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The non-sinusoidal waveform of neuronal oscillations reflects the physiological properties of underlying circuit 
interactions and may serve as an informative biomarker of healthy and diseased human brain function. However, little is 
known about which brain rhythms can be dissociated based on their waveform and methods to comprehensively 
characterize waveforms are missing. Here, we introduce a novel spectral waveform analysis (SWA) that provides a complete 
waveform description, is noise-resistant, and allows to reconstruct time-domain waveforms. We applied this framework to 
human magnetoencephalography (MEG) recordings during rest and identified several distinct and previously unknown 
cortical alpha waveforms that were temporally stable and specific for individual subjects. Our findings suggest at least four 
distinct alpha rhythms in human sensorimotor, occipital, temporal, and parietal cortex. SWA provides a powerful new 
framework to characterize the waveform of neural oscillations in the healthy and diseased human brain. 

Introduction 
 Traditionally, neural oscillations have been conceptual-

ized as sinusoidal processes that are characterized by their 
base frequency and amplitude. However, recent evidence 
from human EEG, MEG and ECoG recordings suggests that 
non-sinusoidal waveforms of neural oscillations are highly 
prevalent in the human brain (Giehl et al., 2021; Lozano-
Soldevilla et al., 2016; Schaworonkow and Voytek, 2021). 
The specific waveform of a neural oscillation reflects the 
physiological properties of the underlying neural circuit in-
teractions. Thus, waveforms may differ between distinct 
brain areas, networks and -oscillations, due to genetic varia-
tion, in relation to brain disorders, and may change dynam-
ically due to task demands (Cole and Voytek, 2017). Indeed, 
recent evidence has linked changes of the shape of cortical 
oscillations to brain disorders, such as Parkinson’s disease 
(Cole et al., 2017; Jackson et al., 2019) and schizophrenia 
(Bartz et al., 2019). Together, these findings point to the non-
sinusoidal waveform of neural oscillations as a promising 
new biomarker. Beyond the frequency and amplitude of os-
cillations, this biomarker may allow to further dissociate and 
characterize neural oscillations. Furthermore, it may pro-
vide a novel window into the underlying physiological pro-
cesses in the healthy and diseased human brain.  

Despite this intriguing potential, to date, the waveform of 
neuronal oscillations has only been studied sparsely (Cole 
and Voytek, 2017). Take cortical alpha oscillations as an ex-
ample. The most well-known example of a characteristic os-
cillatory waveform in the human cortex is the so called “mu” 
rhythm (Gastaut et al., 1952; Pineda, 2005; Tiihonen et al., 

1989). This arch-shaped alpha-band rhythm is observed over 
sensorimotor cortex, and its prominent waveform distin-
guishes it from the more sinusoidal occipital alpha rhythm 
(Kuhlman, 1978). Together with a third temporal “tau” 
rhythm, there are at least three distinct alpha oscillations in 
the human cortex (Klimesch, 1999; Lehtelä et al., 1997; Nie-
dermeyer, 1991, 1990; Tenke and Kayser, 2005). However, 
the actual number of distinct alpha oscillations is currently 
still unknown. Furthermore, the three well-described alpha 
oscillations have originally been distinguished based on 
their distinct responses to different tasks (Feshchenko et al., 
2001; Klimesch, 1999; Tenke and Kayser, 2005). It remains 
unclear if these functionally distinct rhythms can all be dis-
sociated based on their waveform.  

The limited understanding of oscillatory waveforms is 
also a consequence of methodological limitations. Currently 
available waveform analysis methods for neuronal data as-
sess only a pre-selected number of waveform characteristics 
that may not to capture all potentially relevant waveform 
features (Cole and Voytek, 2017). In addition, waveforms are 
typically assessed in the time domain, which inherently lim-
its the signal-to-noise ratio (Bartz et al., 2019). In sum, little 
is known about the potential of non-sinusoidal waveforms 
to dissociate and characterize human brain rhythms, which 
is also due to methodological limitations.  

To address this, here, we developed a novel spectral 
waveform analysis (SWA) that comprehensively quantifies 
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waveforms and that is highly resistant to noise. The method 
assesses waveforms in the frequency domain, by exploiting 
the inherent relationship that exists between the observable 
waveform in the time domain and the cross-frequency pat-
terns that define a periodic non-sinusoidal waveform in the 
frequency domain. We applied this method to human mag-
netoencephalography (MEG), to investigate if, and poten-
tially how many, alpha oscillations can be dissociated based 
on their waveform in the human brain. We identified several 
distinct and previously unknown cortical alpha waveforms 
that were temporally stable and specific for individual sub-
jects. Our findings suggest at least four distinct alpha 
rhythms in human sensorimotor, occipital, temporal, and 
parietal cortex. 

Results 
Spectral Waveform Analysis (SWA) 

A non-sinusoidal oscillation (Figure 1B) is defined by its 
fundamental frequency !! , amplitude, and waveform. The 
waveform shape defines the periodic pattern of the oscilla-
tion and includes additional information beyond the funda-
mental frequency and amplitude (Bartz et al., 2019). A non-
sinusoidal waveform in the time-domain can be defined as 
the sum of harmonic sinusoidal components (Figure 1C) 
that are located at integer multiples of the waveform’s fun-
damental frequency (Figure 1A). The fundamental fre-
quency of the waveform alone merely represents a sinusoi-
dal signal (top sinusoid in Figure 1C), whereas the entire 
waveform can be reconstructed as the sum over all sinusoi-
dal harmonic components. Each of the harmonic compo-
nents has a specific phase-shift ""  and amplitude #"  rela-
tive to the fundamental component. Jointly with the funda-
mental frequency, these phase-shifts and relative amplitudes 
comprehensively define the waveform. Formally, the spec-
tral representation of a periodic waveform can, thus, be de-
fined in the form of a discrete Fourier series (Figure 1, 
bottom). 

To derive the relative phases and relative amplitudes of 
harmonic components, our approach exploits a characteris-
tic property of non-sinusoidal periodic waveforms: For a sta-
tionary waveform, there is a stable cross-frequency phase- 
and amplitude relationship between the fundamental fre-
quency and its harmonics. Thus, the relative phases and 

amplitudes of harmonics that represent the 
waveform are the relative phases and ampli-
tudes of those signal components that have 
a stable cross-frequency phase relationship 
to the fundamental frequency. The bispec-
trum specifically captures these signals with 
stable phase relationships between different 
frequencies and disregards signal compo-
nents without such a relationship (Sigl and 
Chamoun, 1994). Thus, the bispectrum is 
particularly noise resistant (Bartz et al., 
2019; Giehl et al., 2021). Furthermore, the 
bispectrum allows to derive the relative 
phases and amplitudes of exactly those sig-
nal components that are phase-coupled to 

the fundamental frequency and characterize the waveforms 
of interest (see Methods and Appendices A and B). This ren-
ders the bispectrum, and its amplitude-normalized form, the 
bicoherence, particularly well-suited for waveform analysis.  

Based on these insights, we devised a spectral waveform 
analysis (SWA) that involves two steps. First, the fundamen-
tal waveform frequency !!  is located by determining the 
presence and spectral location of harmonic bicoherence 
peaks. Harmonic bicoherence peaks indicate a stable phase-
relationship across harmonic frequencies and are, thus, a 
sensitive measure of oscillations with non-sinusoidal wave-
forms (Bartz et al., 2019; Giehl et al., 2021; Lozano-Soldevilla 
et al., 2016). Second, the relative phases "" and amplitudes 
#"  of harmonics are derived from the bispectrum. The 
relative phases "" can be iteratively reconstructed from the 
bicoherence phase estimates between successive harmonics 
(see Methods and Appendix A). The relative harmonic 
amplitudes #" can be derived from the bispectrum by apply-
ing a spectrally specific normalization factor (see Methods 
and Appendix B).  

SWA effectively translates the relevant bispectrum esti-
mates into the Fourier-series waveform parameters. This ap-
proach has critical advantages. First, SWA only evaluates 
those harmonic signal components that have a stable phase 
relationship to the fundamental frequency. Therefore, SWA 
estimates are particularly resistant to spectrally overlapping 
noise or other signals that do not show a stable cross-fre-
quency relationship. This substantially increases the noise-
resistance compared to time-domain approaches (Bartz et 
al., 2019). Second, SWA provides a complete waveform de-
scription. Thus, it does not require the predefinition of wave-
form parameters. Furthermore, the complete description al-
lows to reconstruct time-domain waveforms from the esti-
mated frequency-domain parameters.  

