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Figure 2: Example design predictions of solved structures including base multiplets and pseudoknot
interactions.

evaluate aRNAque only on the pseudoknotted samples for our comparison. We again generate 20
candidate sequences per task for the evaluation of RNAinformer.

Data We use the bpRNA dataset provided by Franke et al. (2023) which uses VL0 and TSO pro-
vided by Singh et al. (2019) for validation and testing, respectively. The datasets include non-
canonical base interactions and pseudoknotted structures.

Results We report results in Table 1 (right). Remarkably, RNAinformer solves nearly 50% of the
tasks (47.2% solved tasks), while outperforming aRNAque on pseudoknotted structures by a margin
of more than 10% (19.8% solved tasks compared to 9.4%). Again, we observe that RNAinformer
generates various solutions for most of the tasks as shown in Table 7 in Appendix E.

4.3 RNA DESIGN WITH ALL KINDS OF BASE INTERACTIONS

In this section, we investigate the ability of RNAinformer to design RNAs from structure data that
contains all kinds of base pairs. To account for the difficulty of the task, we sample 100 sequences
instead of only 20 sequences.

Data For our evaluations, we use the inter-family dataset provided by RnaBench (Runge et al.,
2024). This dataset uses the test sets TS1, TS2, TS3, and TS_hard provided by (Singh et al., 2021).
All dataset contain structures with both pseudoknots and base multiplets.

Results We observe that RNAinformer cannot solve structures for the different testsets, indicating
that designing sequences for structures with all kinds of base pairs seems to be much more challeng-
ing than for nested structures or structures with pseudoknots only. However, for all samples with
base multiplets, we predict more than two of the multiplets present in the structures correctly on
average, reported in Table 8 in Appendix E. Furthermore, Figure 2 shows examples of the training
predictions that solve structures that contain base multiplets as well as pseudoknots. We conclude
that RNAinformer is generally capable of designing RNA sequences from structures that contain
all kinds of base interactions. Nevertheless, we admit that further improvements in performance
might require adjustments to our model like scaling in terms of model size or applying a finetuning
strategy.

5 CONCLUSION

In this work, we propose RNAinformer, the first RNA design algorithm capable of designing RNA
sequences for structures that contain all kinds of base interactions, including non-canonical base



bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584209; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
. available under aCC-BY 4.0 International license.
Preprint

pairs, pseudoknots, and base multiplets. We demonstrate the strong performance of RNAinformer
on tasks with nested structures only, tasks that contain pseudoknots, as well as on experimentally
derived structures with all kinds of base interactions. We think that RNAinformer is a useful basis for
future approaches to RNA design and expect it to be of great value for the RNA design community.
For the future, we plan to further condition our model on different properties of RNA, to e.g. design
RNAs with desired G and C nucleotide ratios.
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A MODEL DETAILS
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Figure 3: Overview of matrix input processing in RNAinformer.
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Figure 4: Overview of nucleotide sequence generation.
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B TRAINING DETAILS

Table 2: Hyperparmeters for RNAinformer training.

Group Parameter Value
Ir 0.001/0.0003

weight decay 0.1

Ovtimizer betas 0.9,0.98
P Warmup steps 1000
LR schedule cosine annealing

LR decay factor 0.1

Model dim 256

Layers 6

Num head 4

Model FeedForward factor 4
FeedForward kernel 3

Dropout 0.1

Trainin Batch size 128/64
& Max steps 50k/100k

C DATASETS

Table 3: Overview of the Rfam dataset.

Set #Samples Avg Length Pseudoknots Multiplets
Rfam-Train 276242 75 0(0.00%) 0(0.00%)
Rfam-Valid 2291 73 0(0.00%) 0(0.00%)
Rfam-Test 2979 71 0(0.00%) 0(0.00%)
Table 4: Overview of the bpRNA dataset.
Set  #Samples Avg Length Pseudoknots Multiplets
TRO 25324 77 922(3.64%) 0(0.00%)
VLO 603 78 30(4.98%) 0(0.00%)
TSO 600 77 32(5.31%) 0(0.00%)
Table 5: Overview of the Inter-family Dataset.
Set #Samples Avg Length  Pseudoknots Multiplets
Train 19540 73 2047(10.47%) 1330(6.80%)
Valid 494 77 462(93.52%) 13(2.63%)
TS1 54 61 43(79.62%)  40(74.07%)
TS2 36 45 23(63.88%)  26(72.22%)
TS3 16 67 15(93.75%) 15(93.75%)
TS-Hard 25 55 17(68.00%) 18(72.00%)
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D METRICS

Valid Sequences We measure the efficiency of the generative process by the number of valid
sequences that are produced for each task.
#ValidSequences

ValidS = 2
araocquences #CandidateSequences @

Diversity To measure the diversity of the valid sequences generated for a target structure, we use
the pairwise Hamming distance. For N valid sequences of length [ the diversity is defined as,

NN
Diversity = i Z Z 7 Z H(Sik, Sjk) , 3
i k=1

J
where H(S;x, S;jk) describes the positional Hamming distance:

0 if Sik, = Sk
1 else

H(Sik, Sjr) = { €]

F1 Score The F1 Score is a commonly used performance measure to assess the quality of sec-
ondary structure prediction algorithms. It is based on the confusion matrix, which describes the
number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
when comparing a predicted structure to the ground truth. The F1 score is the harmonic mean of
precision and sensitivity, defined as:

2.-TP

Fl = Py rP+ N )

Matthews Correlation Coefficient Compared to the F1 score that emphasizes on positives, the
MCC is a more balanced measure (Chicco & Jurman,[2020). The MCC can be calculated as follows.

(TP-TN) - (FP - FN)

MCC =
V(TP +FP)-(TP+FN) - (TN + FP)- (TN + FN)

(6)

For each task in a test set we take the maximum F1 and MCC scores achieved by a candidate
sequence, and report the average over these values across three random seeds.

E ADDITIONAL RESULTS

Table 6: Results for the design of RNAs for nested structures of the Rfam dataset.

Model Test Set  Solved Valid Sequences Diversity F1 MCC
RNAinformer Rfam 0.987+0.007 0.409+0.008 0.713+0.001  0.999+0.001 0.999+0.001
LEARNA Rfam 0.648 0.222 0.547 0.965 0.966
Meta-LEARNA Rfam 0.643 0.223 0.547 0.965 0.966
Meta-LEARNA-Adapt Rfam 0.641 0.222 0.542 0.963 0.964

Table 7: Results for the design of RNAs including pseudoknots using the bpRNA dataset.

Model Test Set  Solved Valid Sequences  Diversity F1 MCC

RNAinformer BpRNA  0.47240.002 0.529+0.004 0.285+0.003  0.689+0.005 0.698+0.006
pK 0.198+0.048 0.247+0.116 0.097+0.019  0.550+0.027  0.564+0.027

aRNAque pK 0.094 1.000 0.222 0.824 0.831
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Table 8: Results for RNA design for experimentally validated structures with all kinds of base

interactions.
Test Set F1 MCC Multiplet Hits Total Multiplets
TSI 0.388+0.018 0.42640.018 2.35 13.00
TS2 0.498 + 0.006  0.52440.009 2.31 9.92
TS3 0.297 + 0.015 0.3334+0.019 2.58 13.87
TS-Hard  0.363+ 0.025 0.391+0.026 2.19 12.67

F FOLDING ALGORITHMS

Table 9: Tasks and folding algorithms.

Task Folding Algorithm
Biophysical Model Inversion RNAfold
Pseudoknot Design RNAformer
Multiplet Design RNAformer
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