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Abstract 

Scar formation is a process that occurs due to increased collagen deposition and uncontrolled inflammation. 

Previous studies have demonstrated that Pirfenidone (Pf), an FDA approved anti-inflammatory and anti-

fibrotic drug can reduce inflammation in vivo as well as regulate activation of LPS-stimulated neutrophils. 

However, the molecular level mechanism of Pf’s action is not well understood. Here, we used neural 

networks to identify new targets and molecular modeling methods to investigate the Pf’s action pathways 

at the molecular level that are related to its ability to reduce both the inflammatory and remodeling phases 

of the wound healing process. Out of all the potential targets identified, both molecular docking and 

molecular dynamics results suggest that Pf has a noteworthy binding preference towards the active 

conformation of the p38 mitogen activated protein kinase-14 (MAPK14) and it is potentially a type I 

inhibitor-like molecule. In addition to p38 MAPK (MAPK14), additional potential targets of Pf include 

AKT1, MAP3K4, MAP2K3, MAP2K6, MSK2, MAP2K2, ERK1, ERK2, and PDK1. We conclude that 

several proteins/kinases, rather than a single target, are involved in Pf’s wound healing ability to regulate 

signaling, inflammation, and proliferation. 
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Introduction 

Pirfenidone (Pf) is an FDA approved anti-inflammatory and anti-fibrotic small molecule drug that is orally 

administered to treat mild to moderate idiopathic pulmonary fibrosis (IPF). Patients with IPF experience 

breathing difficulties as their lungs become scarred over time and ultimately become non-functional1. IPF 

occurs mainly due to repeated injuries followed by the inability of alveolar epithelial cells to effectively 

repair these injured wounds that leads to scar formation. Scar formation is a complex process that involves 

increased collagen deposition and prolonged inflammation. Whenever a tissue injury occurs, the innate 

immune cells (such as neutrophils and monocytes) infiltrate into the injured (wound) site. These innate 

immune cells influence wound healing through production of cytokines and growth factors that activate 

mitogen-activated protein kinases (MAPK) pathways, promote cell proliferation, protein synthesis, 

epithelialization, angiogenesis, as well as fibroblast proliferation and fibroblast-to-myofibroblast transition 

to regenerate tissue components such as collagen and other extracellular matrix proteins2. However, 

prolonged and uncontrolled inflammation may cause deregulated activation of wound healing cells, 

damaging the normal stages of wound healing that has been associated with excessive scarring such as 

scarring seen in IPF.  

The fibrosis of lung and skin tissues share some common characteristics such as hardening, scarring, and 

overgrowing certain tissues and ascribes to the excessive deposition of extracellular matrix components 

like collagens. For an example, tissue samples taken from skin and lung lesions from Scleroderma or 

systematic sclerosis patients demonstrated a similar phenotype characterized by the presence of activated 

myofibroblasts, an indication of enhanced extracellular matrix synthesis and secretion of cytokines and 

chemokines3–5. Therefore, these similarities have enabled scientists to repurpose the anti-inflammatory and 

anti-fibrotic drugs such as Pf for treatment of scars seen after skin injury. However, the exact mechanism 

of action of Pf on treating IPF is not clearly understood. The estimated median time of survival from IPF is 

about 3 years6 and Pf has a half-life of 2.5 hours in healthy adults6. It’s reported that Pf can be extensively 

metabolized mainly by cytochrome P450 in humans7.The 5-methyl position in the molecular structure of 
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Pf is the most vulnerable place to be metabolized and it can form 5-hydroxymethyl Pf and followed by 5-

carboxylic acid metabolite7. Carboxylic acid metabolite is accounted for about 95 percent of the recovered 

Pf dose in adults6. Further, the rapid excretion of the Pf allows it to be used even three times per day for 

dose administrations in clinical trials and as a standard dosing schedule for IPF. According to previous 

studies of pulmonary and cardiac fibrosis, proliferation of fibroblasts and collagen synthesis can be 

inhibited by the Pf interference with growth factors that include the transforming growth factor (TGF-β) 

and basic fibroblast growth factor8,9. Moreover, Pf reduces the expression of inflammatory cytokines such 

as tumor necrosis factor (TNF-α), interleukin-4 (IL-4) and IL-13 by inhibiting the NOD-like receptor pyrin 

domain containing 3 (NLRP3) inflammasome. Further, the inhibitory effect mediated on the TGF-β is 

influenced by the inhibition of the MUC-CT phosphorylation by Pf10. 

