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Abstract 
Despite the central role that antibodies play in modern medicine, there is currently no way to 
rationally design novel antibodies to bind a specific epitope on a target. Instead, antibody 
discovery currently involves time-consuming immunization of an animal or library screening 
approaches. Here we demonstrate that a fine-tuned RFdiffusion network is capable of 
designing de novo antibody variable heavy chains (VHH’s) that bind user-specified epitopes. 
We experimentally confirm binders to four disease-relevant epitopes, and the cryo-EM 
structure of a designed VHH bound to influenza hemagglutinin is nearly identical to the design 
model both in the configuration of the CDR loops and the overall binding pose. 
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Introduction 
Antibodies are the dominant class of protein therapeutics with over 160 antibody therapeutics 
currently licensed globally and a market value expected to reach $445 billion in the next five 
years1. Despite immense pharmaceutical interest, therapeutic antibody development still relies 
on animal immunization or screening of antibody libraries to identify candidate molecules that 
bind to a desired target. These methods are laborious, time-consuming, and can fail to 
produce antibodies that interact with the therapeutically relevant epitope2. Efforts at 
computational design of antibodies have grafted residues into existing antibody structures, 
sampled alternative native CDR loops to improve affinities3,4 and used Rosetta5 sequence 
design to improve the interacting regions. More recently, structure-based and sequence-
based deep learning networks have been trained to design novel antibody sequences6–8, but 
de novo (no homology to an existing antibody targeting that epitope) design of structurally 
accurate antibodies has remained elusive. There has been recent progress in designing 
binding proteins (not antibodies) using RFdiffusion9,10 which, unlike previous methods, does 
not require pre-specification of the protein binder backbone, permitting the design of very 
diverse binders with inherent shape complementarity to the user-specified epitope9,10. 
However, as with other methods for de novo interface design11,12, these binders almost 
exclusively rely on regular secondary structure (helical or strand) based interactions with the 
target epitope, and RFdiffusion is therefore unable to design antibodies de novo (Extended 
Data Fig. 1).  
 
An ideal method for designing de novo antibodies would enable 1) targeting of any specified 
epitope on any target of interest; 2) focusing of sampling on the CDR loops, keeping the 
framework sequence and structure close to a user-specified highly optimized therapeutic 
antibody framework; and 3) sampling of alternative rigid-body placements of the designed 
antibody with respect to the epitope. We hypothesized that given the diversity and quality of 
interfaces RFdiffusion can design, it should be possible to develop specialized versions 
capable of designing de novo antibodies, given that the underlying thermodynamics of 
interface formation are the same. RoseTTAFold2 and RFdiffusion (which trains from an earlier 
version of RF2) are trained on the entire Protein Data Bank (PDB13) which helps overcome 
the problem that the PDB contains relatively few antibody structures (~8,100 antibody 
structures versus >200,000 total structures) which complicates the training of large machine 
learning models. We set out to develop versions of RFdiffusion and RoseTTAFold2 
specialized for antibody structure design and structure prediction by fine-tuning on native 
antibody structures. For simplicity, in this work, we henceforth refer to the original RFdiffusion 
network as “vanilla RFdiffusion”, and the antibody-specific variant we describe here simply as 
“RFdiffusion”. 
 

Fine-tuning RFdiffusion for antibody design 
RFdiffusion uses the AlphaFold214/RF2 frame representation of protein backbones comprising 
the Cɑ coordinate and N-Cɑ-C rigid orientation for each residue. During training, a noising 
schedule is used that, over a set number of “timesteps” (T), corrupts the protein frames to 
distributions indistinguishable from random distributions (Cɑ coordinates are corrupted with 
3D Gaussian noise, and residue orientations with Brownian motion on SO3). During training, 
a PDB structure and a random timestep (t) are sampled, and t noising steps are applied to the 
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structure. RFdiffusion predicts the de-noised (pX0) structure at each timestep, and a mean 
squared error (m.s.e.) loss is minimized between the true structure (X0) and the prediction. At 
inference time, translations are sampled from the 3D Gaussian and uniform rotational 
distributions (XT) and RFdiffusion iteratively de-noises these frames to generate a new protein 
structure. 
 
