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Abstract
Structural variants (SVs) are omnipresent in human DNA, yet their genotype and

methylation status is rarely characterized due to previous limitations in genome

assembly and detection of modified nucleotides. Because of this, the extent to which

these regions act as quantitative-trait loci is also largely unknown.

Here, we generated a pangenome graph summarizing the SVs in 782 de novo

assembled genomes obtained from the Genomic Answers for Kids rare disease cohort,

that captures 14.6 million CpGs in DNA segments that are absent from the CHM13v2

assembly (SV-CpGs), expanding their number by 43.6%. Next, using 435 methylomes

from the same samples, we genotyped a total of 7.99 million SV-CpGs, of which 5.18

million (64.8%) were found to be methylated (SV-5mCpGs) in at least one sample.

To understand the provenance and impact of these novel SV-CpGs, we noted

that non-repeat sequences were the leading contributor of SV-CpGs (3.3 ✕ 106),

followed by centromeric satellites (1.58 ✕ 106), simple repeats (1.19✕ 106), Alus (0.67

✕ 106), satellites (0.39 ✕ 106), L1s (0.27 ✕ 106), and SVAs (0.19 ✕ 106). Meanwhile,

the methylation rate of SV-CpGs was the highest in repeat sequences. Moreover, in

contrast to Alus and L1s, centromeric satellites, simple repeats and SVA sequences
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were overrepresented in SV-5mCpGs compared to reference CpGs. Similarly, we

established that non-reference CpGs were more than twice (37% vs. 15%) as likely to

be variable, showing intermediate methylation levels in the population.

Lastly, to explore if SVs detected in this pangenome are potentially causal for

functional variation in population we measured methylation quantitative trait loci

(SV-mQTLs) using CHM13v2 as a backbone. This revealed over 230,464 methylation

bins within 100 kbp of a common SV (>5% MAF) showing significant association (at 5%

FDR) with methylation variation. Finally, we assessed how many of these SVs-mQTLs

were the leading QTL variant compared to SNVs and identified 65,659 methylation bins

(28.5%) where the leading variant was an SV.

In conclusion, our results demonstrate that graph genome references providing

full SV structures in combination with the associated methylation variation reveal

tens-of-thousands of QTLs that are more accurately mapped in personal genomes,

underscoring the importance of assembly-based analyses of human traits.

Introduction
The completion of the first telomere to telomere genome (Nurk Sergey et al. 2022) also

enabled the first epigenomic characterization of a complete human genome (Gershman

et al. 2022). This milestone epigenome characterized histone modifications and DNA

methylation in previously unsolved and structurally polymorphic regions of the human

genome, including centromeres, transposable elements and tandem repeats. More

generally, the DNA sequences omitted from current reference genomes are likely a

source of substantial epigenetic activity. Expanding the non-reference results to a

larger number of human genomes and epigenomes can expose population variation

with potential new insights on trait variation and disease. The ability to survey

epigenomes was recently augmented by long-read technologies that simultaneously

characterize the sequence of personal genomes, resolving polymorphic SVs, together

with their epigenomic status (Yue et al. 2022; Cheung et al. 2023; Sigurpalsdottir et al.

2024).
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Moreover, computational methods that can compile personalized genomes into

pangenome graphs, can capture megabases of non-reference sequences and integrate

SVs from a cohort of genomes (Erik Garrison et al. 2023; Li, Feng, and Chu 2020;

Hickey et al. 2023). The publication of the draft human pangenome reference also

facilitates the study of SVs and their features at scale in a range of datasets (Liao et al.

2023; Groza et al. 2024). Indeed, such developments allow mapping epigenomic data

directly to SVs and exploring the epigenetic status of regions that were not included in

the reference genome (Groza et al. 2023; 2020). For example, it would be interesting to

explore the link between SVs and 5mC base modifications, given the well known

connection between DNA methylation and gene expression (Razin A and Cedar H

1991; Breiling and Lyko 2015; Dhar et al. 2021).

A pangenome can support genotyping SVs across the same samples or a wider

set of samples, which fits well within the assumptions of most methylation QTL studies.