Our previous studies of Pf treatment in vitro and in vivo in the context of dermal application demonstrated 

that the drug reduces inflammation and fibrosis, suggesting its potential usefulness as a treatment for wound 

scarring. We found that Pf reduced the key pro-inflammatory mediators IL-1β, IL-2, IL-6, IL-13, G-CSF, 

and MIP-1α as well as decreased neutrophil infiltration in mouse deep partial-thickness (DPT) burn 

wounds11,12.Further, multiple studies suggested that Pf inhibited trans differentiation of human dermal 

fibroblasts (HDF) to myofibroblasts, weakened the contractile machinery of activated human dermal 

myofibroblasts and decreased collagen deposition and fibrosis-related gene expression1,13. Also, we found 

that Pf reduced p38-MAPK activation in TGF-β1-stimulated HDF and lessened chemotaxis, production of 

pro-inflammatory reactive oxygen species and cytokines (TNF-α, IL-1b, and IL-6) and degranulation of 

lipopolysaccharide (LPS)-activated human neutrophils1,14 as well as reduced activation of p38 MAPK, 

mitogen- and stress-activated kinase (MSK 1/2), protein kinase B (Akt), and c-Jun N-terminal kinase 

(JNK); and decreased pro-inflammatory mediators in porcine DPT burn wounds (unpublished data). 

However, per our knowledge, there is no study examining the molecular interactions of Pf with its target 

molecules that are essential in wound healing sequences and scarring of skin injury. Therefore, this study 

has extensively investigated the Pf molecule’s plausible action pathways using molecular modeling and 
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machine learning methods (Figure 1) to understand how it regulates phenomena such as inflammation 

which leads to the attenuation of both the inflammatory and remodeling phases of wound healing for more 

optimal outcomes.  

 

Figure 1. Overview of the machine learning and molecular modeling pipeline for Pf. (A) Chemical structure 
of Pf. (B) Compound-protein interaction (CPI) model and the CANDO signature to identify potential Pf 
targets. (C) Molecular modeling to analyze Pf interactions with selected targets. (D) Molecular dynamics 
simulation to investigate the time dependent stability of Pf-target interactions. 
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Methods 

Neural Networks to Predict Pf Interaction with the Human Kinome and Other Proteins  

Compound-protein interaction (CPI) machine learning model15 was used to identify potential kinase targets 

of the Pf small molecule. The CPI model utilizes two neural networks to predict the probability that an 

interaction between a specific compound and protein will occur15. We have also extended this approach 

previously by incorporating structural information to develop an energy-based graph-neural network16. In 

this work, the protein is represented as an amino acid sequence without any three-dimensional structural 

information provided to the model. The compound is initially input as a SMILES string and then is 

converted to a molecular graph prior to training the model. A convolution neural network is used on 

overlapping sequence motifs and a graph neural network is used on molecular graphs. Attention is used to 

determine interactions between individual sequence motifs and compounds. The weights of the individual 

neural networks are concatenated into a linear classifier which is used to predict the final binding 

probability. The CPI model used in this project was trained on the dataset with a near 50:50 split in positive 

and negative interaction (binding) data to identify binders from non-binders17. The model was trained to 

predict interactions between ATP and Pf with 536 human kinases and other proteins. The radius of the 

molecular fingerprinting algorithm used in the GNN was set to 2, the protein motif sequence length was set 

to 3 and each model was trained for 100 epochs. 

CANDO Platform to Predict Pf Interactions with the Human Proteome 

We used, Computational Analysis of Novel Drug Opportunities (CANDO)18, implemented as a python 

package for analysis of drug-proteome and drug-disease relationships. CANDO can use thousands of 

proteins collected from public databases such as Protein Data Bank (PDB) to generate the interaction matrix 
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with approved drugs and small molecules, most notably from DrugBank. An interaction scoring protocol 

has been used for the fast calculations of drug-protein interactions.  

