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Abstract
Long-read DNA sequencing is becoming increasingly popu-
lar for genetic diagnostics. Minimap2 is the state-of-the-art
long-read aligner. However, Minimap2’s chaining step is
slow on the CPU and takes 40-68% of the time especially
for long DNA reads. Prior works in accelerating Minimap2
either lose mapping accuracy, are closed source (and not
updated) or deliver inconsistent speedups for longer reads.
We introducemm2-gb which accelerates the chaining step of
Minimap2 on GPUwithout compromisingmapping accuracy.
In addition to intra- and inter-read parallelism exploited by
prior works, mm2-gb exploits finer levels of parallelism by
breaking down high latency large workloads into smaller in-
dependent segments that can be run in parallel and leverages
several strategies for better workload balancing including
split-kernels and prioritized scheduling of segments based
on sorted size. We show that mm2-gb on an AMD Instinct™
MI210 GPU achieves 2.57-5.33x performance improvement
on long nanopore reads (10kb-100kb), and 1.87x performance
gain on super long reads (100kb-300kb) compared to SIMD
accelerated mm2-fast.mm2-gb is open-sourced and available
at https://github.com/Minimap2onGPU/minimap2.

Keywords: MinION, nanopore, Long read sequence align-
ment, Minimap2, Chaining, GPU acceleration, HIP

1 Introduction
Long-read DNA sequencing offers the unique advantage of
being able to span highly repetitive regions in the genome,
thereby, enabling applications such as structural variant call-
ing aswell as de novo assembly [7, 14]. A recent study demon-
strated the world’s fastest blood-to-variants workflow using
long-read sequencing to perform genetic diagnosis at the
point of care [7]. Oxford-Nanopore Technology (ONT) [4]
and Pacific Biosciences (PacBio) [2] are the two major plat-
forms for long-read sequencing, and their accuracy, through-
put and read lengths are improving with rapid advancements
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in single-molecule sequencing technology. Jain et al. [9] re-
ported ultra-long reads up to 882kb (N50 > 100kb) that en-
able assembly and phasing of 4-MbMajor Histocompatibility
Complex (MHC) locus in its entirety.

Minimap2 [11] is the state-of-the-art long readmapper and
aligner that maps DNA or long mRNA sequences against a
reference database. Even thoughMinimap2 is well-engineered
to handle noisy long reads 100kb, its CPU implementation
struggles to keep up with the growing sequencing through-
put (>1Tbp per day [17]). In particular, the chaining kernel in
the seed-chain-align strategy of Minimap2 is an increasingly
pronounced bottleneck for ultra-long reads. Time spent in
chaining grows from 40% to 68% as average ONT read length
grows from 2.25Kb to 127.11Kb [15]. This motivates us to
accelerate Minimap2 for higher throughput on a GPU.
Unlike accelerating base-level alignment on GPU [6, 18],

the chaining kernel is highly irregular and difficult to accel-
erate in terms of finding enough parallelism and balancing
the workload. Prior attempts to accelerate chaining on GPU
either sacrifice mapping accuracy [8] or suffer from dimin-
ishing benefits in long reads >20kb (mm2-ax [15]).

In this study, we introduce Minimap2-gigabases (mm2-gb),
an enhancement over the mm2-ax through the incorpora-
tion of three optimization strategies aimed at augmenting
intra-read parallelism and achieving more equitable work-
load distribution on GPUs. These optimizations include: seg-
ment cutting (Sec. 3.1), split score generation kernels (Sec.
3.2), and prioritized long segment scheduling (Sec.3.3.2). We
break reads into independent segments to leverage intra-read
parallelism. We configure three GPU kernels to process seg-
ments of different lengths separately, thus improving work-
load balancing within each kernel. We implement prioritized
long-segment scheduling to improve inter-block workload
balance. To this end, mm2-gb delivers a consistent speedup
of 2.57-5.33x for chaining of coarse-grained long ONT reads
(10kb-100kb) on AMD Instinct™MI210 GPU [1] compared to
mm2-fast, a vectorized version of Minimap2 running on 32
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Intel® 1 Icelake cores with AVX-512 extension.mm2-gb deliv-
ers a 1.87x speedup on ultra-long ONT reads (100kb-300kb).
Further, in Sec. 8 we discuss future work to potentially im-
prove performance for ultra-long reads. mm2-gb supports
HIP and CUDA runtimes and is open-sourced.

