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Summary
Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion,
and by the metabolic reactions that organisms activate as a function of the surrounding
environment. While microbial colonies have been explored using minimal models of growth and
motility, full integration of biomass propagation and metabolism is still lacking. Here, building
upon our framework for Computation of Microbial Ecosystems in Time and Space (COMETS),
we combine dynamic flux balance modeling of metabolism with collective biomass propagation
and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations
produced realistic colony morphology, consistent with our experiments. They characterize the
transition between smooth and furcated colonies and the decay of genetic diversity.
Furthermore, we demonstrate that under certain conditions, biomass can accumulate along
“metabolic rings” that are reminiscent of coffee-stain rings, but have a completely different
origin. Our approach is a key step towards predictive microbial ecosystems modeling.
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Introduction
Understanding the interplay of biological and physical processes in microbial growth is a
long-standing endeavor of considerable relevance to multiple research areas.1–7 Microbial
colonies on agar surfaces serve as a valuable model system to study ecological, evolutionary,
and even developmental processes.5,7–10 Spatial and metabolic heterogeneity is ubiquitous
across ecosystems,11–13 from complex communities14,15 of oceanic,16–18 or soil19 microbes to
microbiota associated with plant roots,20–22 or animal digestive tracts23 to pathogenic
communities growing on catheters24 and other medical implants. The familiar and apparently
simple experimental system - Escherichia coli growing on an agar-filled Petri dish, is no
exception. The growth of a microbial colony is a highly complex spatio-temporal phenomenon,
involving the microenvironment-dependent metabolic activity and growth properties of the cells
themselves,8,25–27 the diffusion of molecules and the propagation of cells on the agar,28 and the
randomness induced by fluctuations in the birth-death process.13,29,30

Abundant work has been carried out to characterize experimentally biofilms on surfaces,31,32

showcasing a plethora of colony morphologies for different species and environmental
conditions.31,33–35 Similarly, from a computational and theoretical perspective, there is a long
tradition of developing reaction-diffusion36–38,39,40 and individual-based models13,41 to understand
the origin of these spatial patterns. Such simple, phenomenological models have rationalized
many empirical observations, but, given their simplicity, it is likely that some phenomena cannot
be easily captured without a more mechanistic description. Moreover, phenomenological models
do not explicitly cell physiology or growth conditions, and thus cannot be used to understand
species differences or environmental drivers.

Despite their plain looks, microbial colonies are exquisitely complex and display distinct
metabolic regimes in different microenvironments.42 Colonies grown on different media, and
involving different organisms, could lead to drastically different behavior. This is due to the high
dimensionality of parameters space involved: a typical bacterium harbors on the order of 103

metabolites and reactions43; a typical agar plate involves dozens of nutrients; 44 and even the
physical parameters of a Petri dish can play a key role in determining microbial
physiology1,3,36,45–48. If one could simultaneously model all of these complexity, i.e. the metabolic
activity of cells as a function of surrounding environment and the biophysical processes
responsible for colony growth, it would be possible to achieve a predictive quantitative
understanding of colony formation under varying conditions, with applications to biomedical
research, environmental microbial ecology, and biotechnology.

Here, we merge the physical sophistication of the phenomenological models described above,
with the biological accuracy and completeness of genome scale models, to implement a new
biophysical model of microbial growth. Genome-scale models of metabolism, also known as
stoichiometric constraint-based models, use information about the set of all known reactions in a

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.13.584915doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=14768179,14197216,3279047,15672478,15357539,4737323,2065507&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=7039206,15357539,2065507,15908974,13080040&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=15909632,3302799,13425588&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=15909607,11172276&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=452698,13204330,16068993&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4078057&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5288514,14596383,15851189&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1455498&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6678741&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7039206,15825243,8036995,1239261&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=11726671&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3302805,14768332,13425588&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=13614223,148850&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13614223,1357972,14768193,8129285&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=14768183,14768229,2161341&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=14833455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=866636&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14768228,13425588&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8900771&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=165601&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16005500&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14768245,14768320,14768247,3279047,14768179,14768183,14833661&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
https://doi.org/10.1101/2024.03.13.584915
http://creativecommons.org/licenses/by-nd/4.0/


cell and their stoichiometry to infer putative steady states that can maintain efficient growth
given a set of environmental nutrients43,49,50. Previous efforts have taken important steps towards
the development of integrated approaches in bacterial cellular51,52 and colony modeling,53,54 that
combine the biophysical models of biomass propagation with the systems biology approach of
genome-scale stoichiometric modeling49 of metabolism. However, to our knowledge, no single
simulation framework has so far integrated genome scale modeling with the multiple biophysical
processes known to potentially affect microbial growth in structured environments. We
hypothesize that, in addition to providing a more comprehensive and flexible platform for
biological systems simulation and quantitative predictive power, such an integrated framework
would have the chance of uncovering new phenomena that depend on the concurrent effects of
these multiple processes.

Our approach is to integrate the time-tested models of cellular biomass propagation,55

demographic fluctuations,56,30 and a model of core cellular metabolism,50 to produce remarkably
realistic colony morphologies, and uncover novel colony features that depend on the interplay of
physical and biological processes (Fig. 1). At the core of our method is the genome scale
modeling of metabolism, as implemented in our software platform COMETS (Computation of
Microbial Ecosystems in Time and Space).54 This mechanistic description of cellular metabolism
makes it possible to obtain growth rates and nutrient fluxes in an environment-dependent way,
alleviating the need to restructure the model upon changing conditions and creating a direct
correspondence between the time scales in the experiments and simulations. Metabolic fluxes
are determined dynamically across space via dynamic Flux Balance Analysis (dFBA)27,57 carried
out independently for each point of a spatial grid.

Previous versions of COMETS were handling biomass propagation through standard linear
diffusion equations.27 This approach has been implemented also in other frameworks for
modeling microbial growth, leading to valuable insight.53,58–60 However it is known that the
propagation of cells through a biofilm is strongly affected by additional processes, which we
added in our newly released version of COMETS. A first aspect we now explicitly take into
account is the presence of cooperative and nonlinear processes, which can greatly affect colony
morphology. In particular, it is known that microbial biomass can behave in ways that are
drastically different from inanimate matter, most notably through biophysical processes that
cause cells to diffuse more efficiently when surrounded by many other cells.61–63 This
cooperative propagation of cellular biomass can be caused by a number of distinct phenomena,
including mechanical interactions (cell-cell pushing), production of a polymer matrix, or secretion
of a carrier fluid that enables swimming, etc. In all such situations, the higher the biomass
density, the greater the cumulative effect of their collective propagation, enabling more efficient
motion of individual cells.

A second novel aspect of our model is the implementation of demographic fluctuations56,30 due
to the stochastic nature of the cellular birth and death processes. The fluctuations create
population irregularities which could be damped or amplified by the growth dynamics. Perhaps,
more importantly, demographics underlie all evolutionary modeling and can even cause local
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extinctions and fixations of a specific genotype.64 In the context of colony growth, these fixation
events manifest in the formation of monoclonal sectors,12,29,62,65 which are typically visualized
with fluorescent markers (Fig. 1B).