Thus, mapping methylation data to pangenomes to correct reference bias and recover

more signal (Wulfridge et al. 2019) and then correlating the resulting methylation

features with SVs is a promising approach that is enabled by pangenomes. Therefore,

the tools necessary to answer long-standing questions regarding the epigenetic status

of SVs (Daron and Slotkin 2017; Groza et al. 2023; Sun et al. 2023) and their

associations with other quantitative traits are increasingly accessible.

Here, we use a pangenome comprising 782 haplotype resolved de novo

assemblies from the Genomic Answers for Kids (GA4K) Consortium (Cohen et al. 2022;

Kane et al. 2023) and the 94 Human Pangenome Reference Consortium (HPRC)

assemblies (Liao et al. 2023) to survey 435 5mC methylomes derived from whole

genome sequencing of blood using HiFi long-reads. With this pangenomic approach, we

identify non-reference CpGs within SVs, characterize their population frequency and

methylation status, and associate SV-QTLs with methylation variation over the entire

genome.
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Results

Pangenomes characterize the methylation status of CpGs in SVs
We expected each of the 782 GA4K de novo assemblies to contain a number of

structurally variant and non-reference CpGs. To recover these sequences, we

constructed a genome graph using minigraph (Li, Feng, and Chu 2020) starting with

CHM13v2 (Nurk Sergey et al. 2022) as a backbone, followed by the 94 HPRC

assemblies (Liao et al. 2023), before adding the 782 GA4K samples. In total, this added

14.6 million CpGs in alternative nodes (SV-CpGs) for GA4K, on average 16,600

SV-CpGs per sample, on top of the 33.5 million CpGs that exist in CHM13v2 (a gain of

43.6%). At the same time, the pangenome grew by 713 megabases (Fig S1, a gain of

23%), yielding 2.05 ✕ 104 CpGs per megabase of non-reference sequence, compared

to only 1.08✕ 104 CpGs per megabase of reference sequence.

Next, we obtained and aligned 435 GA4K blood methylomes matching a subset

of the samples in this pangenome and annotated each CpG in the pangenome with the

methylation level found in these samples (Methods). Overall, we found that these

methylomes cover 7.99 million of the 14.6 million SV-CpGs that exist in the pangenome

(Fig 1A). We also found that 5.6 million (64.8%) of these SV-CpGs show a methylation

level above 50% (methylated state, SV-5mCpGs) in at least one of the 435 methylomes

(Fig 1A). For comparison, 32.2 of 33.5 million reference CpGs (96.1%, Fig 1A) show a

methylation level above 50% in the same samples (reference 5mCpGs). However, this

difference was driven by rare SV-CpGs (Fig S2) that have few chances to be observed

in a methylated state compared to reference CpGs that were nearly fixed in the

population (Fig S3). In fact, 92.8% of the most common SV-CpGs were methylated in at

least one sample (Fig S2). Saturation analysis over these methylomes shows that each

additional methylome was expected to contribute 2860 SV-5mCpGs, 1750 SV-CpGs

and 1700 reference 5mCpGs (Fig 1B). The fact that SV-CpGs saturated quicker than

SV-5mCpGs also supports the hypothesis that more SV-CpGs should be observed in a

methylated state as the number of methylomes increases.

Using this approach, we were able to view methylation patterns in many

haplotypes, including SVs, across hundreds of samples in polymorphic regions like the
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KIR (Fig 2). In this representation, we clearly see patterns of methylated and

unmethylated CpGs within non-reference sequences in the KIR locus, a task that was

not possible with reference genomes that describe only one haplotype.

A large fraction of non-reference CpGs are methylated
Knowing the size of the above panmethylome, we asked what was the frequency

distribution of SV-CpGs and SV-5mCpGs. We observe 8.48 ✕ 105 singleton SV-CpGs,

4.41 ✕ 106 with a frequency below 10% and 9.26 ✕ 105 with a frequency above 90%

(Fig 1C). Some of these were methylated and we counted 9.48 ✕ 105 singleton

SV-5mCpGs, 3.60 ✕ 106 with a frequency below 10% and 2.21✕ 105 with a frequency

above 90% (Fig 1C). However, many 5mCpGs were rare because they lie on rare

alleles. Therefore, we calculated the methylation rate, where we adjust for allele

frequency and only consider samples that carry the CpG (Fig 1D, Methods). After we

calculated methylation rates, we observed 2.4 ✕ 106 SV-CpGs (30.0%) and 7.1 ✕ 105

reference CpGs (2.14%) that were never methylated in any methylome and have a

methylation rate of 0% (Fig 1D). Also, the average methylation rate was 38.9% for