2 Background
2.1 Overview of Minimap2
Minimap2 is the most popular DNA/mRNA long sequence
mapper and aligner for popular long-read sequencing plat-
forms like Oxford Nanopore Technologies (ONT). It aims to
process ultra-long reads of 100Kb on average at high through-
put. Minimap2 performs long sequence mapping in three
steps: seeding, chaining, and alignment (Fig. 1). Seeding iden-
tifies exact matches of short k-base minimizers (anchors)
between the query and reference sequence. Seeding is fast
because the references are pre-processed offline and indexed
to a multimap hash table for quick lookup. Chaining takes
anchors sorted by reference position as input and identifies
sub-regions of the target reference that roughly map to each
other. Minimap2 solves chaining as a 1-D dynamic program-
ming problem. For workloads such as full genome or assem-
bly alignment that requires base-level alignment, Minimap2
runs an alignment kernel using Needleman-Wunsch [12]
with Suzuki-Kazahara [16] formulation to close the gaps be-
tween adjacent anchors in the chains. These gaps are usually
short and are solved as a 2D dynamic programming problem.

2.2 Chaining is the Bottleneck
The chaining process takes sorted anchors as input and per-
forms 1D dynamic programming to identify subsets of or-
dered anchors that are in linear alignment on the reference
and query sequence. This is achieved by 1D-dynamic pro-
gramming with a simple cost function: by sequentially going
through the read, each anchor attempts to chain against its
predecessor anchors that are less than 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑥 bases
apart on the reference sequence and selects the predeces-
sor that generates the optimal chaining score. The chaining
score is calculated as the optimal score of the predecessor
plus a reward based on the gap between the anchor pair on
the query and reference sequence. After generating optimal
scores for all the anchors, Minimap2 performs backtrack-
ing and identifies primary chains. Among all the steps of
chaining, the optimal score calculation is the most compute-
intensive (>95% of chaining CPU time).

2.3 Quadratic Complexity of Chaining
Prior works [8, 10, 15] have found chaining to be the bottle-
neck in aligning long ONT reads with Minimap2 – 40% to
70% of CPU time is spent in chaining. The chaining kernel’s
complexity is quadratic with respect to read length while

1Intel is a trademark of Intel Corporation or its subsidiaries

the seeding algorithm scales linearly. Additionally, recent ad-
vances in sequencing technologies promise ultra-long reads
of 100kb on average with high throughput [9]. Therefore, it
is fair to argue that chaining would become an even bigger
bottleneck.

To perform a fair evaluation of chaining, we evaluate the
performance of chaining kernels in chaining scores calcu-
lated per second, instead of anchors processed per second.
The compute-intensive step of chaining calculates the

score between every anchor pair that are within a prede-
fined distance on the reference sequence. Because the num-
ber of anchors within this distance is varied, anchors are
not distributed evenly on the reference sequence – they are
denser in regions where the reference maps well to the query.
With higher anchor density, an anchor in these regions finds
more predecessors within𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑥 bases, leading to sig-
nificantly more anchor pairs to compute scores with during
chaining. To demonstrate the effects of uneven distribution,
Fig. 2 shows that the average amount of score generations
grows with read length, because there are more compute-
dense regions in long reads, while the anchors per base re-
mains stable. We argue that using scores generated per sec-
ond instead of anchors per second as the metric of chaining
evaluation reflects real performance more accurately.

3 Design
In this work, we design mm2-gb, a GPU chaining kernel
for Minimap2 that does not compromise on mapping accu-
racy and delivers consistent performance on reads of vari-
ous lengths, including ultra-long reads (>100kb). We show
that mm2-gb delivers consistent speedup on coarse-grained
long reads (10kb-100kb) compared to mm2-fast [10], a SIMD-
vectorized version of Minimap2 on 32 Intel®1 Icelake cores
with AVX-512 extension. Another prior work, mm2-ax [15],
relies on CPU to pre-process the reads and provides decent
speedups on GPU for reads <20kb, but fails to deliver consis-
tent speedups for longer reads, where chaining becomes a
more pronounced bottleneck due to its quadratic compute
complexity.

