Abstract
Several recent studies have presented evidence that the human gene catalogue should be expanded to include thousands of short open reading frames (ORFs) appearing upstream or downstream of existing protein-coding genes, each of which would comprise an additional bicistronic transcript in humans. Here we explore an alternative hypothesis that would explain the translational and evolutionary evidence for these upstream ORFs without the need to create novel genes or bicistronic transcripts. We examined 2,199 upstream ORFs that have been proposed as high-quality candidates for novel genes, to determine if they could instead represent protein-coding exons that can be added to existing genes. We checked for the conservation of these ORFs in four recently sequenced, high-quality human genomes, and found a large majority (87.8%) to be conserved in all four as expected. We then looked for splicing evidence that would connect each upstream ORF to the downstream protein-coding gene at the same locus, thus creating a novel splicing variant using the upstream ORF as its first exon. These protein coding exon candidates were further evaluated using protein structure predictions of the protein sequences that included the proposed new exons. We determined that 582 out of 2,199 upstream ORFs have strong evidence that they can form protein coding exons that are part of an existing gene, and that the resulting protein is predicted to have similar or better structural quality than the currently annotated isoform.
Author Summary We analyzed over 2000 human sequences that have been proposed to represent novel protein-coding genes, and that reside just upstream of known genes. These “upstream ORFs” (uORFs) would represent a surprisingly large addition to the human gene catalogue, which after decades of refinement now contains just under 20,000 protein-coding genes. They would also create over 2000 new bicistronic genes, which number only 10 in current human annotation databases. We hypothesized that rather than novel genes, these sequences might instead represent novel exons that can be spliced into existing protein-coding genes, creating new isoforms of those genes. Using a combination of transcriptional evidence and computational predictions, we show that at least 582 of the previously-described uORFs can be used to create novel protein-coding exons, generating new transcripts and new protein isoforms, but not requiring the addition of entirely new genes to the human gene catalogue. We also demonstrate that the predicted three-dimensional structure of some of the new protein isoforms hints at new or improved functions for existing proteins.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Email: salzberg{at}jhu.edu