckchem S7353). The medium was changed every two days until small emPRC colonies were observed. Once colonies reached sufficient size, they were hand-picked and mechanically passaged 2-3 times. Once a 2-3 million emPRCs were available, they were neofected with plasmids encoding genome-integrating (via Piggy-Bac), inducible, polycistronic transgene expression cassettes. These cassettes contained one of *Loxodonta africana* OCT4/ SOX2/ KLF4/ cMyc (C4) or *Loxodonta africana* OCT4/ SOX2/ KLF4/ cMyc/ LIN28a (C5) or *Loxodonta africana* OCT4/ SOX2/ KLF4/ cMyc/ LIN28a/ NANOG (C6) and [SV40 T-antigen or an shRNA targeting TP53 retrogenes in *Elephas maximus*]. Cells were recovered, selected with mammalian selection markers hygromycin and puromycin, and induced for 1 month until full emiPSC morphology, growth, and molecular signature was observed.

Immunofluorescent staining
EBs were fixed using 4% v/v paraformaldehyde (15710, Electron Microscopy Sciences, Hatfield, PA, USA) for 20m, washed three times and permeabilized with 0.5% Triton X-100 (Sigma-Aldrich, Saint Louis, MO), for 20 min. Samples were washed three times and blocked with 5% BSA, 0.05% Triton for 1 h and incubated with primary antibodies diluted in 1% BSA, 0.05% Triton-X100 overnight at 4C. Samples were washed three times and incubated with secondary antibodies for 1h at 37C, then washed three times and counter-stained with Hoechst 33342 (H1399, Invitrogen, Carlsbad, CA, USA) for 10 min. Samples were washed three times and mounted with Vectashield (Vector Labs., H100010A). Micrographs were acquired with a Zeiss AxioObserver.5 LED fluorescent microscope, High Performance microscopy camera Axiocam 705 mono R2. Objective LD A-Plan 10X/0.25 Ph1. emiPSCs were stained with custom elephant-specific antibodies for NANOG and OCT4 with TXR-anti-rabbit (Invitrogen T-2767) and SOX2 (Invitrogen MA1-014) with AF488-anti-mouse (Invitrogen A-21202). EBs were stained with for GATA4 with a custom elephant-specific antibody, PAX6 (Invitrogen MA1-109), and FOXA2 (Novus NB100-1263). Secondary antibodies used were TXR-anti-rabbit (Invitrogen T-2767), TXR-anti-goat (Invitrogen PA1-28662), and AF488-anti-mouse (Invitrogen A-21202).

Embryoid body formation
Embryoid bodies (EBs) were formed using either AggreWell 400 plates (StemCell 34450) or ultra low attachment 96 well plates (Corning 4515). Plates were pre-treated with Anti-Adherence Rinsing Solution, after which approximately 400 cells/microwell for AggreWell 400 or (5k/well) for 96-well plates in the described reprogramming medium above were added and centrifuged at 100g for 3m. Plated cells were left undisturbed for 24h at 37C with 5% CO2 and 95% humidity. After 24h, medium was changed every 48h with either AggreWell EB Formation Medium (StemCell 05893) or reprogramming medium without disturbing the cells, prior to IF and imaging.

Tri-lineage differentiation
50,000 emiPSCs were plated onto a Laminin521 coated 12 well plates and treated for 10 days with the STEMdiff Trilineage Differentiation Kit (StemCell 05230).

Chromosomal Isolation and Counting
Chromosomal isolation and counting was performed by incubating cells in for 3h at 37C. Afterwards, cells were resuspending cells in 0.075M KCl solution at 37C for 8m. Next, cells were resuspended in 1ml of fixative and gently mixed and incubated at RT for 10m. Cells were then centrifuged at 900rpm for 8m and resuspended in a fixative at RT for 10m. This fixation step was repeated twice. Finally cells were mounted onto a slide with dye for imaging.

Teratoma
200,000 - 1,000,000 emiPSCs were injected into the hindleg of immuno-compromised mice. Legs were observed daily for 6 weeks, after which tumor masses were extracted. Teratoma sections were evaluated by Histowiz.

5
Acknowledgements

The authors would like to acknowledge Beth Shapiro for helpful comments on the manuscript, and thank the members of the Colossal Biosciences Scientific Advisory Board, Conservation Advisory Board, Executive Advisory Board, and Executive Core Leadership for their conversations and support on this effort. We would also like to thank Colossal's global academic and industrial partners.
6 Author Contributions

7 Declaration of Interests

References