As described below, our new COMETS enables the simulation of many emergent properties of
biomass propagation on surfaces. We first recapitulate previous findings in minimal models, but
then extend them to complex metabolic models and new environmental conditions. We also
report fundamentally new phenomena such as the emergence of a “metabolic ring” that is
visually similar, but conceptually very different from the classical coffee stain ring caused by
evaporation-induced fluid flows.66–69 The new version of COMETS paves the way for better
integration of biological and physical processes, with important consequences for predictive
modeling of biological systems in structured environments.

Figure 1. The integrated simulation methodology of COMETS realistically reproduces several colony
features.
(A) Schematic overview of the three methods implemented in COMETS: (i) the genome-scale
stoichiometric modeling of the cellular metabolism, (ii) the nonlinear biomass propagation model, and (iii)
the demographic noise.
(B) Simulations capture some salient features of a bacterial colony: (i) initial inoculum surrounded by a
metabolic ring (not related to the coffee-stain effect), (ii) heterozygous region (yellow) during early stages
of colony growth, (iii) single strain homozygous regions (red and green), and (iv) unstable branching
(furcating) growth front.

Results

Detailed biophysical models predict colony size and expansion
rate across environments
We created a new version of COMETS that combines the metabolic dFBA components
described before54 with a new more realistic description of the biophysical processes
responsible for biomass propagation. The implementation of dFBA, unchanged relative to prior
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versions, solves FBA in iterative discrete time steps, by translating extracellular metabolic
concentrations into uptake flux bounds, and effectively assuming that intracellular metabolism
reaches steady state faster than the rate at which external resources are accumulated or
depleted. While the mathematical details of the approach and a description of the computational
implementation are described thoroughly in the Methods section, we highlight here briefly the
major achievements of the newly designed COMETS algorithm.

Figure 2. Genome-scale metabolic modeling is more realistic than the single-metabolite minimal model.
Examples of simulated bacterial colonies modeled with:
(A) Minimal model in presence of a single nutrient. The entire metabolic network consists of a single
reaction that converts the nutrient into biomass.
(B) E. coli core model in a complex nutrient substrate with glucose as a limiting carbon source; similar to a
real bacterium, the model cannot grow on just glucose and needs minerals, cofactors, and a source of
nitrogen. (C) the minimal model as in (A), with the biomass yield set to produce the same amount of
biomass from a single nutrient as the amount produced by the E. coli stoichiometric model fed an
equivalent amount of glucose. (D) E. coli stoichiometric model in complex nutrient substrate similar to the
substrate in (B), but with ammonia replaced with glutamate as a source of nitrogen. The biophysical
model for spatial propagation of the biomass is exactly the same in all three cases. The insets show the
growth curves and the red dots refer to the time points for which the colony images are shown. Note that
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COMETS predicts colonies comparable in size with those observed experimentally, while the minimal
model in (A) predicts a much faster growth, unless its yield is adjusted to match the E. coli model in (C).

The points in the COMETS spatial grid are assumed to exchange with each other both
metabolites via regular diffusion and biomass via a propagation process. The latter is described
by a biophysical model of cooperative biomass propagation.13,55 The cooperative mode of
biomass propagation emerges in growth conditions where cells cannot move independently, e.g.
by swimming and instead rely on other mechanisms such as pushing onto each other as they
grow. The spreading of the biomass in such crowded conditions is often cooperative since the
dense the packing the more effective the pushing. Hence, in our model, the effective diffusivity
of the biomass ( ) increases with the biomass density (b) as: , where and are𝐷

𝑏

parameters of the model. Note that here we purposefully neglect the presence of additional
diffusion terms associated with active motility (see also Discussion). Based on prior evidence,
13,55 we assume that throughout all the simulations presented here. It is also important to𝑘 = 1 
note that the capacity of cells to propagate on the surface ( ) is growth-dependent (see
Methods). This assumption is based on experimental observations of reduced cell-motility in the
colony center due to nutrient limitation, extracellular matrix or mechanical jamming.70

The new version of COMETS also includes an implementation of demographic fluctuations,
which affect both the overall shape of the colony and the spatial distribution of genetic variants
(sectors).12,13,29 The variance of demographic fluctuations is proportional to the local biomass
concentration, and their probability distribution is approximately Gaussian except at very low
biomass densities.29 We relied on this Gaussian approximation, but ensured that the biomass
remains non-negative. This was achieved by deploying the split-step method which separates
the deterministic from the stochastic simulation step56 (see Methods). In some simulations, we
also included non-demographic, e.g. environmental, fluctuations by adding a normally
distributed random variable to the growth rate predicted by dFBA (see Methods).

To illustrate the value of a model with a detailed metabolic network, we compared it to a
minimal phenomenological model while keeping everything else equal. The stoichiometry-based
model, different sources of carbon, nitrogen and other nutrients can be absorbed, metabolized,
interconverted and ultimately used to synthesize biomass with specific stoichiometric ratios as
described in the standard model of core E. coli metabolism.50 The minimal model (based on
prior work by Müller and Van Saarloos (2002)) can also be implemented in COMETS by defining
a single reaction that directly converts a growth-limiting nutrient (in this case, glucose) into
biomass (see Methods). To make a fair comparison, all non-metabolic aspects such as biomass
propagation and demographic noise were identical for the two models. The only difference
between the simulations was in the cellular metabolic networks. The single-nutrient model
contained a single reaction that converted glucose into biomass. We tested the single-nutrient
model at two levels of biomass to glucose yield ratios. First we simulated a yield ratio of one, as
implemented in prior theoretical work.55 Next we adjusted the glucose to biomass ratio to the
mean batch culture yield of the E. coli core model (see Methods). For the metabolically realistic
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COMETS, we used a model of the core metabolism of E. coli50 (see Methods). This model has
been extensively studied, and the uptake parameters reproduce growth rates of E. coli in
experiments.57

We started with a growth medium that contained glucose as the only growth-limiting nutrient.
The minimal model (with yield=1) and the COMETS E. coli models produced very different
results (Fig. 2A and 2B) both in terms of time-scale, but also in terms of morphology features.
While the COMETS model tracked realistically the typical growth curve of E. coli,26,71 the minimal
model predicted a much higher growth rate presumably due to the unrealistic yield, and to the
fact that it did not account for the various “overhead” reactions necessary to build a cell. In part
because of this growth rate difference, the morphologies in the two simulations were also
distinct. The minimal model predicted a nearly smooth while the colony had strong front
furcations in the COMETS simulation.

When we adjusted the biomass to glucose yield ratio in the minimal model to the one that
matches the yield of the E. coli core model batch culture (Fig. 2C), the growth curve and the
colony morphology came much closer (although not exactly the same) to the one produced by
the E. coli core model (Fig. 2B). Thus the minimal model, with appropriate manual tuning of the
biomass yield or the nutrient concentration, seems to approximate reasonably well the much
more complex COMETS model. The limited utility of such a fitting procedure, however, becomes
apparent when environmental conditions are changed. As an example of this, we repeated the
simulations described above with the same glucose concentration, but with ammonia replaced
by glutamate as a source of nitrogen (see Fig. 2D). This substitution effectively replaces the
minimal medium in Fig. 2B by a richer medium in Fig. 2D. Consistent with experiments, the
simulations predicted much faster growth in the rich media. It would be impossible to make such
a prediction using the minimal model. One would have to artificially adjust either the
concentration of the carbon source or the biomass/carbon source yield to artificially match the
observations.