To explore the design of antibodies, we fine-tuned RFdiffusion predominantly on antibody 
complex structures (Fig. 1; Methods). At each step of training, an antibody complex structure 
is sampled, along with a random timestep (t), and this number of noise steps are added to 
corrupt the antibody structure (but not the target structure). To permit specification of the 
framework structure and sequence at inference time, the framework sequence and structure 
are provided to RFdiffusion during training (Fig. 1B). Because it is desirable for the rigid body 
position (dock) between antibody and target to be designed by RFdiffusion along with the CDR 
loop conformations, the framework structure is provided in a global-frame-invariant manner 
during training (Fig. 1C). We utilize the “template track” of RF/RFdiffusion to provide the 
framework structure as a 2D matrix of pairwise distances and dihedral angles between each 
pair of residues (a representation from which 3D structures can be accurately recapitulated)15, 
(Extended Data Fig. 1A). The framework and target templates specify the internal structure of 
each protein chain, but not their relative positions in 3D space (in this work we keep the 
sequence and structure of the framework region fixed, and focus on the design solely of the 
CDRs and the overall rigid body placement of the antibody against the target). In vanilla 
RFdiffusion, de novo binders can be targeted to specific epitopes at inference time through 
training with an additional one-hot encoded “hotspot” feature, which provides some fraction of 
the residues the designed binder should interact with. For antibody design, where we seek 
CDR-loop-mediated interactions, we adapt this feature to specify residues on the target protein 
with which CDR loops interact (Fig. 1D). 
 
With this training regime, RFdiffusion is able to design antibody structures that closely match 
the structure of the input framework structure, and target the specified epitope with novel CDR 
loops (Extended Data Fig. 1). After the RFdiffusion step, we use ProteinMPNN to design the 
CDR loop sequences. The designed antibodies make diverse interactions with the target 
epitope and differ significantly from the training dataset (Fig. 2E). 
 

Fine-tuning RoseTTAFold2 for antibody design validation 
 
Design pipelines typically produce a wide range of solutions to any given design challenge, 
and hence readily computable metrics for selecting which designs to experimentally 
characterize play an important role. An effective way to filter designed proteins and interfaces 
is based on the similarity of the design model structure to the AlphaFold2 predicted structure 
for the designed sequence (this is often referred to as "self-consistency"), which has been 
shown to correlate well with experimental success16,17. In the case of antibodies, however, 
AlphaFold2 fails to routinely predict antibody-antigen structures accurately18, preventing its 
use as a filter in an antibody design pipeline.  
 
We sought to build an improved filter by fine-tuning the RoseTTAFold2 structure prediction 
network on antibody structures. To make the problem more tractable, we provide information 
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during training about the structure of the target and the location of the target epitope to which 
the antibody binds; the fine-tuned RF2 must still correctly model the CDRs and find the correct 
orientation of the antibody against the targeted region. With this training regimen, RF2 is able 
to robustly distinguish true antibody-antigen pairs from decoy pairs and often accurately 
predicts antibody-antigen complex structures. Accuracy is higher when the bound (holo) 
conformation of the target structure is provided (Extended Data Fig. 2); this is available when 
evaluating design models, but not available in the general antibody-antigen structure 
prediction case. At monomer prediction, the fine-tuned RF2 outperforms the previously 
published IgFold network (which can only model antibody monomer structures)19, especially 
at CDR H3 structure prediction (Extended Data Fig. 3).  
 
When this fine-tuned RF2 network is used to re-predict the structure of RFdiffusion-designed 
VHHs, a significant fraction are confidently predicted to bind in an almost identical manner to 
the designed structure (Extended Data Fig. 4A). Further, in silico cross-reactivity analyses 
demonstrate that RFdiffusion-designed VHHs are rarely predicted to bind to unrelated proteins 
(Extended Data Fig. 4B). VHHs that are confidently predicted to bind their designed target are 
predicted to form high quality interfaces, as measured by Rosetta ddG (Extended Data Fig. 
4C). The fact that many of the designed sequences generated by our RFdiffusion antibody 
design pipeline are predicted by RF2 to adopt the designed structures and binding modes 
suggested that RF2 filtering might enrich for experimentally successful binders. 
 