We introduce three major optimizations to improve intra-
read parallelism and workload balancing: segment cutting,
split score generation kernels, and prioritized long segment
balancing. Segment cutting breaks reads independent seg-
ments and allows mm2-gb to process them in parallel. We
split the computational intensive score generations kernel
into three sub-kernels, each specialized in handling short
(<2k anchors), mid (2k-10k anchors), or long (>10k anchors)
segments. We then enhance the long segment score genera-
tion kernel with prioritized ultra-long segment scheduling
to improve workload balance between GPU thread blocks.

To this end, we build a range selection kernel on GPU that
performs forward range selection and identifies independent
segments within a read. Independent segment identification
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Figure 1.Minimap2 Workflow: Steps of chaining performed on the GPU is shown in dark grey blocks. Our optimizations to
GPU kernels are shown in the blue box.

Figure 2. Longer reads have more chain scores to be gen-
erated per base while the total number of anchors per base
remains almost the same. X-axis shows query datasets of
different read lengths.

eliminates the need to sequentially process all the anchors
in a read with a single thread block on the GPU and instead
enables multiple blocks to work on different segments of a
read in parallel. The split-kernel design helps us navigate the
difficulty in launching a single kernel that handles workloads
of different sizes in a balanced manner. Instead, the split-
kernel method relies on three independent kernels optimized
to better handle segments of different compute densities
(short, medium, and long). Finally, we improve workload
balancing by applying atomic operation-based prioritized
scheduling and long segment aggregation to amortize the
latency of ultra-long segments.

We compare our GPU-accelerated Minimap2 (mm2-gb) on
GPU to SIMD-accelerated mm2-fast by mapping real ONT
reads to human genome reference. We show that mm2-gb
generates identical mapping results as mm2-fast and deliv-
ers 2.57x-5.33x speedup on coarse-grained long reads (10kb -
100kb). mm2-gb supports HIP and CUDA environments on

AMD and NVIDIA GPUs. mm2-gb is an open-sourced and
accelerated implementation of Minimap2 without compro-
mising mapping accuracy.

3.1 Improve GPU Occupancy by Breaking Down
Reads into Segments

To maximize the occupancy on data center GPUs such AMD
Instinct™ MI210 which can run 208k threads in parallel, it is
crucial to identify sufficient parallelism in the optimal score
generation step of chaining. Similar to mm2-ax, mm2-gb
leverages inter-read and intra-range parallelism at the grid
and block levels, respectively, in the score generation kernel.
Intra-range parallelism arises from threads within a block
performing forward score generation between the successors
within range against a given anchor. Inter-read parallelism
emerges from the data parallelism between different reads.
To address the lack of parallelism in long ONT reads

(>20kb) and achieve higher GPU occupancy, mm2-gb intro-
duces a new level of parallelism, intra-read parallelism, to
long-read chaining. Instead of serializing the optimal score
generation for all the anchors in the same read, mm2-gb
divides a read into multiple independent segments and pro-
cesses them in parallel. This is done carefully to avoid vio-
lating data dependencies between finding the optimal chain
score of an anchor and its possible predecessors. mm2-ax [15]
demonstrated that 67% of the input anchors have a successor
range of zero and do not start a chain. We observe that the
anchors succeeding such a zero-range anchor are too distant
to chain against it or any of its predecessors. Therefore, the
chain scores for anchors succeeding the zero-range anchor
are not dependent on its predecessor scores or itself. This
enables us to cut reads at zero-range anchors and process
these segments independently. We perform segment cutting
in the successor range selection kernel on GPU (Algorithm
1).

Our parallel segment-cutting algorithm is designed to di-
vide reads into short segments, each approximately the size
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of one range selection block (512 in our evaluated configura-
tion). In the range selection kernel, each thread is tasked with
calculating the successor range for one anchor in the read.
The last few threads in each block (10 threads in our evalu-
ated configuration) attempt to update the cut position with
their anchor index if they encounter a zero-range anchor.
Consequently, our algorithm effectively partitions reads into
segments of 512 anchors, unless none of the last 10 threads
encounters a zero-range anchor. This algorithm introduces
minimal overhead to the range selection kernel and yields
segments with an average length of 546.9 anchors on a subset
of the 60x HG002 ONT dataset (average read length 45kb).