Not only the minimal model requires a different fit for any change in composition of the growth
media, but also it is completely incapable of describing diauxic shifts72,49,57 or other changes in
nutrient consumption during colony growth. Similarly, the minimal model would not be able to
take into account metabolic regime changes that may be induced by local depletion of
metabolites or accumulation of byproducts, let alone cross-feeding in a multi-species
consortium. Thus, a realistic description of cellular metabolism is essential if one hopes to
capture the whole spectrum of growth patterns that can occur in any meaningful experiment.

COMETS simulations for E. coli match experimentally-observed
growth curves and colony morphologies
To assess the accuracy of COMETS predictions, we compared the growth of a simulated E. coli
colony to experiments performed under the same conditions (Fig. 3). The main plot in Fig. 3
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displays the simulated colony radius, compared with corresponding experimental
measurements (see also growth curve of the total (integrated) colony biomass in the inset). The
growth is initially close to linear, consistent with prior theoretical and experimental studies.73 As
nutrients become scarce, growth slows down (see Fig. 3, inset) and eventually stops around
day six. The experiments were carried out in a six-well plate, on relatively hard agar with R2A
media supplemented with glucose (see Methods). The simulations used exactly the same
spatial dimensions. In simulations, the nutrient concentrations were adjusted to account for the
differences between the composition of the R2A media and the metabolites included in the E.
coli core model (see Methods). The three fitting parameters were the biomass diffusivity, the
diffusivity cutoff (see Methods) and the strength of the demographic noise, of which only the
biomass diffusivity plays a major role in this case.

Figure 3. COMETS simulations of the growth of an E. coli colony are very close to the actual colony
growth observed experimentally.
The main curve shows the diameter of the simulated colony. Below the growth curve are 4x microscopy
images (taken daily) of an E. coli colony grown on an agar plate in the lab. The images above the growth
curve show the corresponding snapshots of the simulated E. coli model. The inset shows the total
simulated biomass, and the simulated depletion of glucose at a single spatial point at the plate edge, 1.5
cm from the center.

In addition to the quantitative comparison of the colony radius, it is useful to perform a
qualitative comparison of colony morphologies. The agreement between the experiments and
simulations can be judged from the images of actual (microscopy, see Methods) and simulated
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(COMETS) colonies shown below and above the growth curve respectively. We see that both
actual and simulated colonies begin to grow slower around day 6, have similar roughness of the
colony edge, and exhibit a comparable accumulation of the biomass around the inoculation site
(see the last section in Results).

Demographic noise and biomass motility control branching and
sectoring
The visual agreement between experiments and simulations encouraged us to ask whether we
can successfully reproduce not only the temporal dynamics of the biomass growth, but also the
spatial morphology along all of the stages of the colony development under different conditions.
Specifically, a question that has attracted a lot of interest in the past and has been studied both
experimentally46,47 and with minimal models13,60 is how colony shape is influenced by the agar
hardness and the concentration of the nutrients in the substrate. Characteristic colony
morphologies were found in different regions of the agar-nutrient “phase space” for E. coli 47 and
other bacteria45 (see Fig. 5).

As a first step, we sought to recapitulate the most salient changes in colony morphology, i.e. the
transition between smooth and rough (or furcated) fronts. In both experiments[ref] and minimal
models[ref], furcated fronts were observed under reduced cellular motility or nutrient
concentration. The onset of front roughness is driven by the shifting balance between a
stabilizing effect of biomass motility and a destabilizing effect of nutrient diffusion. Whenever a
small protrusion appears, biomass diffusion tends to even it out. In contrast, nutrient diffusion
leads to a greater nutrient flux towards the tip of the protrusion thereby increasing its growth rate
and further destabilizing the interface.

Figure 4. The transition from furcated to smooth growing front for the E. coli model.
(A) The morphology of the growth front changes as the biomass diffusivity is increased. For low biomass
diffusivity, the front is furcated (red empty points), but the front is smooth (solid blue points) at higher
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biomass diffusivities. The fronts are never perfectly flat because of the demographic fluctuations (
) and the additional noise in the growth rate (about 0.3%). To distinguish the regime of

instability (red circles) from the regime of noise-induced roughening (blue dots) we examined the peak of
the Fourier transform of the growth front position as shown in Fig. S1. The peak in the transform decays
across the transition from furcated to smooth fronts, but then remains constant as the biomass diffusivity
increases even further.
(B) Higher amplitudes of the demographic noise lead to a more furcated growth front.
All simulations started with a flat uniform biomass at the lower edge of the square layout. The diffusivity of
the nutrients was the same 6·10-6 cm2/s in all simulations. The nutrients were initially supplied in the entire
layout, and subsequently kept at that concentration at the top edge of the layout.

We wanted to confirm whether a similar transition between smooth and furcated fronts can be
observed in COMETS. To that end, we varied the biomass motility by adjusting in the model,
while keeping all other parameters including the nutrient diffusivity fixed. We indeed found a
transition between smooth and rough fronts (see Fig. 4A). To quantify the transition we used the
standard measure of interface roughness, defined as the root mean square deviation of the
interface “height” (outward expansion distance, the y-coordinate) averaged over the length of
the front (the x-coordinate). We found that the roughness stayed constant at high values of ;
in this regime front undulations reflect demographic fluctuations and are expected to fall into
Kardar-Parisi-Zhang (KPZ) universality class.74 Below a certain threshold, however, roughness
increased rapidly as became smaller, indicating the onset of a growth instability.

While, historically, the above transition was studied deterministically, we took advantage of our
new platform to explore the effects of demographic noise on this transition (Fig. 4B). We
simulated colony at a fixed value of the biomass diffusivity ( ), a value
moderately removed from the onset of the growth instability (see Fig. 4A), and increased the
demographic noise amplitude over four orders of magnitude. The interface roughness increased
with noise and eventually approached the values found for unstable growth at low . This
increase however was very slow and without a sharp transition. Therefore, we conclude that
demographic fluctuations facilitate the onset of branching by promoting the growth instability
and should be included not only in simulations of colony growth but also in related models of
tissue invasion by pathogens and even tumor growth.

Given that our simulations fully recapitulate the classic transition from smooth to furcated fronts,
we can now explore new questions about the morphology and diversity of microbial colonies. To
that end, we carried out simulations of initially circular colonies, which is the typical shape after
inoculating with a drop of a liquid culture. We also included genetic diversity to capture the
formation of sectors. This was accomplished by starting the simulations with a homogeneous
mixture of two neutral genotypes, i.e. strains with identical metabolic networks and biomass
diffusivity, but a distinguishing heritable marker such as a chromosomal insertion of a gene
encoding a fluorescent protein (Fig. 5A).
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Note that, since these neutral strains have identical growth rates, the colony morphology is not
affected by the fact that we start with a mixture. Below, we first describe colony morphologies
and then proceed to discuss sectoring.