Cortical peaks of alpha waveform stability 
We applied SWA to human MEG data to investigate if, 

and potentially how many, alpha rhythms can be dissociated 
based on their waveform. We analyzed resting-state MEG 
data of 89 subjects (2 sessions per subject) from the human 
connectome project (HCP) (Van Essen et al., 2013). We 

Figure 1. Fourier-series representation of a waveform. (A) Harmonic peaks in the ampli-
tude spectrum (B) example non-sinusoidal waveform (C) harmonic sinusoids that, in their 
sum, reconstruct the shape of the waveform in (B). (bottom) The formal representation of this 
sum is a Fourier series. The fundamental frequency !!, the relative amplitudes ""	and relative 
phases $" of all harmonic sinusoids jointly encode the waveform information.  
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employed linear beamforming (Van Veen et al., 1997) to di-
rectly investigate neural activity in cortical source space tak-
ing into account the phase-ambiguity of the source-recon-
structed signals (see Methods). If functionally distinct corti-
cal alpha networks were associated with distinct alpha wave-
forms, these cortical alpha networks could be located as dis-
tinct spatial peaks of alpha waveform stability. To localize 
such regions of interest (ROIs) with peaked waveform stabil-
ity, we mapped the first harmonic bicoherence peak in the 
alpha-frequency-range (Figure 2A) across the cortex (Figure 
2B).  

This revealed a highly structured pattern of bicoherence 
(Figure 2B) with several local cortical maxima (Figure 2C). 
We found lateralized peaks in sensorimotor, parietal, tem-
poral, and occipital regions, as well as medially in inferior 
and superior parietal cortex. In sensorimotor and temporal 
cortex bicoherence showed symmetric bilateral peaks. In oc-
cipital and lateral parietal areas bicoherence peaked unilat-
erally, in the left and right hemisphere, respectively. For 
these unilateral peaks, we included the homologue locations 
in the contralateral hemisphere, which showed very similar 
bicoherence (<0.05 difference of z-scored bicoherence be-
tween hemispheres). In total, we identified 6 regions of in-
terest (4 bilateral and 2 medial) that showed peak alpha 
waveform stability, and for which we subsequently analyzed 
alpha waveforms.  

For every subject, cortical ROI, and session, we identified 
the fundamental alpha frequency based on the correspond-
ing bicoherence spectrum. Then, we identified up to 6 con-
secutive alpha harmonic peaks with significant bicoherence 
(p < 0.05, corrected) and extracted the corresponding wave-
form parameters (relative phase and amplitude). We found 
two or more significant harmonic bicoherence peaks, that is, 
three or more harmonic components, in more than half of 
the subjects at each of the 6 cortical regions (Figure 2D). We 
identified at least three or four significant harmonic peaks in 
the lateral parietal and sensorimotor regions, in half of the 
subjects and at least one hemisphere. We found the lowest 
(34 %) and highest (85 %) percentage of subjects with three 

significant harmonic peaks in the temporal and sen-
sorimotor regions, respectively. The percentage of 
subjects with four or more harmonic peaks ranged 
from 8 % in the inferior parietal to 62 % in the sen-

sorimotor region. Due to the low percentage of subjects with 
four or more harmonic peaks, we statistically compared 
waveforms including the first three harmonics, i.e. we in-
cluded waveform parameters for harmonic frequencies up to 
4!#. 

Distinct alpha waveforms 
If the identified peaks of alpha bicoherence reflected dis-

tinct alpha rhythms with distinct underlying circuit interac-
tions, then the waveforms of corresponding alpha-oscilla-
tions may differ between the corresponding cortical regions. 
Thus, we next used the derived SWA parameters (funda-
mental frequency, relative harmonic amplitude and phase) 
to test for waveform differences between regions (Figure 3). 
We employed a permutation-based within-subject 
MANOVA that combined all waveform parameters into one 
test. Importantly, the overall strength of harmonic coupling 
as measured by the absolute bicoherence was not included 
in the test, as differences in this parameter may reflect dif-
ferences in SNR, rather than a change of waveform shape. 
Furthermore, we ensured that the pattern of bicoherence 
strength across harmonics and the pattern of relative ampli-
tudes were compatible with harmonic coupling (see Meth-
ods) (Giehl et al., 2021).  

As the MEG data was recorded in two separate 6 min ses-
sions, we first tested for waveform differences between the 
two recording sessions. We found no significant differences 
between sessions for any of the 10 cortical regions (all p > 
0.05, uncorrected). Similarly, for the 4 bilateral regions there 
was no significant difference of the waveform between hem-
ispheres (all p > 0.05, uncorrected). We next tested for wave-
form differences between the 6 cortical regions. This re-
vealed a highly significant difference between regions (p < 
0.001). We followed up with pairwise tests between all 6 re-
gions (Figure 3A). Waveforms significantly differed for all 15 
region pairs (all p < 0.05, corrected). Thus, SWA uncovered 
significant waveform differences between 6 cortical regions. 
Importantly, we performed the statistics as random-effects 
analyses on the population level. Thus, the significant 

Figure 2. Cortical regions of interest. (A) Bicoherence 
averaged across the brain and subjects. Bicoherence is z-
scored against the Null-distribution estimated using circularly 
time-shifted surrogates. The alpha-frequency range around the 
first alpha-harmonic bicoherence peak that was used in (B) and 
(C) is marked in yellow. Non-significant bicoherences (p > 0.05 
corrected) are masked. (B) ROI locations and cortical 
distribution of bicoherence averaged across the frequency range 
marked in (A) and subjects (C) Difference between the local and 
maximum neighbouring bicoherence z-score; local z-scores < 
0.5 are masked. Values larger than 0 indicate local bicoherence 
peaks that were used to define ROI locations. (D) Percentage of 
subjects that showed up to 6 consecutive significant harmonic 
bicoherence peaks at the different ROIs, which corresponds to 
the number of coupled higher harmonics of alpha. 
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waveform differences between regions, in turn, imply the 
consistency of each region’s waveform across individuals. 

We next performed post-hoc tests (permutation-based 
ANOVAs, see Methods) to investigate, which specific pa-
rameter differences were underlying the distinct waveforms 
(Figure 3B, C and D, see Methods). For the fundamental al-
pha-frequency, we found that in sensorimotor cortex it was 
significantly higher, and in temporal cortex it was signifi-
cantly lower than in all other regions (all p < 0.05, cor-
rected). The fundamental frequency in superior and lateral 
parietal regions was marginally lower than in inferior parie-
tal and occipital regions (p < 0.1, corrected). Also, the rela-
tive amplitude (Figure 3C) and relative phase (Figure 3D) of 
higher harmonics showed significant differences between 
several pairs of cortical regions (p < 0.05, corrected). The 
sensorimotor region had the strongest second harmonic, 
while the third and fourth harmonic were strongest in lateral 
parietal cortex. Overall, the inferior parietal region had the 
lowest relative amplitude for all 3 higher harmonics, and 
waveforms were most similar between occipital and inferior 
parietal cortex, which only differed in the relative amplitude 
of the second harmonic. In general, the number of signifi-
cant differences decreased for higher harmonics, which is 
expected as the amplitude, and thus SNR, of higher harmon-
ics decreased (Figure 3C).  

As indirectly inferred above, all parameters indeed 
showed a consistent clustering across individual subjects. 
For example, the lateral parietal region showed a consistent 
phase clustering across subjects even up to the sixth har-
monic (p < 0.05). However, despite this consistency on the 
population level, it should be noted that all parameters 
showed a substantial variability across individuals (Figure 
3B, C and D). 

In summary, SWA allowed us to dissociate 6 cortical al-
pha waveform shapes: bilateral sensorimotor, parietal, oc-
cipital and temporal waveforms, as well as medial superior 
and inferior parietal waveforms. 

Alpha waveform stability 
The previous analyses revealed a substantial variability 

of waveform parameters across individuals. Does this varia-
bility merely reflect measurement noise or the subject spec-
ificity of waveforms? In the latter case, the waveform param-
eters of each subject should be reproducible across the two 
recording sessions. To test this, we correlated waveform pa-
rameters between sessions across subjects (Figure 4). Almost 
all waveform parameters were significantly correlated across 
sessions (p < 0.05, corrected). The lowest and highest wave-
form stability in terms of cross-session correlation was gen-
erally found in occipital and lateral parietal regions, respec-
tively. The fundamental alpha frequency was significantly 
correlated across sessions for all regions (all p < 0.05, 

Figure 3. Waveform parameters. (A) Significance of pairwise waveform differences between cortical regions (corrected p-values) 
(B) Distributions of bicoherence alpha peak frequency. Dots correspond to individual subjects, sessions and hemispheres. Solid and 
dashed lines mark median and interquartile range, respectively. Solid lines on top and bottom mark significant differences between 
regions (p < 0.05; corrected). (C) Distributions of relative harmonic amplitude of the first three higher harmonics of alpha. Same 
display as in (B). Long solid lines mark significant differences between regions (p < 0.05; corrected). (D) Histograms of reconstructed 
relative harmonic phase, for all higher harmonics with at least 15 single observations. Only the first three relative harmonic phases 
were used for statistical comparisons between regions. Asterisks indicate significant phase non-uniformity (corrected for multiple 
comparisons). The numbers at the top right of the circular distributions indicate the radial axis scale. 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.16.585296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.585296
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spectral waveform analysis dissociates human cortical alpha rhythms 

Giehl & Siegel 2024, bioRxiv    5 

corrected). As for the regional specificity above, cross-ses-
sion correlation generally decreased for higher harmonics as 
expected for decreasing SNR. In sum, we found that alpha 
waveform parameters were correlated between two separate 
recording sessions across subjects. In turn, this implied that 
the variability of waveform parameters across subjects was 
not merely attributable to noise, but reflected subject-spe-
cific waveforms that were stable across time.  