Pf Binding Interaction Analysis with Molecular Docking  

The CANDOCK19 docking software was used to perform all the docking analyses performed in this study. 

Binding sites of protein crystal structures were identified using the “find_centroids” function in the 

program. The cleaned 3D structure of Pf was prepared as a Tripos Mol2 file and the “prep_fragments” 

function in CANDOCK was used to determine which bonds in the molecule to be cut. Then, 

“make_fragments” function was used to produce PDB files for all the fragments produced in the previous 

step. Next, the software used the “dock_fragments” function to dock each and every prepared fragment at 

the predicted binding site of the protein of interest. Finally, the function “link_fragments” was used to link 

all the docked molecular fragments to form the original ligand structure with their respective docking score 

energy scores based on default parameters. 

Molecular Dynamics of Active and Inactive p38-MAPK with Pf and ATP  

The time dependent interaction behaviors of Pf and ATP were analyzed by molecular dynamics (MD) 

simulations. The main reason to run ATP simulations is to use it as a control and compare the analysis with 

the same Pf simulation. We calculated the association time to quantify how much time as a percentage of 

the total simulation time the ligand is in close proximity of MAPK14 hinge region in the active site. These 

MD simulations were done using the GROMACS20 software package. The CHARMM36 forcefield21 was 

used for all simulations. A dodecahedron box shape was used to simulate the complex with TIP3P water 

solvation and neutralized total charge of the complex. Energy minimized complex was used to equilibrate 

with NVT, NPT ensembles, respectively. Then MD simulations were carried out for 1 µs time for the 

analysis based on the stability of ATP MD simulations as controls. Here, the active and inactive 

conformation classification was used based on protein phosphorylation. We used hinge region residues as 

a reference to calculate distance fluctuations between ligands and the protein to assess association times. 
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Results and Discussion 

Protein structure selection for docking 

Based on our previous studies1,14 we have identified available active and inactive structures of p38 mitogen-

activated protein kinase targets (p38-MAPK), mitogen- and stress-activated kinases (MSK1/2), serine-

threonine protein kinase (AKT1/2), and focal adhesion kinase (FAK) as potential Pf interacting candidates. 

Selecting both active and inactive structures were done to determine how the interaction affects the kinase 

signaling and to analyze whether it affects ATP binding of these kinases. First, kinase structures were 

preprocessed using our in-house molecular docking software, CANDOCK19, to determine “druggable” 

binding sites that includes the ATP binding site. P38-MAPK has four classes such as, p38-α (MAPK14), 

p38-β (MAPK11), p38-γ (MAPK12 / ERK6), p38-δ (MAPK13 / SAPK4). The selection was made for both 

human (Homo sapiens) and mouse (Mus musculus) proteins, for a total of 30 structures (Table S1) used for 

modeling, so that we can establish translation potential and changes during molecular modeling between 

the two species.  

Machine Learning and CANDO Analysis to Identify Additional Potential Targets of Pf 

The distribution of binding prediction results using the compound-protein interaction (CPI)15 prediction 

model for both ATP and Pf against human kinases is shown in Figure 2A. Out of these predictions, several 

interesting targets came up as binders for Pf such as MAP3K4, MAP2K3, MAP2K6, MSK2, MAP2K2, 

ERK1, ERK2, PDK1 and details are tabulated in the Table S2. The CANDO18 interaction signature of Pf 

was calculated using 14,595 human proteins and the results are summarized as a histogram in Figure 2B. 

Interestingly, several targets appeared in this CANDO interaction signature of Pf such as cAMP-dependent 

protein kinase catalytic subunit alpha protein was also predicted by the machine learning approach. Using 

CANDO, the top three predicted protein targets for Pf are: macrophage migration inhibitory factor, caspase-

3, and leukotriene A-4 hydrolase. 
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Figure 2. Compound-protein interaction (CPI) model and CANDO results for predictions of Pf binding. (A) 
Interacting proteins distribution of binding probability of ATP and Pf with human kinome and other targets (536 total) 
predicted using the CPI based graph-neural network model. (B) Normalized binding probability distribution predicted 
for Pf using the CANDO program. 