Biomass diffusivity , as we saw in Fig. 4, is only one of many parameters that can drive the
transition between smooth and furcated fronts. Historically, most of the attention has been paid
to the nutrient availability and biomass diffusivity because these can be easily tuned in the
experiments by varying glucose and agar concentrations respectively. The corresponding phase
diagram for our E. coli model recapitulates previous theoretical and experimental findings and is
shown in Fig. 5A. Little to no growth occurred at low nutrient concentration and biomass
diffusivity (bottom left corner in Fig. 5A). Moreover, most of the growth occurred near the colony
edge resulting in a ring-like appearance of the final colony (see the next section). A branched
morphology was observed when either nutrient concentration or biomass diffusivity were
increased. An increase in the biomass diffusivity produced more disjoint branches compared to
an equal increase in the glucose concentration. The branches tended to thicken and merge as
the growth conditions became more favorable. At the top right corner of the diagram, we found
another morphology—a smooth disk. This is consistent with empirical observations of smooth
round colonies found in soft agar with excess nutrients.47

Our simulations also provide evidence of the importance of metabolic details for an accurate
description of colony growth. For example, we found that the increase in the glucose
concentration had a stronger effect on the colony morphology than the same-fold increase in the
biomass diffusivity. Previous work on minimal models suggested that the two parameters are
interchangeable and, in fact, all aspects of colony morphology are controlled by a single
dimensionless parameter proportional to .13 While this prediction holds largely true
in our simulations, there are some noticeable departures as well. These can be seen clearly
along the main diagonal, which shows different branching patterns for three conditions with
identical . Our results thus show that some predictions of the minimal models rely
on their simplifying assumptions about the functional form of the growth rate and do not hold in
general.

To better understand the differences between the minimal and the E. coli models, we varied
nutrient uptake parameters in our simulations. In the minimal model, the nutrient uptake is linear
in both the nutrient concentration and the biomass density. A more general Michaelis-Menten
type kinetics is used in COMETS (see Methods). We first examined how colony morphologies
depend on the the maximum uptake parameter (Fig. S4). A greater value of the maximum𝑉

𝑚𝑎𝑥
 

uptake leads to a greater growth rate, which of course changes the relative time scales of
growth, motility, and nutrient diffusion. As a result, the morphologies at different were quite𝑉

𝑚𝑎𝑥
 

different regardless of whether we compared colonies of the same total biomass (Fig. S4a) or
the same radii (Fig. S4b).
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Figure 5. Genetic demixing and colony morphology show a similar pattern of variation across different
growth conditions for the E. coli model.
(A) Snapshots of fully-developed colonies for varying nutrient concentration and biomass motility. Note
that both factors promote growth, reduce branching, and suppress genetic demixing. Different colors
represent two metabolically-identical strains of E. coli.
(B) Quantitative characterization of genetic demixing, in the direction of the colony growth. Here,
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heterozygosity is the probability to sample two different colors at the same spatial location.
(C) The colony morphology is determined by the concentration of the limiting nutrient. Here we varied the
concentration of glucose as a source of carbon, and ammonia as a source of nitrogen. For very low
values of ammonia, the change of glucose concentration has no effect on the colony morphology. The
growth of the colony is dictated by the uptake of ammonia, as illustrated in (D).
These simulations were carried out in a square 4cm by 4cm spatial domain with a fixed nutrient
concentration at the boundary. These boundary conditions allowed us to delay nutrient depletion and thus
approximate growth in a larger Petri dish. Initially, the nutrient concentration was uniform and matched the
boundary conditions. The diffusivity of the nutrients was 6·10-6 cm2/s across all conditions. We used
minimal media with minimal salts and glucose as a source of carbon. The colonies were inoculated with a
“flat” homeland drop at the center of the simulation domain (see Methods).

We then examined the effects of varying the Michaelis constant (Fig. S5). The colony𝐾
𝑀

morphologies remained virtually unchanged when was varied by two orders of magnitude𝐾
𝑀

around its value for E. coli growing on glucose. This lack of sensitivity can be easily explained
by the fact that the value of the Michaelis constant is very low compared to the limiting nutrient
concentrations below which the growth stops, so the growth is predominantly occurs at very
high, close to maximum, uptake rates, governed by and not by . Thus, unlike in the𝑉

𝑚𝑎𝑥
𝐾

𝑀

minimal model, the nutrient uptake in COMETS was proportional to the biomass but not the
nutrient concentration. Despite this major difference, the branching morphologies obtained in
both types of simulations were remarkably similar, which implies that the functional form of
nutrient uptake is not the major controlling factor of colony shapes. Note that these conclusions
may not extend to a different organism growing in a different environment, which again
highlights the utility and ease-of-use of simulations grounded in realistic biochemistry compared
to the minimal model.

Colony morphology is only one manifestation of the spatio-temporal growth process in microbial
population dynamics. To get a better picture of how environmental conditions affect population
dynamics, we looked into the changes of genetic diversity during colony growth. Our simulations
allow for inclusion of several types that have identical growth rates and can be viewed as
neutral mutants or fluorescently labeled strains. Because the mutants are neutral, the colony
growth and morphology is not affected by whether the simulations are started with a single
strain or a mixture. The opposite, however, is not true: the growth dynamics of the colony and its
morphology have a strong effect on genetic drift, i.e. on the spatial distribution and temporal
changes of the abundances of the two strains.

To probe these evolutionary dynamics, we started simulations with a uniform distribution of the
two strains within the inoculation site. Because the strains are labeled as green and red, the
mixed region appears as yellow (see Fig. 5A). As the colony grew, it either stayed mixed, e.g. at
high glucose concentration and high biomass motility, or the two strains segregated spatially
forming red and green sectors. This genetic demixing reflects local extinction of one of the two
strains due to demographic fluctuations. We emphasize that the strength of the demographic
noise was the same across all the environments shown in Fig. 5A. Thus, the different rates of
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extinctions reflect the difference in the degree to which the growth dynamics of the colony
amplify or suppress demographic fluctuations.

Similar to previous studies,13 we find that sector formation and branched morphologies go hand
in hand. In all branched colonies, each of the branches is homozygous for a particular color.
This fixation occurs in the early stages of colony growth at low nutrient concentrations. In
contrast, a clear region of mixed growth (yellow ring) is present at higher nutrient concentration
(and to a lesser extent at higher biomass motility). Under the most favorable growth conditions,
genetic demixing is weak or completely absent.

The same conclusions can be drawn from Fig. 5B, which shows how the probability to sample
two different colors at the same spatial location depends on the radial distance away from the
inoculation site. While this metric, known as local heterozygosity, loses the information about the
sector shapes, it removes any ambiguity in interpreting the color changes in Fig. 5a. In
particular, the quantitative plots in Fig. 5B shows that the demixing transition is rather sharp, and
there are significant regions of the colony which are either fully mixed or fully demixed.

One of the advantages of including the full stoichiometric metabolic network in our model of E.
coli is that we can study the role of nutrients other than the carbon source on the morphology of
a colony. If carbon is plentifully supplied, nitrogen or phosphorus supply may be what limits the
growth of the biomass, and that limiting factor may affect the spatial spread of the colony, and
consequently its morphology [ref 69]. To probe such dynamics, we examined the role of
ammonia as a limiting source of nitrogen.