Reconstruction of alpha waveforms 
SWA provides a complete description of oscillatory wave-

forms. Thus, SWA allows to reconstruct time-domain wave-
forms from the derived spectral waveform parameters. We 
applied this approach to visualize waveforms in the time do-
main, to compare reconstructed waveforms to continuous 
raw data and to quantify time-domain features of the recon-
structed waveforms (Figure 5).  

For each cortical region, we reconstructed the population 
average alpha-waveform by averaging all waveform param-
eters across subjects before projecting and merging the har-
monics in the time-domain (Figure 5A). The population av-
erage waveforms showed clear non-sinusoidal features. For 

example, the sensorimotor waveform, displayed the typical 
“mu”-rhythm waveform that included secondary peaks and 
troughs nested on top of the fundamental 11.2 Hz crests. Av-
eraging waveform features across subjects may effectively 
reduce region-specific waveforms shape that are variable but 
present on the single subject level. To investigate this, we 
also reconstructed time-domain waveforms of individual 
subjects. Indeed, the reconstructed individual waveforms 
(Figure 5B left, two example subjects) did not only show 
marked variability between subjects, but also suggested 
more pronounced differences between regions than the pop-
ulation average waveforms.  

SWA characterizes waveforms by focusing on harmonic 
signal components that are phase-coupled across all pro-
vided data. This raises the question to what extend the ex-
tracted waveforms can even be identified in ongoing neural 
activity. To descriptively investigate this, we plotted the cor-
tical time courses, centered on the time of maximum alpha 
amplitude for the same two example subjects and all regions 
(Figure 5B right). Despite substantial variability of the ongo-
ing activity, for all regions, the reconstructed waveforms re-
sembled at least some of the oscillatory cycles of ongoing cor-
tical activity. This suggested, that SWA effectively extracted 
the characteristic oscillatory waveforms from ongoing activ-
ity. 

SWA-based rise-decay and peak-trough symmetry 
SWA-based waveform reconstruction allows to apply 

time-domain analysis on the reconstructed waveform. Two 
useful time-domain waveform parameters are the peak-
trough- and rise-decay symmetries. Together, these two fea-
tures capture the global non-sinusoidal shape of a waveform 
(Figure 5D). To investigate if these time-domain features 
captured the regional specificity of the SWA-derived 

Figure 5. Waveform reconstruction. (A) Recon-
structed population-average alpha waveforms for all 
cortical regions of interest. (B) Reconstructed wave-
forms and raw data of two exemplary subjects (subject 
1: top; subject 2: bottom). (left) Reconstructed alpha 
waveforms (right) Excerpts of raw source-level activity 
centred around the time with maximum alpha 
amplitude, low-pass filtered at 55Hz. (C) Distribution of 
rise-decay and peak-trough symmetry of all 
reconstructed waveforms (violet) and of their ampli-
tude-inverted form (black; 180° phase-flip). Both wave-
form polarities are shown to account for the phase-am-
biguity of the source-reconstructed MEG signal (see 
Methods). Dots are individual subjects, sessions and 
hemispheres. The example subjects shown in (B) are 
marked in blue (subject 1) and red (subject 2). Dark 
green lines indicate the circular average of symmetries 
across subjects. Light green lines indicate the symme-
tries of the reconstructed population-average wave-
form shown in (A). (D) Schematic illustration of 
waveform shapes with different peak-trough and rise-
decay symmetry. The distribution of all single-subject, 
single-region waveforms was minimal at the indicated 
82° axis (compare also panel C). Thus, to account for 
the 180° phase-ambiguity of source-reconstructed data 
waveforms to the right of this axis (black circles in C) 
were amplitude inverted. (E) Significance of pairwise 
waveform differences based on peak-frequency, rise-
decay symmetry and peak-trough symmetry (corrected 
p-values). 

Figure 4. Waveform stability. (A) Correlation of fundamental alpha 
frequencies across two recordings sessions. (B) Correlation of relative 
harmonic amplitudes across recordings sessions. (C) Correlation of rel-
ative harmonic phases across recordings sessions. Shadings denote 
harmonic order. Asterisks mark significance (p < 0.05; corrected). 
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waveform, we computed the peak-trough- and rise-decay 
symmetries of all reconstructed waveforms. To account for 
the phase-ambiguity of the source-reconstructed data, we 
performed the analysis on the original and amplitude-in-
verted waveforms (Figure 5C, violet and black dots) and 
identified the minimum of the joint distribution across all 
waveforms at 82° (Fig. 5D). We the performed the following 
analysis on the waveforms to the left of this axis (Figure 5C, 
violet dots; see Methods). We statistically compared the 
waveform symmetry parameters between regions as origi-
nally done for the spectral parameters. Indeed, also the time-
domain parameters of the reconstructed waveforms cap-
tured their regional specificity (Figure 5D). While waveform 
differences were generally less significant than for the origi-
nal SWA parameters (compare Figure 3A), almost all pair-
wise comparisons between regions yielded significant wave-
form differences (p < 0.05, corrected; Figure 5E). Again, 
there were no significant effects of session or hemisphere on 
the waveforms (all p > 0.05, uncorrected). Thus, SWA-re-
constructed waveforms can be successfully used to charac-
terize and dissociate waveforms in the time domain.  

Discussion 
Here, we introduce spectral waveform analysis (SWA) – 

a new framework to characterize the waveform of neural os-
cillations based on their harmonic profile in the frequency 
domain. We applied SWA to human resting-state MEG and 
found that several distinct cortical alpha waveforms can be 
detected and distinguished. Besides occipital, sensorimotor 
(mu) and temporal (tau) alpha rhythms, we found evidence 
for additional parietal alpha rhythms with a distinct wave-
form. Cortical alpha-waveforms were stable across recording 
sessions, had a characteristic non-sinusoidal profile across 
the population, and showed substantial subject-specific var-
iability.  

Analyzing waveform shape in the frequency domain 
SWA characterizes oscillatory waveforms in the fre-

quency-domain and critically extends previous time-domain 
approaches for characterizing wave shapes. First, SWA is 
particularly noise resistant. The key reason for this robust-
ness is that, by using the bispectrum, the algorithm does not 
only consider individual frequencies but the relationship be-
tween frequencies. Different to the more familiar power 
spectrum, the bispectrum specifically characterizes stable 
phase dependencies between frequencies, while 
disregarding unrelated signals (Sigl and Chamoun, 1994). As 
these stable phase dependencies between harmonic frequen-
cies are the defining feature of non-sinusoidal waveforms, 
the bispectrum is ideally suited to extract the waveform 
information in the frequency domain. Indeed, bicoherence, 
which is the normalized bispectrum, was already shown to 
be particularly noise resistant (Bartz et al., 2019; Giehl et al., 
2021) and to outperform time-domain waveform analysis 
when oscillatory signals may not even be directly observable 
in the time domain (Bartz et al., 2019). Thus, SWA allows for 
studying waveforms of comparatively weak neural oscilla-
tions, which may be particularly advantageous for non-

invasive investigations using EEG or MEG. Indeed, the pre-
sent results uncovered previously unknown alpha wave-
forms in the human brain using MEG, which highlights the 
potential of SWA to non-invasively characterize human 
brain rhythms. 

Second, SWA provides a complete waveform description 
that encompasses all waveform information that can be ex-
tracted from the data. The comprehensiveness of this ap-
proach has several advantages. First, SWA is not limited to a 
set of pre-defined waveform parameters that may potentially 
miss relevant information. Second, and notwithstanding 
this, SWA allows to reconstruct time-domain waveforms 
and to then apply well-established wave shape parameters 
such as e.g., peak-trough and rise-decay symmetry. This ap-
proach may be particularly useful as it effectively combines 
the noise-resistance of SWA with a projection of the high-
dimensional spectral parameters space to a lower dimen-
sional, potentially more interpretable parameter space in the 
time-domain. Finally, because of its comprehensiveness, 
SWA provides optimal sensitivity to identify differences and 
modulations of oscillatory waveforms. Indeed, we found that 
SWA parameters outperformed peak-trough and rise-decay 
symmetry, in conjunction with waveform frequency, in 
terms of their sensitivity to distinguish between different 
waveforms. Thus, SWA can render even very detailed wave-
form patterns, that may be missed by time-domain parame-
terization, accessible to statistical analyses.  