Algorithm 1 Segment Cutting In Range Selection Kernel
Input: 𝐴: {a1, a2, ..., an} List of sorted anchors
Output: 𝑅: {r1, r2, ..., rn} - List of successor ranges for anchors in a read.
Output: Cut: {c0, c1, ..., c(n//BLOCKDIM)} - List of cut positions.
1: constant BLOCKDIM = 512
2: for 𝑡𝑖𝑑 ← threadIdx do ⊲ Each thread
3: for 𝑖 ← 𝑡𝑖𝑑 to 𝑛 step BLOCKDIM do
4: 𝑅 [𝑖 ] ← 𝑟𝑎𝑛𝑔𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝐴, 𝑖 ) ⊲ Successor Range Selection
5: if 𝑡𝑖𝑑 is among the last 10 threads in a block then
6: if 𝑅 [𝑖 ] == 0 then ⊲ This is a zero-range anchor
7: 𝐶𝑢𝑡 [𝑖//𝐵𝐿𝑂𝐶𝐾𝐷𝐼𝑀 ] ← 𝑖 ⊲ Attempt to cut
8: end if
9: end if
10: end for
11: end for

3.2 Split Score Generation Kernels: Specialize
Kernels for Different Range Profiles

In mm2-ax [15], Sadasivan et al. report that the chaining
kernel has highly irregular arithmetic intensity and intra-
range parallelism, characterized by a high variance in the
successor range. We extend this idea by measuring workload
in terms of chaining scores computed to reflect the mapping
cost more accurately. The statistics on a dataset subset from
60xHG002ONT [5] shows that 93.5% of anchors have a range
less than 64, but they only form less than 2% of the anchors-
pairs that require a score calculation. The successor ranges
of the remaining 6.5% anchors follow a long-tail distribution
(Fig. 3a). The score calculation workload is distributed across
anchors of different range profiles (Fig. 3b), and exhibits
different arithmetic intensity and intra-range parallelism. It
is hard to design one kernel that suits all the anchors with
different range profiles.
To overcome this irregularity, we develop three separate

kernels, short, mid, and long, to handle anchors of various
ranges. We distribute anchors into the three different kernels
based on the correlation between the segment length and
average anchor range.
The short kernel is optimized for anchors with a range

shorter than the wavefront size (<64 threads). Each block in
the short kernel contains only one wavefront that is executed

(a)

(b)

Figure 3. Successor range distribution is highly imbalanced.
(a) Anchors with a range >64 follow a long-tail distribution
(b) Workload is broadly distributed among anchors of differ-
ent range profiles.

in lock-step to avoid block synchronization between itera-
tions. This also allows us to fit a larger grid dimension on the
device to better leverage the inter-segment parallelism. The
mid-kernel is optimized for anchors with more intra-range
parallelism to benefit from a larger block size of 512. The
long kernel is optimized for anchors with long ranges (>1024)
and needs 1024 threads to work on forward score generation
in parallel.

Through our analysis of the range profile of segments, we
find that anchors in longer segments tend to have a larger
average range (Fig. 4a). Because segment is the minimum
parallel unit due to succeeding dependency, by assigning
segments into short, mid and long kernels based on their
length, anchors are distributed into appropriate chaining
kernels. From a zoomed-in view (Fig. 4b), we find segments
shorter than 2k anchors have an average range of less than
64 and are optimal workloads for the short kernel. mm2-gb
assigns the segments of medium length (2k-10k anchors) to
the mid kernel and leaves segments in the long tail to the
long kernel (Fig. 5). Note that the long kernel is responsible
for generating 86% of the scores, and therefore an optimized
long kernel is the key to achieving high chaining throughput.
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(a) (b)

Figure 4. Long segments consist of anchors with larger range profiles. (a) The number of anchors in long segments follows a
long tail distribution up to 1 million. (b) Zoom-in View (segments <20k anchors): Segments less than 2k anchors long have an
average range less than 64.