Figure 5C shows the effects of glucose and ammonia supply. Regardless of the glucose
concentration, when ammonia concentration is low, colonies consist of a few spread-out
branches fixed for one of the two genotypes. This is similar to the effect of glucose limitation in
Fig. 4A, which suggests that colony dynamics, albeit not exactly the same, are similar when
some of the required nutrients are scarce. When ammonia is abundant, the colony growth is
controlled by the glucose concentration, and we recover the results reported if Fig. 4A. At
intermediate concentrations of ammonia, both nutrients have comparable effect on colony
growth broadly consistent with the idea that higher nutrient levels result in fewer branches and
slower genetic demixing.

These conclusions are further supported by Fig. 5C, which shows ammonia uptake rates across
nutrient concentrations. When one of the nutrients is scarce the uptake rate is low and limited to
the tips of the growing branches. Note that abundance of the other nutrient cannot compensate,
i.e. the uptake rates remain low despite either ammonia or glucose being in excess. Only when
the concentration of both nutrients is increased do we observe a corresponding increase in the
ammonia uptake rates and the concomitant change in the roughness of the colony edge.
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Figure 6. COMETS simulations predict a ridge of higher biomass growth around the initial colony
homeland. The COMETS biophysical model does not include any capillary effects, which makes it
possible to distinguish the metabolic ring from the similar capillary coffee-stain effect.
(A) A growth sequence demonstrating the formation of the metabolic ring. The top images are simulated
colonies viewed from above. The bottom images are estimated colony heights based on the biomass
content in each pixel of the simulation grid, assuming that the biomass density is the same as that of
water. Note that the ring forms very early, right before the colony starts to expand outward. See also
Supplemental Video.
(B) The metabolic ring is more prominent for colonies grown on hard agar (top row) than on soft agar
(bottom row) in both experiments and simulations. The concentration of all nutrients is exactly the same
and the only difference between the two growth conditions is the agar concentration in the experiments
and biomass motility and demographic fluctuations in the simulations. The latter was adjusted to better
match the roughness of the colony front, and this adjustment might reflect the real effect of harder agar on
the strength of demographic fluctuations.
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Initial colony growth results in a “metabolic ring” around the
inoculation site
Most of the experimental and theoretical work presented here so far focused on the
two-dimensional shapes of microbial colonies. The colony images in Fig. 3 however, point to a
strong variation in the biomass density along the radial direction. Since cells are nearly
incompressible, density variations likely reflect also the changes in colony thickness. Thus, our
simulations can describe colony shape in all three spatial dimensions.

Perhaps the most striking three-dimensional feature in our simulations is a prominent
circularly-symmetric peak of cell density near the inoculation site. At first sight, this ring of
excess biomass resembles the coffee-stain or coffee ring effect, i.e. the pileup of cells along the
boundary of the initial droplet placed on the Petri-dish. The coffee-ring effect has been
documented in both living 67 and nonliving66,69 matter, and it occurs due to boundary pinning and
outward fluid flow during evaporation.66 Evaporation typically lasts less than an hour, i.e. the
coffee ring is formed before the colony starts to expand. Our simulations, however, do not
account for these aspects of pre-growth fluid dynamics and are initialized with a flat,
pancake-like mini colony. Thus, the biomass ring in our simulation is due to the growth dynamics
itself, rather than to not the classical coffee-ring effect. To make this distinction clear, we will
refer to the ring emerging in our simulations as a “metabolic ring”.

The emergence of the metabolic ring is shown in Figure 6A and Video 1. The simulations begin
without a coffee-ring (pancake-like initial conditions), but the metabolic ring quickly appears and
is clearly visible at 10h. The difference between the metabolic ring and the growth front is,
however, not apparent at this time. The two regions, however, become distinct as the colony
expands. In particular, the last time point (100h) shows that the colony consists of three regions:
a sharp increase in biomass density at the edge, the more gradual increase in thickness from
the edge towards the metabolic ring, and a low density region in the colony interior (FIg. 6A).

Our simulations predict that the biomass content of the metabolic ring (a proxy for colony
thickness) varies with the environmental conditions. The ring is most prominent at low nutrient
concentrations and low biomass diffusivity, but it is much weaker in more favorable growth
conditions. In order to test this prediction, we grew E. coli colonies on substrates with several
different agar concentrations (see Methods and Fig. S4). We highlight some of these data in Fig.
6B, which shows that the ring around the inoculation site is more prominent on hard agar in both
simulations and experiments.

This agreement suggests that the capillary coffee-ring effect cannot be the sole explanation for
the ring-like accumulation of the biomass near the inoculation site. Indeed, there is no a priori
reason to expect the strength of the capillary coffee-ring effect to depend on the agar
concentrations.75 Consistent with this reasoning, the early stages of colony growth show a clear
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coffee-ring effect for all agar concentrations (Fig. S4), but this ring continues to grow only in the
colonies on hard agar as expected from our simulations.

A direct way to confirm the primary role of the growth dynamics in the formation of the biomass
ring would be to eliminate the capillary coffee-ring in the experiments. While we believe that this
is possible in principle, it is likely to be a difficult experiment.69,76 Instead, we used initial
conditions in our simulations to mimic the presence or absence of the coffee ring and thus
untangle their contribution to the final colony shape.

Specifically, we used three types of initial conditions: (i) a spherical drop with the maximal
density in the center and zero density at the edge, (ii) a pancake with a uniform density within
the inoculation disk, and (iii) a ring with the density peak around the circumference of the
inoculation drop (see Fig. S5). All three cases lead to the formation of a metabolic ring, and the
final morphologies are qualitatively similar. The only remnants of the initial conditions are
noticeable only at the very edge of the inoculation site. Thus, our simulations suggest that a
broad high-density ring is primarily a product of the growth dynamics rather than the initial
density pileup due to the capillary coffee-ring effect.

Maintenance cost plays an important role in colony growth
It is well-known that cells spend energy not only for growth, but also for maintenance, e.g.
repairing the cell wall, transcription, protein synthesis and degradation, sensing and navigating
the environment, etc. The energetic cost of these routine tasks are completely neglected in the
minimal models, which focus on growth only (some models allow for sporulation,77 but that is a
distinct process). In contrast, FBA models typically include maintenance requirements, which
leads to some unexpected results as we show below.

The E.coli core model contains a non-growth associated maintenance reactions that siphons
away ATP with an experimentally estimated flux of 8.39 mmol/g·h43,50 (see Methods). As a
result, growth stops in our simulations when the available resources are not sufficient to sustain
a flux of ATP production in excess of 8.39 mmol/g·h.

To ascertain the ramifications of the maintenance cost, we varied the maintenance requirement
from zero to about twice its actual value. Supplemental Fig. 7 illustrates the drop in the growth
rate and biomass yield when the maintenance requirement is set to a non-zero value during
growth in a well-mixed batch culture. In the case of colonies grown on plates, as simulated in
COMETS, we similarly found that growth rate and yield also decreased significantly with the rise
of the maintenance requirement (Fig. 7A).

Given this drastic dependence, we expected the colony morphology and the rate of radial
colony expansion to also display a visible dependence on the maintenance flux. However, to our
surprise, we saw that these quantities were hardly affected by maintenance (Fig. 7B). We trace
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these divergent responses to the different dynamics at the colony edge vs. the core of the
colony.