Molecular Docking to Analyze Pf Binding with Different Kinases 

Selection of a Reliable Molecular Docking Score Function 

To quantify the interaction of Pf in the presence of ATP, we first developed an interaction energy score 

with proper controls so that we can computationally test and quantify the effect of Pf in ATP binding sites. 

We used ATP as a “control” in our computational experiments to determine ATP binding based on inactive 

(ATP binders) and active kinases (ATP non-binders). This was done by docking ATP to all known crystal 

structures of active and inactive forms of p38-MAPK (Table S1) to determine the best energetic scoring 

function. CANDOCK19, our in-house docking software, was used for docking. Briefly, CANDOCK is a 

flexible docking method that breaks apart all bonds in the small molecule and assembles it inside the binding 

pocket using graph-based techniques, thereby using induced-fit as a mechanism to identify several 

conformations of small molecule fragments at different locations in the binding pocket. CANDOCK 

contains 96 different scoring functions to calculate the binding energy score. Using positive and negative 

training data based on ATP control binding with inactive and active kinase structures, we calculated 

Cohen’s kappa metric to identify the best scoring function. Cohen’s kappa provides an estimate of inter-

model reliability to identify the scoring function and its reliability is better than random predictions for 

binding22. Since we were interested in estimating effect of Pf with p38-MAPK and other kinases, this 
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calculation is essential to quantify the effect with ATP binders versus non-binders (training data). Here, we 

consider an active kinase form, when a protein is catalytically active or phosphorylated with converting 

ATP to ADP. We identified FMR15 scoring function19 in CANDOCK as the best scoring function with a 

kappa value of 0.41, indicating a moderate model for estimating binding of Pf in comparison to ATP. 

Pf Binding with Active and Inactive Kinases 

All the relative docking scores were calculated with proper controls for active and inactive targets. For 

inactive kinases, the Pf docking score is taken relative to the ATP docking score as ATP is the most 

preferrable towards the inactive conformation. However, in the active conformations of kinases, the Pf 

docking score is taken relative to the ADP docking score as it is the most preferrable form towards the 

active conformation. This is to make sure that the relative docking score is compared to the natural ligand 

of the conformation of the kinase. The analysis was carried out using the mean docking score of the top 

five poses of each docking result and summarized in Figure 3A. Relative docking score of Pf with active 

vs. inactive conformations of MAPK14 show that Pf has a preference towards the active conformation. This 

result agrees with the long molecular dynamics simulations which were done with MAPK14 structures as 

well. For another target, FAK, Pf did not show any preference out of active vs. inactive conformations. 

However, it showed a preference towards the active Akt1 conformation compared to inactive conformation 

based on the docking analysis. 

Moreover, starting with our docked structures, we used Discovery Studio Visualizer23 software with default 

parameters to analyze key interactions of ATP and Pf with MAPK14. Our analysis showed that most of the 

amino acid residues in inactive MAPK14 such as Thr-106, His-107, Leu-108, and Met-109 have formed 

similar interactions with both Pf and ATP. Figure S1-A shows these 2D interaction maps for a 

representative inactive MAPK14 crystal structure (PDB ID: 5ETI). Conversely, Pf and ADP interaction 

maps with the active conformation of MAPK14 (PDB ID:3PY3) are shown in Figure S1-B. Again, 

interaction maps indicate that amino acid residues of active MAPK14 such as Leu-108, Met-109, and Gly-
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110 form plausible common interactions with both Pf and ADP. Results suggest that even though the 

binding site is quite large, Pf prefers the area where ATP binds in both MAPK14 conformations. 