SV-CpGs and 76.6% for reference CpGs. Then, we counted CpGs that were fixed in a

hypomethylated (<15%) or hypermethylated state (>85%) and found 3.44 ✕ 106

(43.1%) hypomethylated and 1.58 ✕ 106 (19.8%) hypermethylated SV-CpGs (Fig 1D).

Conversely, we found 4.83 ✕ 106 (14.5%) hypomethylated and 2.34 ✕ 107 (70.4%)

hypermethylated reference CpGs (Fig 1D). Lastly, we counted dynamic CpGs that have

a methylation rate between 15% and 85%, yielding 2.97 ✕ 106 (37.2%) SV-CpGs and

4.93✕ 106 (14.8%) reference CpGs.

Repeats account for more than half of the non-reference

methylome

To determine the origin of SV-CpGs and SV-5mCpGs, we ran RepeatMasker on the

pangenome and tallied the number of CpGs that overlap repeats. We found that 3.30✕

106 SV-CpGs did not overlap any repeats (41.2%), of which 2.04 ✕ 106 (61.9%) were

methylated at least once (Fig 3A). Second, centromeric satellites accounted for 1.58✕
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106 of SV-CpGs, of which 9.26 ✕ 105 (58.7%) were methylated. Mobile elements also

contributed, with 6.67 ✕ 105 SV-CpGs in Alus (5.53✕ 105 methylated, 83.0%), 2.65✕

105 in LINE1s (2.08 ✕ 105 methylated, 78.5%) and 1.87 ✕ 105 in SVAs (1.66 ✕ 105

methylated, 88.9%, Fig 3A).

Then, we asked if any particular repeats contribute disproportionately to

SV-5mCpGs relative to reference 5mCpGs. Here, we found that sequences that were

not repeats were depleted in SV-5mCpGs, accounting for 45.6% of reference 5mCpGs

but only for 39.4% of SV-5mCpGs. Similarly, Alus contribute 22.7% of reference

5mCpGs but only 10.7% of SV-5mCpGs. LINE1s, ERVs and other non-reference

repeats were also depleted (Fig 3B). On the other hand, non-reference multi-allelic

sequences such as satellites (0.835% vs 5.42%), centromeric satellites (2.91% vs

17.9%), simple repeats (2.94% vs 14.1%) and SVAs (0.514% vs 3.21%, known to

contain tandem repeats) were overrepresented in SV-5mCpGs (Fig 3B).

Indeed, when we computed the frequency distribution of SV-5mCpGs and

stratified by repeats (Fig 3C), we noted that SV-5mCpGs in overrepresented repeats

like satellites, simple repeats and SVAs, were rarer than those in underrepresented

repeats, which was consistent with multi-allelic SVs contributing a large number of rare

alleles to the pangenome.

Finally, we wanted to know if the methylation rate of SV-CpGs (Fig 1D) varies

across repeats and if it differs from reference CpGs. For this purpose, we calculated the

methylation rate of every CpG in the pangenome and stratified by repeats, separating

SV-CpGs from reference CpGs (Methods). In these analyses, we observed the

methylation rate of SV-CpGs was highest in SVAs, Alus, LINE1s and ERV1s (Fig 3D).

However, the methylation rate of SV-CpGs in these repeats tends to be lower and more

variable than reference CpGs, pointing to a lower methylation rate in younger CpGs.

Interestingly, the methylation rate of SV-CpGs in simple repeats, centromeric satellites,

low complexity and tRNA sequences was higher than reference CpGs, and with similar

variability (Fig 3D). In fact, these were multi-allelic regions where the reference genome

often presents rare alleles which were also enriched in unmethylated CpGs (Fig S2).