Figure 7. The colony biomass growth rate and yield decrease significantly with the rise of the ATP
maintenance requirement, while the radius and morphology are only marginally affected.
(A) The total colony biomass as a function of time for ATP maintenance requirement set to 0, 100%, and
200% of the actual maintenance cost in the E. coli model.
(B) The colony morphology and average radius are not significantly affected by the maintenance
requirement.
(C) The time course of glucose depletion for different maintenance requirements is only marginally
different at the final stages of the colony growth.
(D) Acetate uptake and secretion display spatial heterogeneity within the colony. Acetate is secreted only
by a thin sliver of rapidly growing cells at the colony edge. However, it is consumed deeper inside the
colony, where glucose is depleted.
(E) The final biomass and CO2 yield are the main terminal products of the metabolic reactions. The ratio
of these two products depends strongly on the maintenance requirements. Higher maintenance results in
more CO2 and less biomass.
(F) Time progression of the total amount of acetate present in the entire (two dimensional) plate (main
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plot), compared to the well-mixed culture simulated with identical media, both in amount and
concentration (inset). There is much less acetate accumulation in a colony compared to a well-mixed
culture. In a colony, acetate is both produced and consumed at the same time, but in a liquid culture there
is no acetate consumption until the cells run out of glucose and undergo a diauxic shift. The production
and consumption of acetate are separated in space during colony growth, but they are separated in time
for a well-mixed liquid culture. The low maximum acetate abundance in the spatially non-homogeneous
case can be explained with the fact that different spatial regions undergo a diauxic shift from feeding on
glucose to feeding on acetate at different times, creating a snapshot of the acetate exchange pattern in
Fig. 7D.
(G) Maintenance cost strongly affects biomass yield under anaerobic conditions.
(H) The expansion rate is not as affected by the maintenance requirements as the biomass yield in (G).
This is similar to the results in (A) and (B).
(I) Under anaerobic conditions, E. coli cannot utilize acetate for energy. As a result, the acetate reaches
similar levels under spatial and well-mixed conditions, but the temporal dynamics of the acetate
accumulations are different reflecting the different rates of biomass growth: quasi-linear on agar plate and
exponential in liquid culture.

At the edge, glucose concentration is the highest, and, therefore, the ATP production is much
greater than the maintenance requirement. As a result, the growth and dispersal rates are only
slightly reduced, and the rate of colony expansion remains virtually unchanged. The total
biomass, however, also depends on the growth behind the colony edge, where the nutrient
concentration is lower, and the maintenance requirement absorbs an appreciable fraction of the
ATP produced thereby reducing both the growth rate and yield (see CO2 and biomass yield
plots in Fig. 7E).

Consistent with this argument, we find that the glucose profiles are nearly the same across the
maintenance costs (Fig. 7C), i.e. the nutrients get depleted at the same rate, and it is the
conversion of nutrients into the biomass that explains the differences between the colonies in
Fig. 7.

A deeper insight in the edge vs bulk dynamics can be gleaned from the spatial variations in the
cellular metabolism (Fig. 7D). Near the edge of the colony, the cells are consuming glucose and
secrete acetate. This metabolic pathway results in high ATP production rate and rapid growth. In
contrast, the bulk of the colony has no access to glucose and is slowly growing on acetate. Thus
there are not only quantitative differences in growth rates among the different regions of the
colony, but also qualitative differences in their metabolism.25

COMETS offers the opportunity to explore the role of maintenance in a spatial setting under
different metabolic constraints, e.g. in the absence of oxygen. From a direct comparison of Fig.
7G with Fig. 7A, we see that the colony growth in the absence of oxygen is also slowing down at
higher maintenance requirements, as in the aerobic case. The time progression of the colony
radius in Fig. 7H is not sensitive to the maintenance requirement, similar to the aerobic case in
Fig 7B. The transition between fast and slow growth, however, occurs at a much lower
maintenance cost when oxygen is not available. Specifically, we see a jump to a much lower
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growth rate already at 4 mmol/gh (Fig. 7G). This higher sensitivity to the maintenance cost is
expected because ATP production is lower without oxygen. Finally, in the absence of oxygen
acetate cannot be metabolized; as a result, its concentration raises and eventually saturates
(Fig. 7I). The maintenance requirement at and above 4 mmol/gh does not affect either the
growth rate or the time course of acetate production.

Discussion
The plethora of shapes formed by bacterial colonies reflects the complexity of biological and
physical phenomena at play in their formation. Many of these processes, including growth
instability and sector formation, have been successfully studied using minimal single-nutrient
models.29,13,60,55 The results of these minimal models, however, do not capture the full diversity of
colony morphologies and cannot be directly applied to specific microbial strains growing in
specific environments.

In this study we employed our software platform COMETS54,27 to show how the integration of
physical processes and detailed metabolic information can recapitulate prior knowledge, provide
new insights, and stimulate unexpected discoveries. What made this possible is the delicate
balance between preserving computational efficiency and including detailed mechanistic
descriptions of metabolism and cellular biophysics. We navigated this tradeoff by combining an
efficient implementation of demographic fluctuations,56 a robust model of nonlinear biomass
diffusion,55 and a genome-scale description of the bacterial metabolism50. Our results
demonstrate that this level of detail is sufficient to capture many important biological processes,
provide an accurate description of colony growth and even produce exceedingly realistic images
of colonies themselves.

Systematic simulations of colony morphology as a function of nutrient (glucose) concentration
and (nonlinear) biomass diffusivity reproduced the morphologies expected from previous
experimental studies.46,47 Overall, our results were consistent with the theoretical expectation
from minimal models that colony growth is largely controlled by a single parameter the product
of biomass diffusivity and nutrient concentration. The detailed nature of our simulations,
however, uncovered small, but noticeable deviations from this expectation, which are also
present in the experimental data.46,60

Our simulations also shed light on how genetic drift and sector formation 13,29,64 depend on
colony morphologies and growth conditions. Broadly speaking, we found that both branching
and sector formation were delayed under favorable growth conditions, and, once formed,
branches quickly lost diversity and became homozygous for one of the strains. This coupling
between genetic demixing and colony morphology can be understood as follows. Local
extinctions are common in spatially growing populations because local population sizes are
small. Biomass diffusion, however, can restore the diversity by bringing a different strain from
nearby spatial regions and thus delay genetic demixing. Branched morphologies interfere with
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the lateral transport of the biomass because each branch becomes an isolated subpopulation
that cannot restore diversity by immigration. As a result, local extinctions quickly accumulate
and each branch becomes homozygous for a particular strain.

One unexpected outcome of our simulations was the discovery of the metabolic ring. Typical
minimal models aim to capture the growth at the front of the colony, so any structure in the
colony bulk might be attributed to the artifacts of the model. The predictions of COMETS
simulations should however be taken more seriously. Our simulations predicted a ring of
high-density near the inoculation site, which matched closely our experimental observations. In
previous experiments, this ring has been attributed to the coffee-stain effect,66,68,69 i.e. the
accumulation of the cells near the edge of an evaporating drop right after inoculation. While this
coffee-stain effect undoubtedly exists in bacterial colonies,67 it was perhaps premature to claim
that it is the sole explanation of the high-density ring around the homeland because this ring
appeared in our simulations which did not model the evaporation process.