It is well known that type I inhibitors bind with active kinases (DFG-Asp-in, αC-helix in) in the region 

occupied by the adenine ring of ATP24,25. Conversely, type-I½ inhibitors are defined as inhibitors that bind 

to a DFG-Asp-in inactive kinase conformations and type-II inhibitors interact with DFG-Asp-out inactive 

kinase conformations also share the same area26. The residues 106 – 110 in MAPK14 are known as hinge 

region residues and it is reported that all type-I, type-I½ and type II inhibitors interact with these hinge 

region residues25,26. The interaction maps of Pf with both inactive and active MAPK14 (Figure S1) show 

that it interacts with most of these hinge region amino acid residues. Given the similarity of Pf binding in 

these docking results, we cannot conclude whether Pf act as either type-I, type-I½ or type-II inhibitor with 

MAPK14. Therefore, further investigation is needed to confirm the most probable binding mechanism. This 

is potentially exciting as it indicates that Pf may be functionally affecting signaling due to specific 

conformational change and performing molecular dynamics simulations could provide valuable insights for 

understanding this binding process. 

Next, we investigated the areas of Pf binding on active and inactive conformations of MAPK14 proteins 

with molecular docking to investigate preferred bind sites. Pf binding poses of inactive and active MAPK14 

crystal structures are shown in Figure 3B. Even though docked Pf resides around similar areas in both 

conformations, due to the conformational change in the active MAPK14, a beta sheet of the protein covers 

the Pf binding site from the top which allows the small molecule to buried inside of the binding site, 

potentially stabilizing its binding ability. Figure 3C and Figure 3D show distance plots for Pf docking 

from the first hinge region residue Thr-106, with active and inactive MAPK14, respectively. Each dot in 

the plots represents a single pose, and the color of the dot indicates the pose’s docking score energy. If the 

docking score energy is positive (blue color), it represents an unfavorable interaction between the small 

molecule and the protein. Conversely, if the docking score energy is negative and red in color, it indicates 
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a favorable small molecule-protein interaction. Two distinctly separated scatter clusters in Figure 3D 

suggests that most likely there are two main Pf binding areas in the active MAPK14 conformation.  

 

Figure 3. Molecular docking analysis of Pf with selected targets to understand its interactions at the binding 
site. (A) Mean relative docking score of with respect to the control. ATP is considered as the control ligand 
for inactive kinase conformations and ADP is used for active conformations. (B) Pf binding poses at 
inactive and active MAPK14 binding sites. (C) & (D) Docking state distribution along with the docking 
score energy of Pf with inactive and active conformations of MAPK14.  

 

Molecular Dynamic Simulations to Understand Time-dependent Behaviors of Pf  

Based on docking studies of both Pf and ATP, we selected the 19th pose of Pf and the 20th pose of the ATP 

for the MD simulation with inactive MAPK14. On the other hand, the top docked pose for ATP and 2nd 
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pose for Pf were chosen for the MD simulation analysis with the active MAPK14 conformation. These 

selections were made based on the presence of key interactions with the hinge region residues using both 

molecular docking and short MD simulations analyses. All the MD simulations were performed using the 

GROMACS20 software package. Figure S2 shows that the fluctuation of distances of ATP from hinge 

region residues with time. Results of the completed (1 µs) simulation of ATP with inactive MAPK14 

suggested that our control worked well since ATP showed short distance fluctuations from the hinge region 

residues. The analysis showed that the ATP stays within the 10 Å proximity of the hinge region residues 

Thr 106 (1000 ns, 100%), Leu 108 (924.95 ns, 92.5%) and Met 109 (1000 ns, 100%) with an average of 

974.99 ns (97.5%) association time out of 1 µs.  

Next, we studied the time dependent behavior of Pf with active and inactive MAPK14 proteins. Figure 4A 

shows the distance fluctuations with time of Pf from the hinge region residues in the catalytic binding sites. 

Based on the long 1 µs MD simulation for active MAPK14 compared to that of inactive MAPK14, we 

found that the Pf association results were the opposite between active vs. inactive conformation. Pf showed 

a better stability with the active conformation and higher association times out of the simulation time of 1 

µs. The analysis showed association times of 1000 ns (100%) with Met 109, 1000 ns (100%) with Leu 108, 

and 999.53 ns (99.95%) with Thr 106 out of the 1 µs MD simulation. The average association time of Pf 

with active MAPK14 was 999.85 ns (99.98%) out of 1 µs.  