This suggests that the estimates of methylation rate were more variable in rarer CpGs

due to low sample size. At the same time, the average methylation rate in rare SV-CpGs
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was lower than rare reference CpGs but is the same in common SV and reference

CpGs (Fig S4). Given that these rare SV CpGs tend to lie in multi-allelic repeats, this

bias could be explained by the lower mappability of these sequences. Moreover, there

were very few rare reference CpGs (Fig S3), meaning that their methylation rate was

estimated from a much smaller sample than for rare SV-CpGs.

Pangenomes enable the mapping of SV-QTLs

We were interested to see if any SVs contained in the GA4K pangenome were QTLs for

DNA methylation in our methylomes. To this end, we aligned and genotyped against the

pangenome 470 haplotype-resolved de novo assemblies that were associated with the

subset of 235 methylomes for which assemblies were available, selecting SV alleles

that had a minimum frequency of 5% and a maximum frequency of 95% and resulted

into a total of 160,064 SV alleles (Methods). The SV alleles were distributed in 97,746

loci, highlighting the ability of pangenomes to characterize multi-allelic regions. We also

partitioned the CHM13v2 backbone reference into non-overlapping 200 bp methylation

bins and calculated the average methylation level in these bins (Methods). Then, we

identified SV alleles and methylation bins within 100kbp flanking sequence and

performed 124.9 ✕ 106 SV-mQTL tests (Fig S5). We detected 230,464 methylation bins

that were in QTL with 76,677 SV alleles in 59,872 loci at FDR < 0.05 (Fig 4A, example

QTL in Fig 4B, Methods).

To describe the direction of mQTL effects for SVs, i.e. increase or decrease

methylation, we tallied the signs of the strongest effect on each bin across

chromosomes and found that SV-mQTLs showed more positive effects than negative

effects: 73,702 bins were hypomethylated by SVs and and 156,762 were

hypermethylated by the strongest SV-mQTL (Fig 4C). Every chromosome showed

more hypomethylating than hypomethylating effect, with some chromosomes

contributing slightly more QTLs relative to their size.

Next, we queried the distance distribution between the methylation bins and the

associated SV-mQTLs to determine the ranges of interaction between SVs and

methylation bins (Fig 4D). We tallied 4,144 methylation bins that overlap with their

SV-mQTL, meaning the bin was within a structurally variant region of the backbone
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reference genome, and another 53,460 bins within 10 kbp of their SV-mQTL. Moreover,

we found 14,970 methylation bins that were more than 90 kbp away from their

SV-mQTL, at the limit of the allowed flanking distance. Overall, we observed a mean

distance of interaction of 37.8 kbp (median 31.9 kbp).

We also wanted to know the methylation state of the SV-QTL alleles since it

could be related to their QTL activity. Among the 55,149 SV alleles represented by

paths containing at least one node in the pangenome graph, 22,125 alleles did not

contain CpGs. In the remaining 33,024 SV alleles with CpGs, the average methylation

rate was high, with 23,392 SVs having an average methylation rate above 85% (Fig

S6). Moreover, reference and non-reference SV alleles have similar average

methylation rate distributions.

Some SVs are stronger methylation QTLs than SNPs
SVs are thought to be enriched in QTLs and have higher effect sizes (Jakubosky et al.

2020). To explore this hypothesis in the GA4K methylomes, we mapped SNP-mQTLs

with the same parameters and frequency constraints as SV-mQTLs (Methods). In total,

we tested 5,617,307 SNPs for associations with the same methylation bins and found

156,047 SNP-mQTL associated with 178,709 methylation bins at FDR < 0.05 (Table

S1). Despite SNP-mQTLs being more numerous than SV-mQTLs, individual SVs were

an order of magnitude more likely (17.2x) to be associated with methylation: only 2.78%

of tested SNPs were mQTLs, in contrast to 47.9% of tested SVs. Then, we checked

how often SVs were the leading variants over SNPs in mQTLs. For 65,659 methylation

bins, the leading variant was an SV with a larger absolute effect size than any SNP (Fig

5A, Fig S7, example in Fig 4B). Conversely 145,453 SNPs were the top variant in

166,317 methylation bins. In terms of variants, 32,947 SV alleles out of 160,064 (20.6%)

were the leading variant, compared to only 2.59% for SNPs, or a 7.95 fold enrichment