Dissociating multiple alpha rhythms 
To date, three different alpha rhythms, i.e., neural oscil-

lations at about 10 Hz, have been recognized in the human 
brain. These rhythms have been distinguished based on 
their distinct functional responses and cortical source loca-
tions (Feshchenko et al., 2001; Klimesch, 1999; Tenke and 
Kayser, 2005): A prominent visual alpha that is suppressed 
during eye opening (Berger, 1929), the idiosyncratic motor 
mu-rhythm (Gastaut et al., 1952; Pineda, 2005) and a third 
temporal tau-rhythm, which is generally less observable 
than the other two. The bilateral occipital, sensorimotor and 
temporal alpha waveforms that we identified conform well 
with these previously identified alpha oscillation sources. 
Our results show that these three rhythms express distinct 
alpha waveforms that are consistent across individuals but 
also show subject-specific variability.  

Additional parietal alpha waveforms 
Our results uncover three additional parietal alpha-

waveforms that were distinct from the three previously iden-
tified alpha rhythms. Can these distinct waveforms be inter-
preted as three distinct parietal alpha rhythms? Several fac-
tors need to be considered. Volume conduction induces sig-
nal mixing, which may result in intermediary waveforms at 
locations between the primary sources of original rhythms 
(Bartz et al., 2019). However, all identified regions of interest 
marked local maxima of waveform stability, which is diffi-
cult to explain as the effect of signal mixing between a 
smaller number of original rhythms that have a unimodal 
spatial distribution. However, it should be noted that 
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waveform differences were relatively weak for some pairs of 
regions. In particular, the waveforms of the middle and lat-
eral parietal regions were quite similar and differed only in 
their second harmonic phase and third harmonic amplitude. 
Similarly, occipital and inferior parietal waveforms only dif-
fered in the relative amplitude of their second harmonic. 
These weak differences may well reflect mixing between 
spatially close but distinct alpha rhythms. However, it can-
not be excluded that these weak differences may also reflect 
spurious intermediary waveforms due to mixing of rhythms 
with complex multimodal spatial distributions. 

The parietal region that most likely showed a previously 
unknown distinct alpha rhythm was the lateral parietal cor-
tex. The lateral parietal waveform was clearly different from 
the nearby sensorimotor waveform with both, significantly 
higher and lower relative harmonic amplitudes. Further-
more, even though the lateral parietal region was located be-
tween the inferior parietal and sensorimotor regions, the 
fundamental alpha frequency was not intermediary to that 
of the other two regions. Furthermore, the lateral parietal re-
gion showed the most consistent relative harmonic phase, 
which was significantly non-uniform up to the sixth har-
monic. Our finding of a distinct parietal alpha rhythm ac-
cords well with previous findings suggesting that parietal 
and occipital alpha oscillations may represent functionally 
distinct rhythms (Barzegaran et al., 2017; Haegens et al., 
2014; Nuttall et al., 2022; Sokoliuk et al., 2019). 

Together, our findings suggest that there are at least four 
different alpha oscillations with distinct waveforms in the 
human brain. This includes at least one parietal alpha 
rhythm in addition to sensorimotor (mu), temporal (tau), 
and occipital alpha rhythms. Future studies are required to 
delineate if the additional fifth and sixth alpha waveform re-
flect additional genuine alpha rhythms. 

A new window into neural circuit interactions 
SWA opens a new window into neural circuit interac-

tions. The waveform-based dissociation of seemingly mono-
lithic brain rhythms into distinct neural oscillations renders 
these oscillations accessible as separate biomarkers for func-
tional studies and translational applications. For example, 
the differentiated evaluation of distinct alpha oscillations 
may allow to pinpoint their distinct functional roles in the 
healthy brain or their distinct alterations in brain disorders. 
Indeed, alpha sub-bands have already been  functionally dis-
sociated (Klimesch, 1999, 1997; Klimesch et al., 1998, 1996; 
Wu et al., 2015) and differentially related to neuro-
developmental disorders (Debnath et al., 2020; Murias et al., 
2007; Van der Lubbe et al., 2019). Such alpha sub-band spe-
cific effects may well reflect distinct underlying oscillations 
that could be dissociated based on their waveform.  

Furthermore, the waveform itself may be a valuable bi-
omarker. The waveform of an oscillation provides additional 
information beyond its fundamental frequency and ampli-
tude. Like the fundamental frequency (Donner and Siegel, 
2011; Siegel et al., 2012), the waveform of an oscillations is 
shaped by the biophysical properties and the underlying cir-
cuit interactions  (Cole and Voytek, 2017; Krishnakumaran 

et al., 2022). Thus, changes of these circuit interactions due 
to different functional or cognitive states, neuromodulation 
(Radetz and Siegel, 2022), or pathological conditions may be 
reflected by corresponding waveform changes. Indeed, re-
cent findings support this notion and have linked changes in 
waveform parameters to brain disorders, such as Parkin-
son’s disease (Cole et al., 2017; Jackson et al., 2019; O’Keeffe 
et al., 2020) and schizophrenia (Bartz et al., 2019). Unravel-
ing the link between waveform features and underlying cir-
cuit mechanisms may allow to infer changes in circuit inter-
actions from changes in waveform. Along the same line, the 
stable subject-specificity of waveforms that we found in the 
present study may allow to infer individual differences in cir-
cuit mechanisms that may also be linked to genetic variabil-
ity.  

SWA is well applicable to brain rhythms beyond the al-
pha-frequency range and to invasive recordings. The latter 
may be particularly useful to relate non-sinusoidal wave-
forms to underlying circuit mechanisms and spiking activ-
ity. Furthermore, SWA can be applied in a time-resolved 
fashion. SWA is well-suited for a trial-locked approach and 
could also be considered in a sliding-window setting. This 
allows to characterize the temporal variability of waveforms, 
which may provide additional informative biomarkers. 

Conclusion 
To conclude, here we introduce a novel spectral wave-

form analysis (SWA) that characterizes the harmonic struc-
ture of oscillatory waveforms. SWA provides a complete 
waveform description, is noise-resistant, and allows to re-
construct time-domain waveforms. Based on this frame-
work, we identified several distinct and previously unknown 
cortical alpha waveforms in the human brain. SWA provides 
a powerful new framework to characterize the waveform of 
neural oscillations in the healthy and diseased human brain. 

References 
Bartz, S., Avarvand, F.S., Leicht, G., Nolte, G., 2019. Analyzing the 

waveshape of brain oscillations with bicoherence. NeuroImage 188, 
145–160. https://doi.org/10.1016/j.neuroimage.2018.11.045 

Barzegaran, E., Vildavski, V.Y., Knyazeva, M.G., 2017. Fine Structure of 
Posterior Alpha Rhythm in Human EEG: Frequency Components, 
Their Cortical Sources, and Temporal Behavior. Sci. Rep. 7, 8249. 
https://doi.org/10.1038/s41598-017-08421-z 

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 
Ser. B Methodol. 57, 289–300. https://doi.org/10.2307/2346101 

Berger, H., 1929. Über das Elektrenkephalogramm des Menschen. Arch. 
Für Psychiatr. Nervenkrankh. 87, 527–570. 
https://doi.org/10.1007/BF01797193 

Cole, S., Voytek, B., 2019. Cycle-by-cycle analysis of neural oscillations. J. 
Neurophysiol. 122, 849–861. https://doi.org/10.1152/jn.00273.2019 

Cole, S.R., van der Meij, R., Peterson, E.J., de Hemptinne, C., Starr, P.A., 
Voytek, B., 2017a. Nonsinusoidal Beta Oscillations Reflect Cortical 
Pathophysiology in Parkinson’s Disease. J. Neurosci. 37, 4830–4840. 
https://doi.org/10.1523/JNEUROSCI.2208-16.2017 

Cole, S.R., van der Meij, R., Peterson, E.J., de Hemptinne, C., Starr, P.A., 
Voytek, B., 2017b. Nonsinusoidal Beta Oscillations Reflect Cortical 
Pathophysiology in Parkinson’s Disease. J. Neurosci. Off. J. Soc. Neu-
rosci. 37, 4830–4840. https://doi.org/10.1523/JNEUROSCI.2208-
16.2017 

Cole, S.R., Voytek, B., 2017. Brain Oscillations and the Importance of Wave-
form Shape. Trends Cogn. Sci. 21, 137–149. 
https://doi.org/10.1016/j.tics.2016.12.008 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.16.585296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.585296
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spectral waveform analysis dissociates human cortical alpha rhythms 

Giehl & Siegel 2024, bioRxiv    8 

Debnath, R., Viola Miller, N., Morales, S., Seddio, K.R., Fox, N.A., 2020. In-
vestigating brain electrical activity and functional connectivity in ado-
lescents with clinically elevated levels of ADHD symptoms in alpha 
frequency band. Brain Res. 147142. https://doi.org/10.1016/j.brain-
res.2020.147142 

Donner, T.H., Siegel, M., 2011. A framework for local cortical oscillation 
patterns. Trends Cogn Sci 15, 191–199. 
https://doi.org/10.1016/j.tics.2011.03.007 

Elgar, S., 1987. Relationships involving third moments and bispectra of a 
harmonic process. IEEE Trans. Acoust. Speech Signal Process. 35, 
1725–1726. https://doi.org/10.1109/TASSP.1987.1165090 

Feshchenko, V.A., Reinsel, R.A., Veselis, R.A., 2001. Multiplicity of the α 
Rhythm in Normal Humans. J. Clin. Neurophysiol. 18, 331–344. 