Design and biochemical characterization of designed VHHs 
 
We initially focused on the design of single-domain antibodies (VHHs) based on the variable 
domain from heavy-chain antibodies produced by camelids and sharks20. The smaller size of 
VHHs makes genes encoding designs much easier to assemble and cheaper than single chain 
variable fragments (scFv; where linker choice is a critical factor21) or fragment antigen-binding 
regions (Fab; where an interchain disulfide bond is required for proper folding22). VHHs are 
readily “humanized”; so far, two VHH-based therapies are approved by the FDA with many 
clinical trials ongoing20. Despite having fewer CDR loops (three) than conventional Fvs (six), 
the average interaction surface area of a VHH is very similar to that of an Fv23, suggesting a 
method capable of VHH design could also be suitable for Fv design. Indeed, in silico metrics 
for scFvs and VHHs showed similar qualities of interfaces, as assessed by Rosetta5 and fine-
tuned RF2 (Extended Data Fig. 6). 
 
We chose a widely used humanized VHH framework (h-NbBcII10FGLA; [ref 24]) as the basis of 
our VHH design campaigns, and designed VHHs to a range of disease-relevant targets: 
Clostridium difficile toxin B (TcdB), influenza H1 hemagglutinin (HA), respiratory syncytial virus 
(RSV) sites I and III, SARS-CoV-2 receptor binding domain (Covid RBD) and IL-7Rɑ. 
ProteinMPNN25 was used to design the sequences of the CDR loops (but not the framework) 
in the context of the target. We then filtered designs with the fine-tuned RoseTTAFold2 
network (Methods) described above. Designs were screened either at high-throughput by 
yeast surface display (9000 designs per target; RSV sites I and III, Covid RBD, Influenza HA) 
or at lower-throughput with E. coli expression and single-concentration surface plasmon 
resonance (95 designs per target; TcdB, IL-7Rɑ and influenza HA–the latter was screened 
using both methods).  
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In the case of influenza HA, glycan N296, located along the HA-stem epitope, exhibited 
varying degrees of overlap with the approach angle of several of our designed VHHs. To best 
align the experimental design conditions with the computational parameters employed during 
design (i.e., excluding consideration of the glycan shield), affinity measurements were 
conducted using a commercially produced monomeric HA product expressed in insect cells 
(Extended Data Fig. 9). Insect cells express a truncated paucimannose glycan shield, which - 
relative to a natively expressed HA trimer - more closely resembles the fully deglycosylated 
HA monomeric PDB model used for VHH design. Of the HA binders tested against the insect-
cell produced HA monomer, the highest affinity binder was measured to have a Kd of 78nM, 
(Fig. 2), with other binders having affinities of 546nM, 698nM, and 790nM. 
 
The highest affinity binders to RSV site III, Influenza HA, Covid RBD, and TcdB are shown in 
Fig. 2A,B,C,E respectively (see also Extended Data Fig. 8 for all the SPR traces of confirmed 
VHH binders identified in this study). The CDR loops are distinct from VHHs observed in 
nature, indicating significant generalization beyond the training dataset (Fig 2E, Extended 
Data Fig. 5). For TcdB, there are no antibodies or VHHs targeting this site in the PDB. For the 
best designed VHH from both Covid RDB (Kd = 5.5μM; Fig. 2C) and TcdB (Kd = 262nM; Fig 
2D) binding was confirmed to be to the desired epitope: binding was completely abolished 
upon addition of a previously designed, structurally characterized de novo binder to that 
epitope (AHB2, PDB: 7UHB26 for Covid RBD and Fzd48 [manuscript in preparation] for TcdB) 
(Fig. 2C,D; Extended Data Fig. 7). For TcdB, the interactions were specific, with no binding 
observed to the highly related Clostridium sordellii toxin L (TcsL) (Extended Data Fig. 7B). 
These data demonstrate the ability of RFdiffusion to design VHHs making specific interactions 
with the target epitope. Surprisingly, design success rates were not significantly higher for 
filtered designs vs unfiltered designs with the RF2 settings we used (providing 100% of 
interface hotspots, although there was some signal with more stringent settings where we 
provided 0% or 10% of interface hotspots during prediction). However, given the small dataset, 
more extensive datasets will be necessary to evaluate more conclusively how best to use and 
fine-tune RF2 for design filtering. 