(Table S1). Moreover, we found that SV-QTLs interact over longer distances (mean 37.7

kbp) than SNP-QTLs (mean 19.8 kbp) with methylation bins (Fig S8) and that each

SV-QTL affects more methylation bins (mean 2.52 bins) than each SNP-QTL (mean

1.15 bins, Fig S9). For example, the SV-QTL in Fig 4B affects up to 5 methylation bins.
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SV-QTLs are enriched in common SVs

When we looked at methylation bins where the leading variant was an SV, we

noted that 57,692 bins were QTL with reference alleles having a predominantly positive

effect on methylation (Fig 5B left). Another 19,329 bins were QTL with non-reference

SV alleles, where positive and negative effects were evenly distributed. Next, we looked

at methylation bins that were QTL with SVs but the leading variant was a SNP. Here, we

found 61,669 methylation bins were QTL with non-reference SV alleles and 54,928

were QTL with reference SV alleles (Fig 5B right). Again, reference SV alleles show

more positive effects on methylation. Thus, reference SV alleles tend to increase

methylation and affect wider regions. More precisely, reference SV alleles were QTL

with 2.14 bins on average, while non-reference SVs were QTL with only 1.70

methylation bins.

To explain these patterns, we plotted the frequency spectra of the SVs that were

QTL with the above bins and found that leading reference SV alleles were very

common, while leading non-reference SV alleles were the rarest (Fig 5C). To a lesser

extent, the same pattern occurs with reference and non-reference SV alleles that were

not leading variants (Fig 5C). We also explored if the ranges of interaction within QTLs

were different between reference and non-reference SV alleles, and between SV alleles

that were leading variants and those that were surpassed by SNPs. Here, we found that

reference SV alleles were mQTL with methylation bins over longer distances than

non-reference SV alleles (Fig 5D). Similarly, leading SV alleles were QTL over longer

distances than SVs surpassed by SNPs. Lastly, repeat annotation of SV-QTL alleles

again revealed that multi-allelic repeats were enriched in non-reference relative to

reference SV alleles (Fig S10).

These differences in allele frequency and range of interaction suggest that the

more frequent SV alleles interact with methylation more often and over longer distances

than younger and less frequent SVs. At the same time, some rare SV alleles showed

effects on methylation that were stronger than any nearby SNP.
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Leading SV-mQTLs are in proximity to GWAS SNPs

To highlight SVs that may be causal for methylation, we first identified SNVs that were in

high linkage disequilibrium (R2 > 0.95) with previously known GWAS SNPs in the

NHGRI-EBI GWAS Catalog (Sollis et al. 2023). Then, we filtered for SVs showing higher

effect sizes than SNVs, that were closer to the methylation bin than the leading SNV

and also no further than 10 kbp. In doing so, we obtained a list of 606 SVs than were

QTL with 2,417 methylation bins (Table S2). That is, each putatively causal SV was in

QTL on average with 3.99 methylation bins, which was 58% more than the average of

SV-QTLs. Moreover, we annotated these SVs with 671 genes that were associated with

GWAS SNPs in LD with GA4K SNVs (Table S2).

Discussion
On average, we observed 16,600 new CpGs in the DNA sequences added by each

genome to the GA4K pangenome (0.81 Mbp per genome). Moreover, we were able to

characterize the repeat families and other sequences that contribute to new CpGs and

showed that at least 64.8% of these new CpGs were methylated in at least one

individual. Aided by the GA4K pangenome graph, we arranged and sorted this

non-reference epigenetic variation in haplotypes that could be compared across many

methylomes, allowing for characterization of complex patterns of methylations within

SVs. Moreover, saturation analysis suggests that expanding this panmethylome with

more assemblies and methylomes would continue to add thousands of new SV-CpGs

and SV-5mCpGs per sample.

A minority of CpGs are known to be variable, or dynamic, in tissues (Ziller et al.