We carried out a series of simulations to determine how initial conditions affect the high-density
ring and found that the coffee-stain effect is responsible for only a tiny sliver of this extra density
right near the inoculation site. The rest of the high-density ring is due to the accumulation of
biomass during colony growth, which occurs with or without coffee-stain-like initial conditions.
We also found that the metabolic ring becomes more prominent when biomass motility is
suppressed, a prediction that was confirmed in our experiments with varying agar concentration
(Fig. 6). We attribute this phenomenon to the following mechanism. Initially, the colony grows
evenly, depleting the nutrients under the initial homeland. Once the nutrients are depleted in the
center, they must diffuse from the outside, and, therefore, the growth is restricted to the edge of
the colony leading to the formation of the metabolic ring. This transient dynamic stops once the
colony starts to expand at an approximately constant velocity and no nutrients are available at
the inoculation site. The duration of this transient increases with reduced biomass diffusivity
resulting in the just-described dependence of the metabolic ring on the agar concentration.

The mechanistic model of E. coli metabolism that we used naturally included an energetic
maintenance requirement and allowed us to investigate its effect on the dynamics and
morphology of growing colonies. Although it is well-known that higher maintenance
requirements lead to lower growth and lower yield in a well-mixed culture, it was not clear how
this slower growth would manifest in a spatial context. To answer this question, we simulated
colony growth for different values of the ATP maintenance flux in the metabolic network. The
total biomass followed closely the predictions for the well-mixed populations: It grew slower and
with lower yield. In contrast, the nutrient consumption rate and the spatial colonization rate, i.e.
the increase in the colony radius over time, were virtually unaffected by the maintenance cost.
This difference in behavior reflected the spatial separation of growth within the colony. The cells
at edge received plentiful nutrients and grew at a maximal rate, which is only slightly affected by
the maintenance cost. The cells deeper within the colony grew much slower and spent a
significant proportion of their energy intake on maintenance. This spatial separation of the
growth rates was also accompanied by changes in the metabolic fluxes within the cells, which
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further highlights the importance of both explicitly spatial modeling and the relevance of the
metabolic costs.

The overall success of our simulation approach suggests that realistic in silico experiments are
within reach not only for E. coli growing on a Petri dish, but for other bacteria growing in more
complex environments. Here, we outlined an approach that combines genome-scale metabolic
modeling with an appropriate physical model of biomass motility and demographic fluctuations.
The ongoing efforts to construct metabolic networks for non-model organisms and to understand
microbial motility in complex environments would enable application of our approach to
practically relevant communities such as root-associated microbiota22,20 or biomedically relevant
(e.g. dental) biofilms.78–81 For example, one could use COMETS to elucidate the synergistic role
of diffusion in spatial microstructure and metabolic activity to shed light on the colonization of
plant roots by rhizosphere bacteria.20,21 Such computational modeling can then further be
employed to understand succession of aerobic and anaerobic communities, and even the
consequences of blocking specific metabolic pathways in the community with drugs or genetic
engineering.

Future development of our modeling approach certainly must address its current limitations and
shortcomings. First, most communities of interest consist of many bacterial species, rather than
the relatively simple community with two neutral strains that we studied here. We thus clearly
see a need to improve automated procedures for model building and gap-filling from microbial
genomes.82,83 Second, in our current model of biomass propagation, the two strains also have
identical biophysical properties. In a system with non-identical species, the model of biomass
propagation must take into account the differences in cell shape, cell-substrate and cell-cell
interaction among different strains. Third, our modeling approach does not incorporate
regulation, quorum sensing signals, or environment dependent change of metabolic objective. A
future inclusion of these biological processes will greatly expand the possibility of in silico
experiments in COMETS and will bring us closer to predictive ecosystem modeling.
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Methods

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial strains

Escherichia coli strain MG1655 RFP Addgene E1010m (RFP)_CD
(Plasmid #66033)

Chemicals

R2A Agar Difco 218263

LB Broth (Miller) Sigma L3522-1KG

Kanamycin Sulfate (5g) Fisher BP9065

Deposited data

COMETS input to reproduce the results and
figures

https://github.com/segr
elab/Dukovski_2024_
Cell_Systems

Software and algorithms
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COMETS http://runcomets.org
and this paper

Version 2.10.9

Data and code availability
COMETS is a publicly available software. More information, user's manual, including how it can
be downloaded and installed are found at the COMETS website: http://runcomets.org
COMETS is distributed under the GPL-3.0 license, and the source code can be downloaded
from https://github.com/segrelab/comets. The computational input files, models, layouts and
scripts to reproduce the results can be downloaded from
https://github.com/segrelab/Dukovski_et_al_2024.

Computational methods
In this study, we combined several modeling methodologies to simulate the growth and
propagation of bacterial colonies. The three core modeling methodologies we utilized are: the
spatio-temporal dynamic Flux Balance Analysis (dFBA), a model of cooperative spatial biomass
propagation, and a model of population fluctuations or demographic noise. These three
methodologies are synergistically implemented in our modeling platform for Computation of
Ecosystems in Time and Space (COMETS).54

Dynamic Flux Balance Analysis
The dynamic Flux Balance Analysis (dFBA)57 is a temporal extension of the Flux Balance
Analysis (FBA)84 method for solving the mass balance requirements of a stoichiometric model of
the metabolism (metabolic network) of an organism. Starting with the genome of an organism, a
genome-scale reconstruction of the network of chemical reactions involved in the metabolism is
produced. This metabolic reconstruction model is mathematically represented by the
stoichiometric matrix of the chemical reactions and the metabolites that form the metabolic
network. Under the assumed constraints of mass conservation, steady state, and the maximum
value of the nutrient uptake by the organism, the FBA method returns the values of the reaction
fluxes through the metabolic network, including the rate of biomass production. In this study we
calculated the upper limits for the uptake of each extracellular nutrient according to the
Michaelis-Menten formula:

We obtained the values of the parameters and for the E. coli core model50 that we
use in this study by comparing the simulated biomass growth curve of the model with the growth
curve.57 We also reproduced the time dynamics of the secreted metabolites for this model with
the same set of fitting parameters. The values that we used in this study are
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and . We varied these values accordingly for the data
presented in Figs. S2 and S3.

In Fig. 4a the growth rate obtained by the FBA calculations were slightly broadened (by about
3%) with a normal distribution. This broadening added a slight white Gaussian noise to the
growth, with the aim to stimulate the branching transition of the growth front.

Minimal metabolic model
In Fig. 2A and Fig. 2C we used a minimal model of metabolism, where a single nutrient is
uptaken and transformed fully into biomass, with no secretion of any metabolites. The nutrient to
biomass conversion coefficient was set to 1 g/mmol for Fig. 1A. For Fig. 1C, in order to match
the biomass yield of the minimal model with the biomass yield of the E. coli core model, the
coefficient for the nutrient was set to 12.79 g/mmol.