Cryo-electron microscopy reveals atomically accurate VHH design 
against a natively glycosylated viral glycoprotein  
Given the success of RFdiffusion at generating moderate affinity VHHs against diverse 
epitopes, we sought to evaluate design accuracy by cryo-EM structure determination of the 
designed anti-HA VHHs in complex with natively glycosylated, trimeric influenza HA 
glycoprotein (strain A/USA:Iowa/1943 H1N1), which retains the conserved stem epitope used 
during computational VHH design and upstream biochemical screening. The VHHs were 
combined with Iowa43 HA at a 3:1 molar excess ratio (VHH:HA monomer) at a concentration 
of 15μM and promptly prepared for cryo-EM grid freezing. Cryo-EM data processing revealed 
one VHH design effectively bound to the fully glycosylated HA trimer (out of the four tested), 
denoted hereafter as VHH_flu_01 (Fig. 3). 2D classification of all particles in the dataset (Fig. 
3A) and the solved 3.0Å structure of the complex (Fig. 3B) identified approximately 66% of HA 
particles bound to a maximum of two VHHs per trimer (Fig. 3A-H). This partial occupancy is 
likely attributable to the N296 glycan, which in unbound subunits partially occludes the target 
epitope but reorients when bound to VHH_flu_01 (see Fig. 3H). 
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The structure of influenza HA bound to two copies of VHH_flu_01 (Figure 3B,C, Extended 
Data Fig. 10) reveals a VHH approach angle which closely matches the predicted model (Fig. 
3D), and a VHH backbone which is very close to the RFdiffusion design, with a calculated 
R.M.S.D. of 1.45Å (Fig. 3E). The CDR3 structure is also very similar between the cryo-EM 
structure and the computational model (R.M.S.D. = 0.8Å) (Fig. 3F), with residues V100, V101, 
S103, and F108 in the de novo designed CDR3 loop interacting with the influenza HA stem 
epitope in the cryo-EM structure, as designed by RFdiffusion and re-predicted with RF2 (Fig. 
3G). Notably, the design is highly dissimilar from the closest antibody/VHH binding to this 
epitope in the PDB (Extended Data Fig. 5G,H). Taken together, these results highlight the 
ability of a de novo designed VHH with a novel CDR3 to accurately bind a natively glycosylated 
epitope with atomic-level precision. 

Discussion 
 
Our results demonstrate that computational de novo design of antibodies is now possible. The 
high resolution cryo-EM structure of our designed VHH to influenza HA demonstrates 
atomically accurate design of a VHH complex (including the highly variable H3 loop and the 
overall binding orientation).  
 
With further improvements, computational de novo design of antibodies using our RFdiffusion 
and related approaches could revolutionize antibody discovery and development. Our 
RFdiffusion approach enables targeting specific epitopes of interest on the target antigen, and, 
when success rates increase, should be far faster and cheaper than immunizing an animal or 
screening a random library. By taking a structure-based approach to antibody design, the 
optimization of critical pharmaceutical properties such as aggregation, solubility, and 
expression level27 may be tuned in a structurally aware manner (avoiding mutations which 
would disrupt the antibody-target interface or which would destabilize the antibody). 
Furthermore, the ability to explore the full space of CDR loop sequences and structures from 
the start, particularly for CDR1 and CDR2 which are natively limited to the space of sequences 
encoded by germline V genes prior to somatic hypermutation, should simplify both the 
optimisation of the developability features and the targeting of non-immunodominant 
epitopes28. Finally, every antibody designed by RFdiffusion has a strong structural hypothesis 
(further validated by RoseTTAFold2), which should enable the rational design of antibody 
function, by targeting specific target conformational states, for example.  
 