Fisher, N.I., 1993. Statistical analysis of circular data. Cambridge University 
Press, Cambridge. 

Gastaut, H., Terzian, H., Gastaut, Y., 1952. [Study of a little electroenceph-
alographic activity:  rolandic arched rhythm]. Mars. Med. 89, 296–310. 

Giehl, J., Noury, N., Siegel, M., 2021. Dissociating harmonic and non-har-
monic phase-amplitude coupling in the human brain. NeuroImage 
227, 117648. https://doi.org/10.1016/j.neuroimage.2020.117648 

Haegens, S., Cousijn, H., Wallis, G., Harrison, P.J., Nobre, A.C., 2014. Inter- 
and intra-individual variability in alpha peak frequency. NeuroImage 
92, 46–55. https://doi.org/10.1016/j.neuroimage.2014.01.049 

Hagihira, S., Takashina, M., Mori, T., Mashimo, T., Yoshiya, I., 2001. Prac-
tical issues in bispectral analysis of electroencephalographic signals. 
Anesth. Analg. 93, 966–970, table of contents. 

Hipp, J.F., Siegel, M., 2015. BOLD fMRI Correlation Reflects Frequency-
Specific Neuronal Correlation. Curr. Biol. CB 25, 1368–1374. 
https://doi.org/10.1016/j.cub.2015.03.049 

Jackson, N., Cole, S.R., Voytek, B., Swann, N.C., 2019. Characteristics of 
Waveform Shape in Parkinson’s Disease Detected with Scalp Electro-
encephalography. eneuro 6, ENEURO.0151-19.2019. 
https://doi.org/10.1523/ENEURO.0151-19.2019 

Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and 
memory performance: a review and analysis. Brain Res. Rev. 29, 169–
195. https://doi.org/10.1016/S0165-0173(98)00056-3 

Klimesch, W., 1997. EEG-alpha rhythms and memory processes. Int. J. 
Psychophysiol. 26, 319–340. https://doi.org/10.1016/S0167-
8760(97)00773-3 

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., Schwaiger, J., 
1998. Induced alpha band power changes in the human EEG and at-
tention. Neurosci. Lett. 244, 73–76. https://doi.org/10.1016/S0304-
3940(98)00122-0 

Klimesch, W., Schimke, H., Doppelmayr, M., Ripper, B., Schwaiger, J., 
Pfurtscheller, G., 1996. Event-related desynchronization (ERD) and 
the Dm effect: Does alpha desynchronization during encoding predict 
later recall performance? Int. J. Psychophysiol. 24, 47–60. 
https://doi.org/10.1016/S0167-8760(96)00054-2 

Krishnakumaran, R., Raees, M., Ray, S., 2022. Shape analysis of gamma 
rhythm supports a superlinear inhibitory regime in an inhibition-sta-
bilized network. PLOS Comput. Biol. 18, e1009886. 
https://doi.org/10.1371/journal.pcbi.1009886 

Kuhlman, W.N., 1978. Functional topography of the human mu rhythm. 
Electroencephalogr. Clin. Neurophysiol. 44, 83–93. 
https://doi.org/10.1016/0013-4694(78)90107-4 

Lehtelä, L., Salmelin, R., Hari, R., 1997. Evidence for reactive magnetic 10-
Hz rhythm in the human auditory cortex. Neurosci. Lett. 222, 111–114. 
https://doi.org/10.1016/S0304-3940(97)13361-4 

Lozano-Soldevilla, D., Ter Huurne, N., Oostenveld, R., 2016. Neuronal Os-
cillations with Non-sinusoidal Morphology Produce Spurious Phase-
to-Amplitude Coupling and Directionality. Front. Comput. Neurosci. 
10, 87. https://doi.org/10.3389/fncom.2016.00087 

Mosteller, F., Fisher, R.A., 1948. Questions and Answers. Am. Stat. 2, 30–
31. https://doi.org/10.2307/2681650 

Murias, M., Swanson, J.M., Srinivasan, R., 2007. Functional Connectivity of 
Frontal Cortex in Healthy and ADHD Children Reflected in EEG Co-
herence. Cereb. Cortex 17, 1788–1799. https://doi.org/10.1093/cer-
cor/bhl089 

Niedermeyer, E., 1991. The “Third Rhythm”: Further Observations. Clin. 
Electroencephalogr. 22, 83–96. 
https://doi.org/10.1177/155005949102200208 

Niedermeyer, E., 1990. Alpha-Like Rhythmical Activity of the Temporal 
Lobe. Clin. Electroencephalogr. 21, 210–224. 
https://doi.org/10.1177/155005949002100410 

Nuttall, R., Jäger, C., Zimmermann, J., Archila-Melendez, M.E., Preibisch, 
C., Taylor, P., Sauseng, P., Wohlschläger, A., Sorg, C., Dowsett, J., 
2022. Evoked responses to rhythmic visual stimulation vary across 
sources of intrinsic alpha activity in humans. Sci. Rep. 12, 5986. 
https://doi.org/10.1038/s41598-022-09922-2 

O’Keeffe, A.B., Malekmohammadi, M., Sparks, H., Pouratian, N., 2020. Syn-
chrony Drives Motor Cortex Beta Bursting, Waveform Dynamics, and 
Phase-Amplitude Coupling in Parkinson’s Disease. J. Neurosci. 40, 
5833–5846. https://doi.org/10.1523/JNEUROSCI.1996-19.2020 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: Open 
source software for advanced analysis of MEG, EEG, and invasive elec-
trophysiological data. Comput. Intell. Neurosci. 2011, 156869. 
https://doi.org/10.1155/2011/156869 

Pineda, J.A., 2005. The functional significance of mu rhythms: Translating 
“seeing” and “hearing” into “doing.” Brain Res. Rev. 50, 57–68. 
https://doi.org/10.1016/j.brainresrev.2005.04.005 

Radetz, A., Siegel, M., 2022. Spectral Fingerprints of Cortical Neuromodu-
lation. J. Neurosci. 42, 3836–3846. https://doi.org/10.1523/JNEURO-
SCI.1801-21.2022 

Schaworonkow, N., Voytek, B., 2021. Enhancing oscillations in intracranial 
electrophysiological recordings with data-driven spatial filters. PLOS 
Comput. Biol. 17, e1009298. https://doi.org/10.1371/jour-
nal.pcbi.1009298 

Siegel, M., Donner, T.H., Engel, A.K., 2012. Spectral fingerprints of large-
scale neuronal interactions. Nat Rev Neurosci 13, 121–34. 
https://doi.org/10.1038/nrn3137 

Sigl, J.C., Chamoun, N.G., 1994. An introduction to bispectral analysis for 
the electroencephalogram. J. Clin. Monit. 10, 392–404. 
https://doi.org/10.1007/BF01618421 

Sokoliuk, R., Mayhew, S.D., Aquino, K.M., Wilson, R., Brookes, M.J., Fran-
cis, S.T., Hanslmayr, S., Mullinger, K.J., 2019. Two Spatially Distinct 
Posterior Alpha Sources Fulfill Different Functional Roles in Atten-
tion. J. Neurosci. 39, 7183–7194. https://doi.org/10.1523/JNEURO-
SCI.1993-18.2019 

Tenke, C., Kayser, J., 2005. Reference-free quantification of EEG spectra: 
Combining current source density (CSD) and frequency principal 
components analysis (fPCA). Clin. Neurophysiol. 116, 2826–2846. 
https://doi.org/10.1016/j.clinph.2005.08.007 

Tiihonen, J., Kajola, M., Hari, R., 1989. Magnetic mu rhythm in man. Neu-
roscience 32, 793–800. https://doi.org/10.1016/0306-4522(89)90299-6 

Van der Lubbe, R.H.J., de Kleine, E., Rataj, K., 2019. Dyslexic individuals 
orient but do not sustain visual attention: Electrophysiological support 
from the lower and upper alpha bands. Neuropsychologia 125, 30–41. 
https://doi.org/10.1016/j.neuropsychologia.2019.01.013 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., 
Ugurbil, K., WU-Minn HCP Consortium, 2013. The WU-Minn Human 
Connectome Project: an overview. NeuroImage 80, 62–79. 
https://doi.org/10.1016/j.neuroimage.2013.05.041 

Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Local-
ization of brain electrical activity via linearly constrained minimum 
variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880. 
https://doi.org/10.1109/10.623056 

Wu, S., Hitchman, G., Tan, J., Zhao, Y., Tang, D., Wang, L., Chen, A., 2015. 
The neural dynamic mechanisms of asymmetric switch costs in a com-
bined Stroop-task-switching paradigm. Sci. Rep. 5, 10240. 
https://doi.org/10.1038/srep10240 

 

Acknowledgements 
We thank Paul Hege for helpful discussions. This research was supported 
by the European Research Council (ERC) StG 335880 (M.S.) and CoG 
864491 (M.S.). 