2013). Similarly we found that most CpGs in personal reference DNA show either

predominant hypo -or hypermethylation and only 15% were variably methylated

(15-85% methylated) in population haploid assemblies. In contrast, nearly 40% of

non-reference DNA found in alternative nodes in the pangenome graph were variably

methylated, showing they contribute disproportionately to epigenetic variation in

humans. We could also use the pangenome graph to explore population variation in

functional DNA. We could link nearly 60,000 SV loci with methylation variation in over
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46.1 Mbp of DNA across population assemblies. Parallel analyses of SNV and SV

variation in the same samples demonstrated larger prevalence of methylation among

fewer SVs, their impacts extending greater distances and ability to explain a substantial

proportion of mQTLs. We note that these comparisons did not include methylation bins

that lie in new non-reference sequences not mappable by standard mQTL-SNV

associations. Next, we identified two sets of leading SV-QTLs that surpass SNVs in

effect size. First, we found a set of leading SV alleles that are common in the

population. These tend to be positively associated with DNA methylation and are often

included in the reference genome. Second, we found another set of rarer SV alleles that

are associated equally with positive and negative effects on DNA methylation.

In conclusion, our observations underscore the importance of assessing

genomes for the entirety of sequence space not only for structural but also for functional

variation (Groza et al. 2023). We also confirm the properties of SVs linking to QTLs

impacting at greater distances and at a higher frequency. Hypermethylation in

regulatory elements canonically leads to loss of activity, which we previously exploited

in rare variant characterization of long-read sequences (Cheung et al. 2023). The

hypermethylating impact we observed for leading SV-mQTLs suggests an important role

for studying SVs in gene silencing. Overall, the full scope structural variation catalogued

in pangenome graphs suggests large utility in quantitative trait and disease genetic

studies.

Methods

Creating the pangenome graph
We created the GA4K pangenome using minigraph -xcggs –ggen (version

0.20-r559). We started with the CHM13v2 backbone reference, added 94 HPRC

genomes and finally 782 GA4K assemblies.
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Genotyping assemblies

To genotype SVs in the GA4K assemblies, we aligned them to the final pangenome and

called variants using minigraph -c –call –vc. Then we created a unified

genotype matrix across genomes by considering each bubble start, end, source, sink

and path in the pangenome as alleles and then listing the presence of an allele in a

genome as 1 and their presence as 0 (see genotypes.R). Reference alleles were

determined by genotyping CHM13v2 against the pangenome graph.

Annotating CpGs in the pangenome with repeats
We ran RepeatMasker with the Dfam_2.0 (Hubley et al. 2016) database on all nodes in

the graph to identify repeats. Then, we overlapped the repeat annotation of nodes with

the position of CpGs on these nodes to label each CpG with a repeat annotation.

Mapping methylation data to pangenome graphs
We wrote panmethyl (https://github.com/cgroza/panmethyl) to map methylation data to

pangenome graphs. To do so, panmethyl takes BAMs processed and annotated with

MM and ML tags by PacBio Jasmine as input to extract HiFi long-reads that are

annotated with methylation probabilities at each cytosine. Then, the reads are aligned to

the pangenome with minigraph --vc -c -N 1 and the methylation probabilities of

every cytosine in the read is lifted to their corresponding positions in the pangenome

graph. To calculate the per sample methylation level of cytosines in the pangenome, we

averaged the methylation probabilities that map to their respective position. We also

indexed every CpG in the pangenome and named CpG that are not in CHM13v2 as

SV-CpGs. Using this index, we calculated the population frequency of reference CpGs

and SV-CpGs by counting the number of methylomes that cover the CpG in the aligned

reads. To calculate the population frequency of reference 5mCpGs and SV-5mCpGs,

we counted the number of methylomes where the CpG has an average methylation

level across strands of 50% or more (see merge_cpgs.py). We intersected CpGs with

repeats to obtain the population frequency of CpGs and 5mCpGs stratified by repeats.
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Calculating the size and saturation of the panmethylome

We genotyped the presence and absence of CpGs by listing the nodes covered by the

aligned methylomes. To obtain saturation curves for the panmethylome, we simulated

10 curves, each with a randomly permuted order of methylomes. In each permutation,

we start with the first methylome and progressively add newly discovered SV-CpGs,

SV-5mCpGs and 5mCpGs in subsequent methylomes (see cpg_saturation.py). At

every iteration, we record the number of accumulated CpGs and the number of new

CpGs. To extrapolate the saturation rate, we fit a logarithmic function on the number of

new CpGs across the average of the 10 simulations.