Although our results demonstrate successful de novo design of VHHs, there is considerable 
room for improvements, as the binding affinities are modest (although comparable to affinities 
of de novo miniprotein binders without experimental optimization when this challenge was first 
solved11), and the success rates are still quite low. For the backbone design step, incorporating 
recent architectural improvements29 or newer generative frameworks, such as flow-
matching30,31 may yield design models with higher designability and diversity. RoseTTAFold2 
and vanilla RFdiffusion have also recently been extended to model all biomolecules (rather 
than just proteins)32, and incorporating this capability into the antibody design RFdiffusion 
should permit the design of antibodies to epitopes containing non-protein atoms, such as 
glycans. Indeed, the sub-stoichiometric binding observed for VHH_flu_01 could be explained 
by the presence of nearby glycan N296, which was not considered during the initial design of 
this VHH. ProteinMPNN was not modified in this current work, but designing sequences that 
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more closely match human CDR sequences would be expected to reduce the potential 
immunogenicity of designed antibodies33. Directly optimizing developability properties in 
ProteinMPNN is another future direction. Finally, improvements in RoseTTAFold2 antibody 
prediction methods should improve experimental success rates, and allow better in silico 
benchmarking of upstream design methods. 
 
Altogether, we expect this work to be the foundation of a new era of structure-based antibody 
design. 
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Figures 

 

Figure 1: Overview of RFdiffusion for antibody design 
A) RFdiffusion is trained such that at time T, a sample is drawn from the noise distribution (3D 
Gaussian distribution for translations, and uniform SO3 distribution for rotations), and this 
sampled noise is then “de-noised” between times T and 0, to generate an (in this case) scFv 
binding to the target structure through its CDR loops. B) Control over which framework is used 
is provided through input of a framework “template”, which specifies the pairwise distances 
and dihedral angles between residues in the framework. The sequence of the framework 
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region is also included. For example, provision of a VHH framework generates a VHH (top 
row), whereas provision of an scFv framework generates a scFv (bottom row). C) Diversity in 
the antibody-target dock is achieved through the pairwise framework representation, which, 
because the framework structure is provided on a separate template to that of the target, does 
not provide information about the rigid body framework-target relationship. Hence, diverse 
docking modes are sampled by RFdiffusion. D) The epitope to which the antibody binds can 
be specified by provision of input “hotspot” residues, which direct the designed antibody 
(compare orange, left vs pink, right). 
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Figure 2: Biochemical characterization of designed VHHs 
A-B) 9000 designed VHHs were screened against RSV site III and influenza hemagglutinin 
with yeast surface display, before soluble expression of the top hits in E. coli. Surface Plasmon 
Resonance (SPR) demonstrated that the highest affinity VHHs to RSV site III and Influenza 
Hemagglutinin bound their respective targets with 1.4μM and 78nM respectively. C) 9000 VHH 
designs were tested against SARS-CoV-2 receptor binding domain (RBD), and after soluble 
expression, SPR confirmed an affinity of 5.5μM to the target. Importantly, binding was to the 
expected epitope, confirmed by competition with a structurally confirmed de novo binder 
(AHB2, PDB: 7UHB). D) 95 VHH designs were tested against the C. difficile toxin TcdB. The 
highest affinity VHH bound with 262nM affinity, and also competed with an unpublished, 
structurally confirmed de novo binder to the same epitope (right). See also Extended Data Fig. 
7 for quantification of the competition shown in C and D. E) Designed VHHs were distinct from 
the training dataset. Blastp34 was used to find hits against the SAbDab35, and the similarity of 
the CDR loops in the top blast hit were reported for all VHHs experimentally tested in this 
study. Note also that the 28 VHHs confirmed to bind their targets by SPR do not show 
enhanced similarity to the training set (red lines). 
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Figure 3: Cryo-EM structure of a de novo designed VHH binding to 
influenza hemagglutinin.  
A) Labeled cryo-EM 2D class averages of a designed VHH, VHH_flu_01, bound to influenza 
HA, strain A/USA:Iowa/1943 H1N1. B) A 3.0Å cryo-EM 3D reconstruction of the complex 
viewed along two orthogonal axes shows VHH_flu_01 bound to H1 along the stem in two of 
the three protomers. C) Cryo-EM structure of VHH_flu_01 bound to influenza HA. D) The cryo-
EM structure of VHH_flu_01 in complex with HA closes matches the design model. E) cryo-
EM reveals the accurate design of VHH_flu_01 using RFdiffusion (R.M.S.D. to the RFdiffusion 
design of the VHH is 1.45 Å). F) Superposition of the designed VHH CDR3 predicted structure 
as compared to the built cryo-EM structure (R.M.S.D = 0.84Å). G) Comparison of predicted 
CDR3 rotamers compared to the built 3.0Å cryo-EM structure. H) Examination of apo HA 
protomers juxtaposed with those bound to the designed VHH unveils a notable repositioning 
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and accommodation of glycan N296 to allow for binding of the designed VHH to the HA stem. 
In each structural depiction panel, the designed VHH predicted structure is showcased in gray, 
while the cryo-EM solved structure of the designed VHH is depicted in purple. Additionally, the 
HA glycoprotein is represented in tan, and the HA glycan shield is illustrated in green. 
 