Author contributions 
JG: Conceptualization, Software, Spectral waveform analysis method, For-
mal analysis, Visualization, Writing – original draft, Writing – Review & 
Editing 
MS: Conceptualization, Supervision, Resources, Project administration, 
Funding acquisition, Writing – original draft, Writing – Review & Editing 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.16.585296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.585296
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spectral waveform analysis dissociates human cortical alpha rhythms 

Giehl & Siegel 2024, bioRxiv    9 

Competing interest statement 
All authors declare no competing interests. 

Data availability statement 
The HCP data are available for download from https://www.humanconnec-
tome.org. 

Materials and Methods 
MEG Recording & Preprocessing 
We analyzed MEG data from the Human Connectome Project (Van Essen 
et al., 2013). We used the first two 6-minute resting-state recordings that 
were available for 89 subjects. During the recording, subjects were in supine 
position and fixating a red fixation cross on a dark background.  
The data were band pass filtered between 0.1 and 400 Hz, and notch filters 
were applied at 60±1Hz and all higher harmonics. Temporal segments with 
prominent artefacts were removed as defined in the “baddata” HCP 
pipeline. Muscle-, eye- and heart-related artefact ICA components were 
identified by visual inspection and subsequently removed. The set-up and 
recording is described in detail in (Van Essen et al., 2013). 
T1 weighted MRIs were used to warp the individual brain space onto a com-
mon MNI source space. We used the corresponding transformation matri-
ces as provided in the HCP data set to warp individual subject space onto a 
common source model with 457 equally spaced source positions positioned 
about 0.7 cm beneath the pial surface (Hipp and Siegel, 2015). Source-level 
activity was estimated using linearly constrained minimum variance 
(LCMV) beamforming (Van Veen et al., 1997). For each source, the data was 
projected on the spatial orientation of maximum variance (first spatial ei-
genvector). This projection induces a 180 º phase ambiguity of the signal 
because the polarity of the eigenvector direction is arbitrary. We accounted 
for this ambiguity as detailed below. 
We performed a Hanning windowed FFT on 1 s segments to compute bi-
coherence for the detection of ROIs with alpha waveform stability peaks. 
Windows were centered at 0.5 s intervals (half overlapping), and zero-pad-
ded to 2 s, which resulted in 0.5 Hz binning in the frequency domain. 
To extract waveform parameters, we then performed Hanning windowed 
FFT on 1 s segments, centered at 0.125 s intervals. Windows were padded 
to 10 s, which resulted in 0.1 Hz binning in the frequency domain. 
Using FFT as described above, we obtained complex estimates in the form 
of &##$!(!) = *%(+),

&((""#$())) , where *%(+) reflects the frequency-specific 
and time-dependent amplitude at time t and -##$%(+) the frequency-spe-
cific phase relative to the beginning of each data segment, rather than the 
phase at time t on which the segment was centered. To account for this dis-
crepancy, we reconstructed the phase at time t for all times and frequencies 
as -%(+) = 2/!++,-),. + -##$%(+), where ++,-),. = 0.5	4, the center of the 
1s long Hanning windowed data segments. These phase-corrected estimates 
&)(!) = *%(+),&(($())) were used for all further analyses. 

Bicoherence 
For each recording session, bicoherence 5(!!, !/) was computed as: 

5(!!, !/) =
0!	#!(%%)#!(%&)#!∗(%%2%&)	3
0!	4#!(%%)#!(%&)#!∗(%%2%&)4	3

= 〈6$%())6$&())6$(()),)(+$%(!)-+$&(!).+$((!))〉
〈86$%())6$&())6$(()),)(+$%(!)-+$&(!).+$((!))8〉

    

(Eq. 1) 

&)(!) represents the complex time-frequency transformation of the data at 
frequency f and time t. <) … 	> indicates the temporal average, which was 
taken across the entire recording session of 6 minutes, *%!(+) is the ampli-
tude time-series at frequency !!, -%!(+) is the corresponding phase time-se-
ries, and !3 = !! + !/. The numerator is the bispectrum and the denomina-
tor is the normalization factor according to Hagihira et al. (2001). For esti-
mates of coupling strength or “waveform consistency”, we used the absolute 
value of bicoherence. 
For the localization of group-level spatial peaks of bicoherence, we normal-
ized the absolute values of bicoherence to standard Z-scores against the dis-
tribution of 100 circularly time-shifted surrogates. To compute the absolute 
value of bicoherence for a surrogate, the time-series of !9 was shifted rela-
tive to !! and !/. 

ROI selection 
To estimate alpha wave-shape consistency on the group level, for each cor-
tical location, we averaged the z-scored bicoherence of the first recording 
session across the extended alpha frequency range (!!  from 7 to 14 Hz, 

inclusive, and !/	up to 1.5 times !!) and across all subjects. This resulted in 
a cortical distribution of the coupling strength between the fundamental al-
pha frequency and its first higher harmonic, which we used as a measure of 
alpha-frequency wave-shape stability. We identified local maxima of this 
distribution that exceeded an average z-scored bicoherence of 0.8 and that 
were not located on the caudal surface of the brain. For the two unilateral 
non-midline peaks (superior parietal cortex and occipital cortex), we added 
the homologue location on the other hemisphere.  
For each subject, we allowed a small variability of the individual source lo-
cations that were used for the respective ROI: we selected the source with 
the strongest individual alpha-range bicoherence from the average peak lo-
cation and the adjacent source locations. Adjacent source locations that 
would also be adjacent to a different ROI were not selected. 

Spectral Waveform Analysis 
A periodic waveform ;(+) can be defined as a Fourier series (see also Fig-
ure 1): 

;(+) = ∑ "" ∙ cos(A ∙ 2/!!+ + $:)-
";!    (Eq. 2) 

where !! is the fundamental frequency of the waveform, "" represents the 
amplitude of the phase-coupled A-th harmonic relative to the amplitude of 
the fundamental frequency, with "! = 1 , and $:  represents the relative 
phase between the phase of the fundamental frequency and the coupled A-
th harmonic, with $! = 0.  

Fundamental alpha frequency	and number of coupled harmonics 
To obtain the fundamental alpha frequency !!, for each subject, ROI and 
session, we located the individual bicoherence alpha peaks taking into ac-
count !/ frequencies from 1 Hz below each !! frequency up to 80 Hz. Bi-
coherence spectra were computed with 0.5 Hz binning. To improve the 
spectral precision of the detected fundamental and harmonic peak frequen-
cies, we then up-sampled absolute bicoherence spectra to 0.1 Hz binning 
using spline interpolation. Then, we averaged over !/ and located !! with 
the maximum absolute bicoherence in the extended alpha range from 7 to 
14 Hz. 
To define the harmonics that were coupled to the identified !!, we located 
peaks of absolute bicoherence as a function of !/ for the identified !!. For 
each peak, we tested for a significant bicoherence at p < 0.05 using the same 
time-shifted surrogate statistic employed for the z-scoring of bicoherence 
and FDR corrected across the entire cross-frequency space (Benjamini and 
Hochberg, 1995). For a non-sinusoidal oscillation, bicoherence peaks are 
expected at  !/ frequencies that are integer multiples of !!. Consecutive sig-
nificant harmonic bicoherence peaks that were located within !/-frequency 
ranges of !! ∙ (A ± 0.4) were then defined as the coupled harmonics. The 
number of significantly coupled harmonics corresponded to the number of 
these k significant consecutive harmonic peaks. 
We ensured that alpha harmonic bicoherence peaks indeed reflected har-
monic coupling and could not be due to phase-amplitude coupling between 
!!	and 2 ∗ !!. Harmonic coupling can be confirmed for significant bicoher-
ence coupling peaks, when three or more consecutive harmonic bicoher-
ence peaks have been detected, when the first of two consecutive harmonic 
bicoherence peaks is not considerably weaker than the second peak, or 
when only the first harmonic bicoherence peak can be detected (Giehl et 
al., 2021). Only in 1.8 % of observations (22 cases) the second of two alpha-
harmonic bicoherence peaks was numerically stronger than the first. For 
the remaining 98.2% of observations harmonic coupling was confirmed. 
The mean and std. of the absolute value of the first bicoherence peak (not 
z-scored) over all observations was 0.39 and 0.19, respectively, and the mean 
and std. of the absolute value of the second bicoherence peak was 0.29 and 
0.17, respectively. The mean absolute value of the first bicoherence peak of 
the 22 equivocal observations was 0.16, with a std. of 0.8, for the second 
bicoherence peak the mean absolute value was 0.19 and std. 0.07. Thus, for 
these 22 cases, both the coupling and coupling difference were compara-
tively small. Thus, we included these cases in the further analyses. 