Calculating the methylation rate of CpGs

To know how often each CpG is methylated, we calculated the methylation rate as

follows:

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒  𝐶𝑝𝐺 𝑖𝑠 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑟𝑟𝑦 𝑡ℎ𝑒 𝐶𝑝𝐺

We intersected the CpGs with repeat annotations, to obtain methylation rates stratified

by repeats.

Mapping methylation QTLs

To map methylation SV-mQTLs and SNP-mQTLs, we binned the CHM13v2 backbone

reference genome into non-overlapping bins that are 200 bp in length. Then we

averaged the methylation levels of every cytosine in each bin. Cytosines with missing

data are not considered in the average methylation level (see bin_methylation.R).

To map QTLs for each methylation bin, we ran linear regression using lm() between

the methylation level of the bin and the genotype of every SV within 100 kbp (see

run_qtls.R). Here, the genotype was the number of SV alleles (0, 1, 2) carried by

each sample. We did the same for methylation bins and every SNP within 100 kbp. We

corrected for multiple testing using p.adjust(method = "fdr"). We selected the

SV with the lowest significant (0.05 FDR) adjusted p-value ber bin. To rank and find the
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leading SV-mQTLs and SNP-mQTLs, we compared the absolute effect sizes of every

variant associated with a methylation bin with an FDR < 0.05.

Figure Legends
Fig 1: Number, frequency and methylation of non-reference CpGs. A) The total number

of reference 5mCpGs, SV-CpGs, and SV-5mCpGs in the 435 methylomes. B) The rate

of change in the saturation of CpGs shown in A). C) Frequency distribution of SV-CpGs

(red) and SV-5mCpGs (blue). D) Observed methylation rates across SV- and reference

CpGs, adjusted for allele frequency by counting only samples that carry any given CpG.

Fig 2: Heatmap visualization of methylation patterns in the KIR locus across 435

methylomes in the GA4K pangenome. Rows are CpGs and columns are methylomes.

CpGs are ordered top to bottom, in the 5’ to 3’ direction as they appear in a haplotype,

and are annotated by the node in the graph (the node row annotation) and whether it’s a

reference or non-reference CpG (the type row annotation, alt or ref). The right

annotation shows the genes that overlap the bubbles in which the CpGs lie.

Fig 3: Annotation of sequences that contribute SV-CpGs. A) Number of SV-CpGs and

SV-5mCpGs contributed by sequences without repeats (None) and sequences with

repeats. B) Proportion of SV-5mCpGs contributed by each family of repeats, contrasted

to the proportion of reference 5mCpGs contributed by the same repeats. C) Frequency

distributions of SV-5mCpGs, stratified by repeat family. D) The observed methylation

rates of 5mCpGs, as calculated in Fig 1D, stratified by repeat family. Intervals denote

the 25%, 50% (median), and the 75% quantiles.

Fig 4: Quantitative trait locus mapping of 5mCpGs averaged in 200 bp methylation bins.

A) Manhattan plot of QTL methylation bins associated with an SV at FDR < 0.05 over

the entire reference genome backbone. B) Example of a leading SV-QTL interacting

with the methylation of 5 consecutive bins. The nearest bin is 34 bp away from the SV.

The SV allele is a 2216 bp deletion of CHM13v2.0#chr17:44210400-44210599. C)
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Number of methylation bins in QTL with an SV in the GA4K pangenome across

chromosomes, stratified by positive and negative effect of the SV on methylation. D)
Distribution of distances between SV-mQTLs and their methylation bins.

Fig 5: Leading mQTL variants among the pangenome SVs. A) Volcano plots of mQTLs

where the leading variant is an SV. B) Number of methylation bins in mQTL with an SV,

stratified by reference or non-reference SV allele, and positive or negative effect on

methylation. C) Allele frequency distribution of mQTL-SVs, stratified by leading vs

non-leading variant, and reference and non-reference SV alleles. D) The distribution of

distances between SV-mQTLs and their methylation bins, stratified as in C).
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