 
 
 

Extended Data Figures 
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Extended Data Figure 1: Fine-tuning is required for antibody design with 
RFdiffusion 
A) To test whether existing vanilla RFdiffusion models were capable of designing VHHs/scFvs, 
we explored means of providing the antibody template. For VHHs (left), we used RFdiffusion 
variant trained to condition on sequence alone10 and provided the VHH framework sequence 
(gray). This version, as compared to the fine-tuned version described in this work (pink), was 
significantly worse at recapitulating the native VHH framework structure. For scFvs (right), we 
additionally tried providing fold-level information into the appropriate vanilla RFdiffusion 
model9 (dark gray), but found that this was also insufficient to get accurate recapitulation of 
the scFv framework. Fine-tuning (pink) yields near-perfect recapitulation of the scFv 
framework structure. B) Although vanilla RFdiffusion is trained to respect “hotspots”, for VHHs 
(left) and scFvs (right) we find this to be less robust (grays) than after fine-tuning on antibody 
design (pink). C) Examples depicting the results of (A) and (B). In all cases, the “median” 
accuracy example (by framework recapitulation) is shown. Left to right: i) without fine-tuning, 
vanilla RFdiffusion does not target “hotspot” residues (orange) effectively, and does not 
recapitulate the VHH framework accurately (gray vs yellow). ii) After fine-tuning on antibody 
design, RFdiffusion targets “hotspots” with accurately recapitulated VHHs (pink vs yellow). iii) 
Providing only the scFv sequence, vanilla RFdiffusion does not target “hotspots” (orange) 
accurately nor accurately recapitulates the VHH framework (gray vs yellow). iv) Providing 
additional fold-level information is insufficient to get perfect framework recapitulation (dark 
gray vs yellow). v) After fine-tuning on antibody design, RFdiffusion can design scFvs with 
accurate framework structures (blue/pink vs gray) targeting the input “hotspots” (orange).  
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Extended Data Figure 2: Fine-tuned RoseTTAFold2 can distinguish true 
complexes from decoy complexes 
A) An example antibody structure from the validation set used in this figure, which shares < 
30% sequence similarity on the target (teal) to anything in the RoseTTAFold2 fine-tuning 
training dataset. B) Fine-tuned RoseTTAFold2 quite reliably predicts its own accuracy. 
Correlation between RF2 pAE and R.M.S.D. to the native structure with 100% (left) or 10% 
(right) of “hotspot” residues provided. With pAE < 10, 80.3% of structures are within 2Å when 
100% of “hospots” are provided (along with the holo target structure), with this falling to 52.6% 
when only 10% of hotspots are provided. C-D) Cherry-picked example of RoseTTAFold2 
correctly distinguishing a “true” from a “decoy” complex. The sequence of antibody 7Y1B was 
provided either with the correct (PDB: 7Y1B) or decoy (PDB: 8CAF) target. Both with 100% 
(C) or 10% (D) of “hotspots” provided, RF2 near-perfectly predicts binding (top row) or non-
binding (bottom row). E) Quantification of the fine-tuned RF2’s ability to distinguish true targets 
from decoy targets with both pAE (top row) and pBind (bottom row). Note that this ability 
depends on the proportion of “hotspots” provided. Without any “hotspots” provided, RF2 is 
hardly predictive, because RF2 without privileged information is quite rarely confident or 
accurate in its predictions. 
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Extended Data Figure 3: Comparison of fine-tuned RoseTTAFold2 to 
IgFold on antibody monomer prediction 
A) 104 antibodies released after the RF2 (and IgFold) training dataset date cutoff (January 