Relative harmonic phase 
We reconstructed the pairwise relative harmonic phases $" from bicoher-
ence phases. We defined $! = 0. Relative harmonic phases $:  for k > 1 
were reconstructed as the cumulative sum over the harmonic bicoherence 
phases: 

$: = ∢,<&∙∑ ∢@(%%,-∙%%)/.%01%       (Eq. 3) 
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∢ denotes the cosine angle, and ∢B denotes the cosine angle of bicoherence. 
Eq. 3 exploits a direct mathematical relationship between the phases of har-
monic bicoherence estimates and the pairwise relative harmonic phases if 
harmonic coupling exists (see Appendix A). We used Eq. 3 to obtain the 
pairwise relative phase between the Ath harmonic and the fundamental al-
pha frequency !! for all significant higher harmonics. 

Relative harmonic amplitude 
To estimate the relative harmonic amplitude "" , we used a normalized 
bispectrum. We developed a normalization factor that is specifically tailored 
to retrieve the relative harmonic amplitudes from the bispectrum. 
The relative amplitude between the first harmonic (A = 1) and itself was 
defined as "%! = 1. Estimates of "" for higher harmonics (A > 1) were re-
constructed as: 

"" =
〈6$%())6(/.%)∙$%())6/$%()),)(+$%(!)-+(/.%)∙$%(!).+/∙$%(!))〉
〈6$%())6(/.%)∙$%())6$%()),)(+$%(!)-+(/.%)∙$%(!).+/∙$%(!))〉

      (Eq. 4) 

The dividend of Eq. 4 is the bispectrum between a fundamental frequency 
!! and (A − 1)!!. The divisor is the normalization factor. *"∙%!(+) represents 
the amplitude time course and -"∙%!(+) the phase time course of the Ath 
harmonic frequency and 〈	〉 denotes the average over time. Eq 4 is valid if 
there is pairwise cross-frequency phase-coupling between all possible pairs 
of !!,		!"<!, and !", which is the case for signals with higher harmonics (Ap-
pendix B). Theoretically, "" is real. However, numerically it is usually com-
plex with a phase angle close to zero. Thus, we used the real part of ""	as 
the measure of relative harmonic amplitude.  
To confirm a distribution of ∢"" close to 0, we calculated the circular vari-
ance I*J+&.+(K)	over the phase angles of all estimates of ∢"":  

	I*J+&.+(K) = 1 − |M[K]|      (Eq. 5) 

where K = ,&∢B/ , ∢"" is the cosine phase angle of "",  M[	] indicates the ex-
pected value and |	| the absolute value. I*J+&.+(K) ranges between 0 if all 
phases -  are equal, and 1 for a uniform distribution of phases (Fisher, 
1993). Estimates with an absolute phase angle of |∢"" ≥

C
9 | or with a rela-

tive amplitude real("") > 	1, were excluded from further analyses. 

Phase-ambiguity 
The 180° phase-ambiguity of the source-reconstructed MEG data can in-
duce spurious differences in the relative harmonic phases between sources.  
In other words, a random 180º phase-flip of one source with respect to a 
second source can cause a difference in the relative harmonic phases be-
tween these sources. We used a conservative approach to avoid this sce-
nario. Specifically, we aligned all individual wave shapes into one of the two 
possible directions in such a way to enforce the highest possible similarity 
between all waveform shapes, given the 180° ambiguity of source-recon-
structed MEG data. To this end, we determined which source time-series 
needed to be flipped by 180º based on the reconstructed waveforms’ peak-
trough and rise-decay symmetries. Together, both symmetries span a cen-
trally symmetric space that contains all wave shapes independent of fre-
quency. In this space, a sinusoidal shape is in the center and more asym-
metric shapes are more distally. To determine the peak-trough and rise-de-
cay symmetries of waveshapes, we first reconstructed each alpha wave 
shape U(+) for every subject and ROI in the time domain using Eq 1 and the 
derived wave-shape parameters. We reconstructed 5 cycles of each wave-
form with 1000 equally spaced samples. Peak-trough symmetry V+ is equal 
to Pearson’s moment coefficient of skewness 4 (Elgar, 1987) and was com-
puted on U(+) as: 

V+D()) = 4(U(+)) = E((D())<E(D())))()
F(D()))(        (Eq. 6) 

Rise-decay symmetry JW is equal to the negative skewness of the imaginary 
part of the Hilbert transform ℋ (Elgar, 1987) and was computed as: 

JWD()) = −4(YZ*[(ℋ(U(+)))      (Eq. 7) 

We computed these symmetries for the original and amplitude inverted ver-
sion of each waveform. In the space spanned by V+ on the x-axis and JW on 
the y-axis, we located that axis through the origin that intersected the least 
number of wave shape estimates in the joint distribution of all these wave 
shape estimates (using an axis width of 0.2 estimated in steps of 1°). This 
axis was the axis connecting through 82° and 262°. Waveforms with 
[V+, JW]	 representations located to the bottom-right of this axis were 

mirrored in amplitude and the waveform parameters of the flipped version 
was used.  

Distinguishing waveforms 
We used multivariate permutation statistics akin to a nonparametric 
within-subject (repeated measures) MANOVA to statistically assess differ-
ences of waveform parameters. Effects were evaluated using 7 dependent 
variables: the fundamental alpha frequency !!, the relative harmonic am-
plitudes "" and relative harmonic phases $" for A ∈ {2,3,4}. 
The general outline of the statistical procedure was as follows. We first 
tested for significant waveform differences across the two sessions, sepa-
rately for all 10 cortical ROIs. As there was no significant session effect, we 
kept “session” as an untested factor in the following tests. Next, we tested 
for significant hemisphere differences, separately for all 4 bilateral ROIs. As 
there was no significant hemisphere effect, we kept “hemisphere” as an un-
tested factor in the following tests. Then, we performed the main statistical 
test if waveforms differed across ROIs. This main test was followed up by 
pairwise post-hoc tests for all ROI-pairs. Finally, second-order post-hoc 
tests assessed which specific waveform parameters differed between which 
ROIs. 
All nonparametric permutation MANOVAs followed the same logic. For !!, 
the three "" and the three $" we separately computed F-values, as for a par-
ametric within subject ANOVA. To obtain F-values for the circular relative 
harmonic phases $", we transformed all $ to the form K = ,&G (with $ ∈
[−/; /)) and we used multiplication with the complex conjugate in place of 
squaring to compute circular sums of squares. This way, we obtained 7 sep-
arate F-values, one for each of the dependent variables. We then used a per-
mutation statistic to assess the statistical significance against the Null hy-
pothesis of no waveform difference between ROIs. We used 5000 permuta-
tions of randomly reassigning ROI-labels. For each permutation we com-
puted 7 permutation F-values. Testing against the distribution of permuta-
tion F-values, we obtained one p-value for each of the 7 unpermuted F-val-
ues, as well as one permutation p-value for each of the 5000 permutation F-
values. We applied Fisher’s method (Mosteller and Fisher, 1948) to pool the 
7 independent variables. We derived one Χ/-value from the 7 unpermuted 
p-values as well as 5000 permutation-Χ/-values from the permutation p-val-
ues: 

Χ/ = −2∑ log	(V&)H
&;!      (Eq. 8) 

The unpermuted Χ/-value was then tested against the distribution of per-
mutation Χ/-values to obtain the p-value of the null-hypothesis of no differ-
ence between ROIs. We applied the same permutation statistic to compute 
post-hoc MANOVAs for all pairwise ROI comparisons. We corrected the p-
values of these pairwise MANOVAs for multiple comparisons using false 
discovery rate correction (FDR, Benjamini and Hochberg, 1995). For the 
pairwise ROI-comparisons, the 7 separate F- and p-values of each pairwise 
MANOVA served as the second-order post-hoc statistic of differences of in-
dividual waveform parameters. Again, these p-values were all FDR-cor-
rected for multiple comparisons. 

Cross-session stability 
We used Spearman correlation to correlate the fundamental alpha fre-
quency and the relative harmonic amplitudes across the two recording ses-
sions. The relative harmonic phases were correlated using a permutation 
test, where the phase correlation JG between the two sessions (here "  and 
5) was calculated as: 

JG = J,*b(,&G3 ∙ ,<&G4)    (Eq. 9) 

Here, $B represents the relative harmonic coupling phase of one subject, 
ROI and harmonic in session ". Permutation was performed across sub-
jects. The resulting p-values were FDR corrected for multiple comparisons 
across the 6 ROIs and 3 higher harmonics (Benjamini and Hochberg, 1995). 