Bacterial biomass propagation model
The bacterial biomass in COMETS is treated as a continuous variable, and biomass motility is
described by non-linear diffusion in two spatial dimensions. The stochastic partial differential
equation governing the biomass dynamics is:

where on the left hand side is the time derivative of the local biomass of strain . The first
term on the right hand side is the spatial diffusion term. The diffusivity, which is assumed to be
the same for all strains, depends only on the total biomass:

.

In its original form [ref], the functional dependence of D on b is taken to be a power law

.

We used throughout and further augmented this functional form with an additional cutoff
at low growth rates. This was done to account for the arrest of growth and motility inside the
colony, where the nutrients are depleted. We implemented the cutoff by multiplying the diffusivity
with a Hill function of the relative portion of the biomass that has grown at each finite time step,
with an adjustable cutoff :

with H defined as
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where is the change of the biomass of species grown during the time-step, and is Hill
exponent, which we took to be unity in all of our simulations. When the cutoff is set to zero,
the entire biomass is propagating.

The local biomass growth term was computed via dFBA as described above. Note that
represents all metabolites in the local microenvironment. We assumed that the metabolites

obey standard diffusion and took their diffusivity to be that of glucose in water with agar,85

.

The last term is the equation for biomass propagation is the demographic noise, which we
describe in the next subsection.

Demographic noise
We implemented the demographic noise following the method in reference [cite Munoz].
At each time step , given the local nutrient contents, first we calculate the growth rate for the
biomass using the FBA procedure described above. Then we calculate the local updated
biomass . To include a stochastic noise in the updated value of the biomass, we first sample a
parameter from the Poisson distribution:

with lambda defined as

,

where is the growth rate obtained from the FBA optimization, and is the duration of the
discrete time step. With in hand, we sample x from the Gamma distribution:

.

A preliminary (or proposed) stochastic value of the biomass is calculated as:

.

26

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.13.584915doi: bioRxiv preprint 

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=H(%5Cdelta%20b_i%2Fb_i)%3D%5Cfrac%7B(%5Cdelta%20b_i%2Fb_i)%5En%7D%7B(%5Cdelta%20b_i%2Fb_i)%5En%2BK_h%5En%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta%20b_i#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=K_h#0
https://www.codecogs.com/eqnedit.php?latex=f_i(b_i%2C%7Bn%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%7Bn%7D#0
https://sciwheel.com/work/citation?ids=14833359&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=D_n%3D6.0%5Ccdot10%5E%7B-6%7D%20cm%5E2%2Fs#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctilde%7Bb%7D_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=P(%5Calpha%3B%5Clambda)%3De%5E%7B-%5Clambda%7D%5Cfrac%7B%5Clambda%5E%5Calpha%7D%7B%5Calpha!%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%3D%5Cfrac%7B2%5Ctilde%7Bb%7D_t%7D%7B%5CDelta%20t%20%5Cmu%20%5Csigma%5E2%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20t#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5CGamma(x%3B%5Calpha%2C%5Cbeta%20%3D%201)%3D%5Cfrac%7Bx%5E%7B%5Calpha-1%7De%5E%7B-x%7D%7D%7B%5CGamma(%5Calpha)%7D#0
https://www.codecogs.com/eqnedit.php?latex=B_t%3D%5Cfrac%7B1%7D%7B2%7D%5CDelta%20t%20%5Cmu%20%5Csigma%5E2x#0
https://doi.org/10.1101/2024.03.13.584915
http://creativecommons.org/licenses/by-nd/4.0/


The next step is to reconcile the proposed value of the biomass with the FBA procedure. This
extra step is necessary to ensure the stoichiometry of nutrient-to-biomass conversion, which in
essence is the conservation of mass.

Given the proposed biomass in the current step, and the biomass in the previous time step
, we calculate new values for the maximum nutrient uptake rates (lower bound of the

exchange reactions, since by arbitrary convention a negative exchange flux is uptake and
positive flux is secretion), such that the newly FBA calculated biomass will be approximately
close to the proposed stochastic one :

where is the lower bound of an exchange reaction calculated with the Michaelis-Menten
dependence on the local nutrient concentration. Note that in the absence of stochasticity, the
proposed biomass and the FBA calculated one would be the same.Thus, in the context of
dFBA, demographic fluctuations are modeled as a density-dependent noise in the uptake rate.

After the noisy bounds on the uptake rates are determined, the FBA calculation is repeated
yielding new values for the growth rate as well as metabolite consumptions and secretion rates.
These are then used to determine the biomass and metabolite concentrations at this time step t.
Note that, because the final updates are based on a dFBA calculation, the mass is strictly
conserved.

Finally, we check that nutrient concentrations are positive and the biomass did not decrease.
The latter would imply cell death, which is not included in our model. Such unphysical situations
are rare, but unavoidable unless one deploys rather inefficient individual-based simulations. We
remedy this by adjusting the lower bounds of the exchange reactions to avoid non-physical
predictions and repeat the FBA calculation.54

Simulations layouts
Three types of simulation layouts were used. In Fig. 2 and 5, and the corresponding
supplemental figures, we created a 400x400 pixels grid simulating a 4x4 cm physical layout.
The initial condition was a uniform fill of substrate nutrients consisting of a minimal medium of
salts in unlimited supply (1000 mmol/pixel) and a finite amount of glucose. The boundary of the
layout in Fig. 5 was kept at a constant glucose concentration throughout the simulation. The
layout was initialized with a uniform biomass circle.

The layouts in Fig. 4 were 400x400 pixels grid simulating a 4x4 cm physical layout. The initial
condition was a uniform fill of substrate nutrients consisting of a minimal medium of salts in
unlimited supply (1000 mmol/pixel) and a finite amount of glucose. The layout was initialized
with a linear inoculate of biomass along the entire bottom edge. The boundary at the top layout
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edge was kept at a constant glucose concentration throughout the simulation. This setup
ensured the propagation of the growth front in only one direction.

The layout of Figures 3, 6 and 7, and the corresponding supplemental figures, were designed to
approximate a 6-well plate. We used a 350x350 pixels grid to model a 3.5x3.5 cm spatial
domain. The simulated plates were initialized with a minimal medium with glucose, and nutrients
were allowed to deplete over time; we used reflecting boundary conditions. The initial
distribution of the biomass was a uniformly populated circle.

The simulations were executed on the BU SCC cluster. A typical run used 8 CPU cores to solve
the FBA problem at several grid points in parallel, and lasted for several hours. All simulation
layouts are available for download at:
https://github.com/segrelab/Dukovski_2024_Cell_Systems.

Experimental methods
We grew colonies of E. coli strain MG1655, with added RFP plasmid Addgene E1010m
(RFP)_CD.86 The initial streaking was done on LB agar substrate with added Kanamycin. Batch
culture was grown in LB, diluted and inoculated 3μL on agar 6-well plates. The agar plates'
substrate was R2A with added 0.5 g/L glucose. Six concentrations of agar were used for each
plate: 2, 4, 7, 10, 15, 25 g/L. Three replicas of the plates were held for 7 days at 30ºC. Images
were taken daily with 4x magnification Nikon Eclipse Ti2 microscope. One control replica was
not taken out of the incubator and not imaged, to assure that the daily imaging did not disrupt
the growth of the colonies. The images were post-processed with the NIC Nikon software. The
photo images were taken with a Nikon D850 camera, 50mm+extension tube objective.
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