(a) (b)

Figure 5. Anchors of different range profiles are assigned to their respective kernels. (a) Most anchors assigned to the mid
kernel have a range <512. Half of the anchors between 64 to 512 in range are assigned to the long kernel. (b) The long kernel
handles a majority (86%) of total work.

3.3 Long Kernel Scheduling
The runtime of the long kernel is bounded by the latency of
processing ultra-long segments that can be up to 1 million
anchors long. There are only a few ultra-long segments in a
batch, but anchors in each ultra-long segment are handled
sequentially by a single compute unit (CU). mm2-gb imple-
ments long segment aggregation and prioritized segment
scheduling to improve the overall throughput of the long
kernel in the presence of ultra-long segments.

3.3.1 Long Segment Aggregation. The key to improving
throughput for the long kernel is to identify enough long
segments to fully occupy all 104 CUs on an AMD Instinct™
MI210 GPU. Reads are processed in batches sized to fit the 64
GB of High Bandwidth Memory (HBM) capacity in an MI210
GPU. From this batch, a small proportion of segments are
long. The occupancy of the long kernel processing this small

set of long segments from one batch is very low, only around
20.2%. To remedy this, we aggregate enough long segments
from multiple input batches and launch a single long kernel
to process all of them (Fig. 6). A buffer sized 15% of MI210’s
HBM capacity can hold aggregated long segments from 4-5
batches of reads, and increase the CU occupancy to 85.5%.

3.3.2 Prioritized Segment Scheduling. In the long ker-
nel, segments in descending order of lengths are sched-
uled to persistent blocks that remain active throughout the
kernel runtime. This helps improve workload balance be-
tween blocks. After aggregating long segments frommultiple
batches of reads, mm2-gb sorts them by length in descend-
ing order. As proposed in Algorithm 2, once launched, each
block in the long kernel pops the longest segment from the
queue, processes it, and then pops the next in the queue to
process until the queue is empty. This algorithm guarantees
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Figure 6. Aggregating long segments from multiple micro-batches into one long score generations kernel.

that: 1) Latency-bounded ultra-long segments are scheduled
first. 2) Blocks that complete processing a segment early
automatically get scheduled more work. As illustrated in
Fig. 7, prioritized segment scheduling significantly improves
block-level workload balance in the long score generation
kernel.

Algorithm 2 Prioritized Segment Scheduling In Long Score
Generation Kernel
Input: 𝑄 : {s1, s2, ..., sm} - List of long segments, sorted by length
Output: 𝑃 : {p0, p1, ..., pn} - List of optimal predecessors
Output: 𝐹 : {f0, f1, ..., fn} - List of optimal score
1: for 𝑏𝑖𝑑 ← blockIdx do ⊲ Each block
2: __𝑠ℎ𝑎𝑟𝑒𝑑__ 𝑠 ⊲ Current segment of the block
3: while𝑄 is not empty do
4: 𝑠 ← 𝑄 .pop() ⊲ Get next segment
5: __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ( )
6: {𝑃 [𝑖 ], 𝐹 [𝑖 ] }𝑖∈𝑠 ← 𝑠𝑐𝑜𝑟𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑠 ) ⊲ Score generation
7: end while
8: end for

Figure 7. Inter-block workload balance of long score genera-
tion kernel with and without prioritized segment scheduling.
Prioritized scheduling significantly reduces tail latency.

4 Evaluation
4.1 Experiment Setup
We accelerate Minimap2 v2.24, which is the same version
used by mm2-fast [10]. Because mm2-ax is tied to an older
version of mm2-v2.17, is built to work on an NVIDIA A100