Phase non-uniformities 
We tested the non-uniformity of the distributions of the reconstructed rela-
tive harmonic phase at every ROI and higher harmonic up to the 6th har-
monic. We computed the mean vector length Ib  across all subjects 4  at 
every ROI and higher harmonic: 

Ib($!…$-) = c!I∑ ,&G5IJ;! c      (Eq. 10) 

Significance of non-uniformity was determined with respect to the distribu-
tion of 1000 IbK(d!…d-)  drawn from dJ~f([0,2/)) . The resulting p-
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values were FDR corrected across all ROIs and harmonics (Benjamini and 
Hochberg, 1995).  

Group-level waveform reconstruction 
To reconstruct the characteristic waveforms on the group level, we averaged 
the fundamental alpha frequency !!  and relative harmonic amplitude "" 
across subjects. The group-level relative harmonic coupling phases $" were 
reconstructed from the group averaged bicoherence phases. Following the 
results of the tests for phase non-uniformity, subject average waveforms 
were reconstructed including the waveform parameters from all A = 1…g 
higher harmonics with at least 15 observations and for which phase uni-
formity of the bicoherence phases was rejected at p < 0.05 after FDR correc-
tion. This was g = 5 for the sensory-motor and the lateral parietal ROIs, 
g = 4 for the occipital ROI and g = 3 for the remaining ROIs. For every 
ROI, we then applied Eq. 1 to the included group-level waveform parame-
ters. 

Individual waveform reconstruction and temporal excerpts 
For each ROI, we reconstructed the alpha for two example subjects using 
Eq. 1 and the respective waveform parameters. To enable a visual compari-
son between these Fourier series waveform reconstructions and the original 
data, we extracted one second of source reconstructed data centered around 
the time of maximum alpha amplitude for each ROI. The time of maximum 
alpha amplitude was identified by repeating the time frequency analysis as 
described above with 10 ms steps and by smoothing the resulting amplitude 
time series with a 1.5 s Hanning window before locating the temporal max-
imum. The resulting excerpts were low pass filtered at 55 Hz using a fourth 
order zero-phase forward-reverse Butterworth filter. 

Peak-trough and rise-decay symmetry  
We computed the peak-trough- and rise-decay symmetry for each individu-
ally reconstructed waveform U(+) according to Eq. 6 and Eq. 7 as described 
in the section “MEG phase ambiguity” above. We tested for waveform dif-
ferences using the same statistical approach as detailed in section “distin-
guishing waveforms” above using the three dependent variables alpha fre-
quency !!, peak-trough symmetry V+ and rise-decay symmetry JW. 
The non-sinusoidal signals U(+) in Fig. 5d were as: 

U(+) = 	∑ !
L(/.%) hi4(2/A!!+ + (A − 1)-J)I

";!       (Eq. 11) 

We used !! = 10 Hz, j = 10, and -J = 0, 0.25/, 0.5/, 0.75/, /, 1.25/, 1.5/ 
and 1.75/ for the 8 plotted signals, starting at 0° in counterclockwise order. 
The waveform constant l  was defined as the constant fulfilling V+D()) =

cos	(-J) , JWD()) = sin(-J)  and oV+D())/ + JWD())/ = 1  for j → ∞ ; and 

where ∢rD())(!!, A ∙ !!) = −-J  for all A ∈ [1, . . , j − 1] , and was numeri-
cally approximated as l	 = 	2.34521. 

Software 
All analyses were performed in MATLAB (MathWorks Inc., Natick, USA) 
using the Fieldtrip toolbox (Oostenveld et al., 2011) and custom software. 

Appendix 
Appendix A. Reconstructing relative harmonic phase  
Eq. 3 ($: = −∑ ∢5(!!, s ∙ !!)"<!

-;!  ) reconstructs the pairwise relative har-
monic phases $: as the negative circular cumulative sum over the corre-
sponding s = 1  to s = A − 1  harmonic bicoherence phases ∢5(!!, s ∙ !! ). 
Eq. 3 is valid, if the bicoherence phase captures the phase-difference be-
tween the cross-frequency coherences of two subsequent harmonic wave-
form components. That is, if:  

∢5(!!, s ∙ !!) 	≡ 	∢(u(!!, (s + 1) ∙ !!) ∙ u(!!, s ∙ !!)∗)     (Eq. A1) 

Here, ∗ denotes the complex conjugate, ≡ denotes equivalence, and cross-
frequency coherence u(!!, U ∙ !!) is defined as: 

u(!!, U ∙ !!) = 	
〈6$%(N)∙66∙$%(N)∙O

)∙76∙+$%(!).+6∙$%(!)8〉
〈6$%(N)∙66∙$%(N)〉

     (Eq. A2) 

Here, *%(t) denotes instantaneous amplitude, -%(+) denotes instantaneous 
phase, and 〈	〉 denotes the average across time. To conserve a relative sim-
plicity of the notation, we will be omitting the normalization factors in the 
derivation below. 
Eq. A1 can be derived as follows. We momentarily disregard the temporal 
average and consider only a single point in time w with wx+. We rewrite the 
right side of Eq. A1 according to Eq. A2 while omitting the normalization 
factor (divisor) of Eq A2 because the normalization does not affect phase: 

∢(h$(!!, (s + 1) ∙ !!) ∙ h$(!!, s ∙ !!)∗) =	
∢ y*%%(T) ∙ *(-2!)∙%%(T) ∙ e

&∙P(-2!)∙($%($)<((0-%)∙$%($)Q ∙ *%%(w) ∙ *-∙%%(w) ∙

,<&∙P-∙($%($)<(0∙$%($)Q{ =	

∢ y*%%(T) ∙ 	*%%(T) ∙ *(-2!)∙%%(T) ∙ *-∙%%(T) ∙ e
&∙P($%($)2(0∙$%($)<((0-%)∙$%($)Q{ 

Except for a difference in amplitude weighting, this is identical to the phase 
of bicoherence ∢r$(!!, s ∙ !!, ), or of its non-normalized form, the bispec-
trum, considering only a single point in time T with wx+:	 

∢r$(!!, s ∙ !-) =	
∢ y	*%%(T) ∙ *(-2!)∙%%(T) ∙ *-∙%%(T) ∙ e

&∙P($%($)2(0∙$%($)<((0-%)∙$%($)Q{ 

This equivalence remains valid for temporal averages, if the following re-
quirements are fulfilled: there are significant h	$9(!!, (s + 1) ∙ !!)  and 
h	$9(!!, s ∙ !!)  at times  wR  (wR	x	+ ), and the angle ∢}h	$9(!!, (s + 1) ∙ !!) ∙
h	$9(!!, s ∙ !!)∗~ is stationary over wR . These requirements are fulfilled for 
harmonic components of stationary, non-sinusoidal periodic waveforms, 
where all three frequencies (!!, !- and !-2!) are jointly harmonically cou-
pled. Any other contributions to *(t) and -(+) at !!, s ∙ !!, or (s + 1) ∙ !!, 
that are not phase-locked, can be expected to cancel out and, thus, vanish 
in the temporal average of bicoherence. Thus, it is valid to use Equation 3 
to reconstruct relative harmonic phases $:  of non-sinusoidal periodic 
waveforms.  

Appendix B. Reconstructing relative harmonic amplitude 
For a stationary non-sinusoidal periodic waveform, it holds that: 

*"(+) = "" ∙ *!(+)    (Eq. B1) 

where "" = his4+. Here, *!(+) is the amplitude time course of the funda-
mental harmonic; *"(+) is the amplitude time course of the Ath harmonic 
of the same waveform; and "" is the stationary relative harmonic amplitude 
of the Ath harmonic in relation to the fundamental (A = 1) harmonic. We 
used Eq. 4 to quantify "": 

"" =
〈6%())6/.%())6/()),)(+%(!)-+/.%(!).+/(!))〉
〈6%())6/.%())6%()),)(+%(!)-+/.%(!).+/(!))〉

     (Eq. 4) 

The dividend of Equation 4 is the bispectrum and the divisor is the required 
normalization factor. Equation 4 can be derived under the assumption of 
Eq. B1 by substituting Eq. B1 into the right-hand side of Eq. 4: 

〈6%())∙B/.%6%())∙B/6%())∙,)(+%(!)-+/.%(!).+/(!))〉
〈6%())∙B/.%6%())∙6%()),)(+%(!)-+/.%(!).+/(!))〉

 = 

= B/.%∙B/∙〈6%())
(,)(+%(!)-+/.%(!).+/(!))〉

B/.%∙〈6%())(,)(+%(!)-+/.%(!).+/(!))〉
= "" 

Notably Equation 4 is only valid in the case of harmonic coupling when Eq. 
B1 can be assumed. In this case, contributions to *(t) and -(+) that are not 
phase-locked to the waveform signal can be expected to cancel out, thus, 
vanish in the temporal average. For practical application, we suggest using 
the real part of "" and to exclude estimates with a considerable imaginary 
component of "".  
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