13th, 2023) that share < 30% target sequence similarity to any antibody complex released 
prior to this date were predicted as monomers with either fine-tuned RF2 or IgFold (IgFold 
cannot predict antibody-target complexes). Shown is the median Fv quality prediction (by 
overall RMSD) of fine-tuned RF2, of PDB 8GPG, with (right) and without (left) sidechains 
shown. While the backbone R.M.S.D. is close to the true structure, some sidechains are 
incorrectly positioned. B) Fine-tuned RF2 slightly outperforms IgFold at prediction accuracy. 
Overall prediction accuracy is slightly improved in fine-tuned RF2 vs IgFold (p=0.015, 
Wilcoxon Paired Test), with greater improvements in CDR H3 prediction accuracy (p=0.00007, 
Wilcoxon Paired Test).  
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Extended Data Figure 4: Fine-tuned RoseTTAFold2 recapitulates design 
structures and computationally demonstrates specificity of VHHs for their 
targets 
A) Comparison of RF2 pAE and R.M.S.D of the prediction to the design model. A significant 
fraction of designs are re-predicted by RF2 (given 100% of “hotspots”), and pAE correlates 
well with accuracy to the design model. B) RF2 can be used to assess quality of designed 
VHHs. Providing the VHH sequence with the true target structure (used during design) leads 
to higher rates of high-confidence predictions than predicting the same sequence with a decoy 
structure (not used in design), as assessed by the fraction of predictions with pAE < 10 
(normalized to the fraction of predictions with pAE < 10 for that target with its “correct” VHH 
partners). In these experiments, the true or decoy target was provided along with 100% of 
hotspot residues, with those hotspot residues derived from the target with its “true” designed 
VHH bound. C) Orthogonal assessment of designed VHHs with Rosetta demonstrates that 
the interfaces of RF2-approved (R.M.S.D. < 2Å to design model, pAE < 10) VHH designs have 
low ddG (top; only slightly worse than native VHHs) and slightly higher SAP score as 
compared to natives (bottom). 
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Extended Data Figure 5: Alignment of VHH Design Models to Complexes 
in the PDB 
For each of the highest affinity VHHs identified for each target, and the structurally 
characterized influenza HA VHH, the closest complex in the PDB is shown. Designed VHHs 
(pink) are shown in complex with their designed target (teal and tan). The closest complex 
was identified visually (Methods). A) Designed TcdB VHH aligned against 3 VHHs from 6OQ5 
(shades of blue). The designed TcdB VHH binds to a site for which no antibody or VHH 
structure exists in the PDB. B) Designed RSV Site III VHH aligned against VHH from 5TOJ 
(blue). C) Designed SARS-CoV-2 VHH aligned against VHH from 8Q94 (blue). D) Designed 
SARS-CoV-2 VHH aligned against Fab from 7FCP (shades of blue). E) Highest affinity 
designed influenza HA VHH aligned against Fv from 8DIU (shades of blue). F) Highest affinity 
designed influenza HA VHH aligned against VHH from 6YFT (blue). G) Structurally 
characterized designed influenza HA VHH aligned against Fv from 8DIU (shades of blue). H) 
Structurally characterized designed influenza HA VHH aligned against VHH from 6YFT (blue). 
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Extended Data Figure 6: In silico evaluation of RFdiffusion scFv designs 
A) RFdiffusion was used to generate scFv designs using the framework from Herceptin 
(hu4D5-8), which has been used to make scFvs previously36. Five targets were chosen (IL10 
Receptor-ɑ, TLR4, β-lactamase, TcdB and SARS-CoV-2 (omicron) RBD (PDBs: 6X93, 4G8A, 
4ZAM, 7ML7, 7WPC). Shown are five examples with close agreement between the design 