GPU and is close-sourced to be tweaked for benchmark-
ing, we didn’t use it as our baseline. Instead, we use SIMD
accelerated mm2-fast and Minimap2 on GPU without our
optimization (see Fig. 1) as baselines. Because mm2-ax also
uses mm2-fast as its baseline, we are still able to compare
mm2-gbwith mm2-ax qualitatively. We demonstrate the ben-
efits of our optimizations using AMD Instinct™ MI210 GPU
on the AMDAccelerator Cloud (AAC) cluster [3]. Our perfor-
mance is evaluated on a single AAC node containing 512GB
of host memory and one AMD Instinct™MI210 GPU with
64GB of HBM memory. We run mm2-fast on a server with
125GB memory and a 32-core Intel®1 Xeon®2 Gold 6326
CPU, which supports AVX512. Our test data is extracted
from Oxford Nanopore Technologies (ONT)’s 60X HG002
dataset [5]. To demonstrate our performance gain on differ-
ent read lengths, especially long reads, we allocate five bins
based on read lengths (1k-10k, 10k-20k, 40k-50k, 90k-100k,
and 100k-300k bases) and assign 5Gb of reads into each of
them (similar to coarse-grained workload in mm2-ax [15]).

Figure 8.Maximum throughput in terms of scores generated
per second, where mm2-gb achieves 1.87-4.36x speedup over
mm2-fast.

2Xeon is a trademark of Intel Corporation or its subsidiaries
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4.2 Summary of Results
Experiment results in Fig. 8 showmm2-gb achieves 2.57-5.33x
speedup over mm2-fast in processing long reads (10k-100k)
and 1.87x for super long reads (100kto300k). These coarse-
grained long-read datasets are challenging to be parallelized
on the GPU and mm2-ax achieves speedups downwards of
2x over mm2-fast, without the manual grouping of reads. We
achieve 4.36x speedup on short reads (1kto10k), compared
to up to 10x for mm2-ax. Potential reasons for the slowdown
are discussed later in Sec. 7.

Our mm2-gb on GPU maintains 50-60% of theoretical max
throughput in processing long reads (10k-100k), and achieves
39% theoretical max throughput on super long reads (100k-
300k), while before optimization it was at less than 15%. For
short reads (1k-10k), because the low average range leads to
a low workload intensity, we observe a 33% theoretical max
throughput.
Accelerating chaining for mapping long DNA reads is a

challenging task on GPU because of its long latency and low
hardware occupancy. The results demonstrate that our ef-
forts in splitting workload and improving workload balance
makes a big difference. Compared with previous works like
mm2-ax, our acceleration doesn’t require users to manually
assign short reads to run concurrently with long reads (i.e.
generate fine-grained datasets) to saturate the occupancy
when mapping long read datasets, instead, by introducing
the finer levels of parallelism in the segment, mm2-gb auto-
matically schedules segments of different lengths to ensure
the workload are distributed equally on each CU.

In summary, mm2-gb overcomes the latency issue in pro-
cessing long and super-long reads, and achieves significant
improvement over SIMD-accelerated mm2-fast and previous
GPU-accelerated versions of mm2.

5 Conclusion
Chaining kernel performance is crucial for constructing a
high-throughput long-read aligner capable of adapting to the
increasing read lengths. However, it remains slow in the state-
of-the-art long-read aligner Minimap2, consuming 40-68%
of the total runtime. To address this bottleneck, we present
Minimap2-gigabases (mm2-gb), a GPU-accelerated version
of Minimap2 tailored for high throughput long-read chain-
ing while maintaining the same accuracy. mm2-gb improves
GPU workload balance and occupancy within the irregu-
lar chaining kernel by cutting long reads into independent
segments of different arithmetic intensities. These segments
are then handled by separate kernels, with long segments
aggregated and prioritized within the kernel. In comparison
to AVX512 accelerated mm2-fast, our evaluations demon-
strate that mm2-gb running on an AMD Instinct™ MI210
GPU achieves a 2.57-5.33x performance improvement on
long reads (10kb-100kb) and a 1.87x performance gain on
ultra long reads (100kb-300kb).