In contrast, a similar analysis showed that Pf did not stay within 10 Å radius around hinge region residues 

of inactive MAPK14. Association times observed were 75.28 ns (7.53%) with Met 109, 74.45 ns (7.45%) 

with Leu 108, and 70.07 ns (7.01%) with Thr 106. On an average, the association time was about 73.27 ns 

(7.33%) out of 1 µs (Figure 4B) suggesting that Pf does not prefer to bind to the inactive MAPK14. 

Additinally, the results suggest that Pf is not a type I½ or type II inhibitor of inactive MAPK14 and is 

unlikely to interfere with ATP to ADP conversion process needed for cell survival. 

Further, we analyzed number of potential hydrogen bonds (Hbonds) fluctuations between Pf and the active 

and inactive MAPK14 proteins for 200 ns of the long 1 µs MD simulation (Figure 4C,D). These results 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2024. ; https://doi.org/10.1101/2024.03.22.586235doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.22.586235
http://creativecommons.org/licenses/by-nc-nd/4.0/


are consistent with the conclusions derived from the distance plots analysis. Specifically, for Pf simulations 

with the active conformation, we found that Pf mostly form 2 Hbonds during the course of the 200 ns of 

simulation time. In contrast, the results with inactive MAPK14 suggests that almost half the time Pf did not 

even indicate any Hbond formations suggesting poor Pf interactions with inactive MAPK14. 

In summary, these MD simulation results suggest that Pf is stable at the catalytic binding site of active 

MAPK14 rather than that of inactive MAPK14 and has a higher preference towards the active conformation 

of MAPK14. Therefore, results indicate that Pf can potentially act as a Type 1 inhibitor of MAPK14. Type 

I inhibitors are defined as inhibitors bind to the active kinase conformation (DFG-Asp-in, αC-helix-in) and 

affect downstream signaling26. 
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Figure 4. Molecular dynamics simulations results of Pf with active and inactive MAPK14 conformations. 
(A) & (B) Distance trajectories between different atoms on Pf and different hinge region residues on the 
MAPK14 for active and inactive MAPK14 conformations, respectively. (C) & (D) No. of hydrogen bonds 
formed between Pf and the two conformations of MAPK14 through out the first 200 ns of the simulation. 

Potential Biological Pathway of Pf towards Improved Wound Healing 

We have analyzed all our findings throughout the study and developed potential biological pathways shown 

in Figure 5 which summarizes the related mechanistic pathways of Pf towards wound healing. The 

interactions of Pf were analyzed with several targets in the human proteome using a variety of methods: 

Pink colored proteins (MAPK14, MSK1, Akt1, FAK) were analyzed using molecular modeling techniques 

such as molecular docking and large-scale molecular dynamics (MD) simulations; purple colored protein 

(MAP3K4, MAP2K3, MAP2K6, MSK2, MAP2K2, ERK1, ERK2, PDK1) were predicted from the 

machine learning model; and grey colored proteins are not included in either analysis but shown to complete 

the pathway.  Our study provides molecular and mechanistic basis to Pf’s targets that are involved in 

proliferation, inflammation, and cytoskeletal rearrangement/motility pathways towards wound healing.  

 

Figure 5. Biological pathways leading to regulate scar formation and potential biological targets of Pf 
identified using molecular modeling and machine learning.  
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Conclusion 

We have investigated Pf’s molecular mechanism using machine learning (Figure 2) and molecular 

modeling methods (Figure 3-4) and suggest a biological pathway model (Figure 5) to understand how it 

regulates phenomena such inflammation which lead to improved  wound healing with reduced scarring.  In 

addition to p38 MAPK, Akt1, and FAK as Pf targets that were derived from our prior in vitro and in vivo 

studies, using machine learning we discovered many other potential targets including MAP3K4, MAP2K3, 

MAP2K6, MSK2, MAP2K2, ERK1, ERK2, and PDK1 as part of the kinase signaling pathways that may 

contribute to the phenotype of Pf's wound healing. In conclusion, we show that the ability of Pf in 

optimizing wound healing is not limited to targeting a single kinase or protein but could interact with 

multiple proteins with selected polypharmacological profile that is involved in kinase signaling, 

proliferation and inflammation resulting in improved wound healing with reduced scarring. 
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