model and the fine-tuned RF2 prediction (R.M.S.D. (Å): 0.60, 0.56, 0.46, 0.43, 0.61; pAE: 4.73, 
4.10, 4.49, 3.52, 3.65). Gray: designs, Pink: RF2 prediction. B) Against the four targets to 
which VHHs were successfully designed, fine-tuned RF2 predicts good specificity to the 
designed target vs decoy targets. C) Against the five targets shown in (A), fine-tuned RF2 
similarly predicts high specificity to the designed target vs decoy targets. D) Orthogonal 
assessment of designed scFvs with Rosetta demonstrates that the interfaces of RF2-approved 
(R.M.S.D. < 2Å to design model, pAE < 10) scFv designs have low ddG (top; only slightly 
worse than native Fabs) and lower SAP score as compared to natives (bottom).  
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Extended Data Figure 7: Analysis of SPR Competition Assays 
The average response during VHH injection normalized to the response immediately 
preceding VHH injection for A) TcdB VHH competition with Fzd48. B) TcdB VHH does not 
bind to the closely related Clostridium sordellii TcsL toxin, indicating that it is binding through 
specific interactions. C) SARS-CoV-2 RBD VHH competition with AHB2. For the competition  
experiments, in the miniprotein binder-only trace, no VHH is injected and the average 
response over the corresponding period is plotted as a baseline. (A) and (C) are the 
quantification from the rightmost panels of Fig.  2C-D. 
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Extended Data Figure 8: SPR traces of experimentally validated VHHs 
SPR traces of the experimentally validated VHH hits described in this study. For traces where 
confident Kd estimates could be fit, we display these on the figure panels. Designs TcdB H2 
and Flu F9 are reproduced from Fig. 2. 
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Extended Data Figure 9: Negative-stain electron microscopy analysis of 
influenza HA antigens 
A) Raw nsEM micrograph, B) 2D class averages showing a predominance of HA monomer 
species in the sample, and C) a representative predicted 3D model of this commercially 
produced monomeric HA antigen expressed in insect cells (adapted from PDB: 8SK7). This 
construct was used for screening VHH binders via yeast surface display and surface plasmon 
resonance. Insect-cell-produced glycoproteins exhibit a truncated glycan shield compared to 
those produced in mammalian cells. D) Raw nsEM micrograph, E) 2D class averages showing 
a clear abundance of HA trimers, and F) a representative 3D model of this in-house produced, 
trimeric Iowa43 HA antigen expressed in mammalian cells (adapted from PDB: 8SK7). This 
antigen is fully and natively glycosylated, and is the trimeric form of HA. Together these 
features make Iowa43 suitable for Cryo-EM structural studies of de novo designed VHHs and 
their capacity to bind to natively glycosylated glycoproteins of therapeutic interest. 
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Extended Data Figure 10: Cryo-EM structure determination statistics for a 
de novo designed VHH bound to an influenza HA trimer 
A) Representative raw micrograph showing ideal particle distribution and contrast. B) 2D 
Class averages of Influenza H1+designed VHH with clearly defined secondary structure 
elements and a full-sampling of particle view angles. C) Cryo-EM local resolution map 
calculated using an FSC value of 0.14 viewed along two different angles. Local resolution 
estimates range from ~2.3Å at the core of H1 to ~3.7Å along the periphery of the designed 
VHH. D) Global resolution estimation plot. E) Orientational distribution plot demonstrating 
complete angular sampling. F) Orientational diagnostics data. 
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