6 Related Works
A few prior works have attempted to speed up Minimap2.
Zeni et al. [18] and Feng et al. [6] sped up the base-level align-
ment step, which is no longer the bottleneck as read lengths
have increased. Some of the works that have accelerated
chaining are either closed source [15], low in accuracy [8],
or do not completely exploit the parallelism in chaining [10].
Guo et al. [8] introduced the concept of forward transforming
the chaining algorithm and accelerated it on GPU and Field
Programmable Gate Array (FPGA). However, their work does
not guarantee output equivalence to mm2. Their decrease in
mapping accuracy, as pointed out by Sadasivan et al. [15], is
primarily due to Guo et al.’s static predecessor range selec-
tion, which differs from the dynamic selection in mm2, and
because the rules for updating chaining scores were not mod-
ified in line with the forward transformation. Another study,
mm2-fast [10], accelerates all three steps in mm2 using Sin-
gle Instruction Multiple Data (SIMD) CPUs. While mm2-fast
does parallelize the generation of chain scores, Sadasivan et
al. [15] identified certain sections of chaining that are not
parallelized. Sadasivan et al. [15] found that 34.08% of the
total time spent generating chain scores and finding the max-
imum scores at the start and end of chains by mm2-fast is
spent in sequential code and is not parallelized. mm2-ax [15]
attempts to improve uponmm2-fast by forward transforming
the chaining step while maintaining high accuracy. mm2-
ax’s findings have motivated some of the strategies we have
investigated in this work. Despite mm2-ax doing a good job
at exploiting more parallelism in chaining, we identify sev-
eral areas for improvement. mm2-ax’s workload scheduling
is not designed to deliver consistent performance for longer
read lengths, is fine-tuned for and requires NVIDIA A100
GPUs, is closed-source, and tied to an older version of mm2-
v2.17. We compare with respect to mm2-fast because it is
based on the latest mm2-v2.24, which is considered accurate
for diagnostics.

7 Discussion
We profile the most time-consuming kernel of mm2-gb, the
long score generation kernel on an ultra-long read ONT
dataset (reads between 90kb-100kb extracted from 60xHG002
dataset) with Omniperf v1.0.10 [13]. As illustrated in Table
1, the long score generation kernel does not fully saturate
L1, L2, or HBM memory bandwidth. However, as shown in
Tab. 2, both the issue pipeline and vector ALU are under-
utilized, with more than 70% of CU cycles being consumed
by dependency stalls while awaiting data from the memory
system. With a high L2 hit rate of 98%, a low L1 hit rate of
68%, and an average L1 latency of 216 cycles, we infer that
the long score generation is constrained by L2 data fetch
latency resulting from L1 capacity misses.
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Vector L1 Cache L2 Cache
Hit rate 68% Hit rate 98%
Lat. 216 cycles Lat. 128 cycles

BW util. 16.83% BW util 0.54%
Table 1. Cache statistics for long score generation kernels,
as reported by omniperf.

Compute Unit Utils CU Cycle Breakdown
VALU Util 32.57% Dependency Wait 73.50%

IPC-Issue Util 19.91% Issue Wait 8.18%
Active Cycles 18.93%

Table 2. CU statistics for long score generation kernels, as
reported by Omniperf

8 Future Work
8.1 Long Kernel: Shared Memory Prefetch
Our long score generation kernel is memory latency bound.
However, we observe marginal benefits from L1 prefetching
as opposed to mm2-ax. mm2-ax opted for L1 prefetching over
shared memory prefetching due to limited temporal locality
unified score generation kernel, whereas mm2-gb’s long ker-
nel operates on aggregated long segments with extended pre-
decessor ranges. These long-range segments exhibit greater
data reuse between iterations, and the working set size of a
block (estimated to be the size of anchors in the range) is also
larger. For instance, in a segment with an average range of
3k anchors, the working set size of the block processing this
segment is estimated to be 7𝐵/𝑎𝑛𝑐ℎ𝑜𝑟 × 3𝐾𝑎𝑛𝑐ℎ𝑜𝑟𝑠 = 27𝐾𝐵.
An AMD Instinct™MI210 device can accommodate two long
score generation blocks on one CU, sharing a 16KB L1 cache
and a 64KB shared memory. The working set fits within the
shared memory but exceeds the capacity of the L1 cache.
Therefore, we anticipate that the long score generation ker-
nel will benefit from shared memory prefetching, and we
plan to implement it in our future updates.
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10 Availability
10.1 Software
mm2-gb is open-sourced and available at https://github.com/
Minimap2onGPU/minimap2.

10.2 Datasets
Datasets are publicly available with CC0 license fromHuman
PangenomeReference Consortium: https://github.com/human-
pangenomics/HG002_Data_Freeze_v1.0 [5].
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