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Abstract 

Understanding population structure is essential for conservation genetics, as it provides 

insights into population connectivity and supports the development of targeted strategies to 

preserve genetic diversity and adaptability. While Principal Component Analysis (PCA) is a 

common linear dimensionality reduction method in genomics, the utility of non-linear 

techniques like t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold 

approximation and projection (UMAP) for revealing population genetic structures has been 

largely investigated in humans and model organisms but less so in wild animals. Our study 

bridges this gap by applying UMAP and t-SNE, alongside PCA, to medium and low-coverage 

whole-genome sequencing data from the scimitar oryx, once extinct in the wild, and the 

Galápagos giant tortoises, facing various threats. By estimating genotype likelihoods from 

coverages as low as 0.5x, we demonstrate that UMAP and t-SNE outperform PCA in 

identifying genetic structure at reduced genomic coverage levels. This finding underscores 

the potential of these methods in conservation genomics, particularly when combined with 

cost-effective, low-coverage sequencing. We also provide detailed guidance on 

hyperparameter tuning and implementation, facilitating the broader application of these 

techniques in wildlife genetics research to enhance biodiversity conservation efforts. 

 

1. Introduction 

Population genetics is a rapidly expanding field that aims to elucidate the genetic 

relationships within and between populations of a given species, thereby transforming our 

understanding of biodiversity. Population genetic approaches enable the estimation of 

population size, determination of demographic history, and characterization of population 

structure, which are all critical in evaluating the long-term survivability of a population, in 
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addition to, for instance, identifying loci that contribute to adaptive capacity or uncovering the 

genetic basis of reduced fitness in populations (Hohenlohe et al., 2021). Understanding the 

population genetic structure is particularly important for endangered species, where 

identification of genetically isolated or distinct populations is essential for effective 

conservation efforts at implementing habitat restoration, establishing protected areas, 

facilitating genetic connectivity, or preserving genetic diversity while preventing the loss of 

unique genetic variation (Frankham, 2003; Hohenlohe et al., 2021). Therefore, the 

application of population genetics tools is crucial in assessing, monitoring, and maintaining 

ecosystem health and biodiversity. 

 

The emergence of next-generation sequencing has been a pivotal force in transforming 

population and conservation genetics, facilitating the high-throughput acquisition of DNA 

sequencing data. However, this comes with the challenge of sequencing errors associated 

with the sequencing platform used. To address this, one strategy is to increase the 

sequencing depth per sample. Researchers often balance the higher costs by sampling 

fewer individuals, sequencing pools of individuals (Pool-seq [Schlötterer et al., 2014]), or 

employing reduced representation sequencing to sequence a smaller portion of the genome 

per individual (e.g., RAD-seq [Baird et al., 2008] and a range of related techniques [Andrews 

et al., 2016]). As an efficient alternative, low-coverage whole genome sequencing offers a 

cost-effective strategy for comprehensive population-scale genomic screening that, in many 

instances, is as economical as reduced representation methods (Lou et al., 2021). At low 

depths of coverage, individual genotypes cannot reliably be called; rather, probabilistic 

models utilizing genotype likelihoods have been introduced (Nielsen et al., 2011, 2012). 

These models integrate base quality scores and allele sampling errors (reflected as 

likelihoods of each of the possible genotypes at a particular site) to account for genotype 

uncertainty in subsequent analyses (Korneliussen et al., 2014). Recently, a growing number 

of tools have emerged that use genotype-likelihoods for various analyses. These tools 

perform different tasks such as analyzing population structure (Meisner & Albrechtsen, 2018; 

Skotte et al., 2013), scanning for selection (Meisner & Albrechtsen, 2018), estimating 

pairwise linkage disequilibrium (Fox et al., 2019; Fumagalli et al., 2014), carrying out 

genome-wide association studies, testing for introgression, quantifying genetic differentiation 

across populations, conducting neutrality tests within a single population (Korneliussen et al., 

2014), as well as assessing within-population genetic diversity and individual heterozygosity 

(Korneliussen et al., 2014; Link et al., 2017). 

 

Regardless of whether high- or low-coverage sequencing methods are employed, the task of 

unraveling the complex structure within population genomics datasets remains a constant 
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challenge. The primary goal is to determine whether the samples belong to a uniform 

population or distinct subgroups and to quantify the evidence for such subgroups. However, 

with the developments in high-throughput sequencing technologies, these analyses have 

become increasingly complex and challenging to perform on large datasets containing many 

sampled individuals, genetic markers, and populations (Shafer et al., 2015). To overcome 

the challenges of such complex and high-dimensional datasets, dimensionality reduction 

techniques have been used as the first step in analysis to visualize and identify relatedness 

patterns in the data. Principal component analysis (PCA) was first introduced to the study of 

genetic data 45 years ago by Cavalli-Sforza (Menozzi et al., 1978), and one of the wide 

application areas of this technique is inferring population genetic structure (Patterson et al., 

2006). By generating orthogonal axes that capture the maximum variation within the high-

dimensional space, PCA provides a low-dimensional representation of the genomic data. 

This technique has been applied successfully to summarize covariances among hundreds of 

thousands of loci, making it an essential tool in the field (Patterson et al., 2006). However, 

PCA has several limitations when dealing with complex genomic data. For example, it uses 

linear combinations of variables, potentially overlooking non-linear relationships between 

genetic markers (Alanis-Lobato et al., 2015). Also, PCA seeks directions of maximum 

variance and, in doing so, may neglect variation along other directions, leading to incomplete 

or biased representations of population structure. 

 

Non-linear neighbor graph-based dimension reduction algorithms have been developed over 

the years to address these limitations. Using such methods on population genomics data 

can provide a more detailed and accurate representation of the population structure. One 

such method is t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten & 

Hinton, 2008), which has gained popularity in recent years due to its ability to capture local 

structures in genomics and transcriptomics data (Kiselev et al., 2019; Li et al., 2017; Platzer, 

2013). Another algorithm is uniform manifold approximation and projection (UMAP) 

(McInnes, Healy, & Melville, 2018), which can also preserve non-linear structure in high-

dimensional data and has already been used to investigate patterns and relationships across 

different levels of dataset complexity and size (Becht et al., 2018; Diaz-Papkovich et al., 

2019, 2020; Dorrity et al., 2020). t-SNE analyzes the similarity of points in high-dimensional 

space using a Gaussian distance (van der Maaten & Hinton, 2008), whereas UMAP is based 

on generating a weighted graph where data points in close proximity to each other are given 

greater weights (McInnes, Healy, & Melville, 2018); thus, both algorithms preserve the local 

topology of the neighborhood.  

 

In standard applications of t-SNE and UMAP for dimensionality reduction, these techniques 
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can be applied directly to individual genotypes. However, due to the computational intensity 

of these methods, an alternative approach often employed is first to reduce the 

dimensionality of the data using PCA (Kobak & Berens, 2019; Kobak & Linderman, 2021). 

Subsequently, top PCs are used as the input for further dimensionality reduction using t-SNE 

or UMAP (referred to as PCA-t-SNE and PCA-UMAP, respectively) (Diaz-Papkovich et al., 

2019; van der Maaten & Hinton, 2008). This two-step process not only helps in managing 

computational demands but also in enhancing the extraction of meaningful population 

structures by filtering out stochastic noise (Diaz-Papkovich et al., 2019). In contrast to using 

PCA alone, where typically only the first two principal components (PCs) are utilized for 

visualization, combining PCA with t-SNE or UMAP allows for the integration and 

representation of a greater portion of the data's variance (Gaspar & Breen, 2019). 

Additionally, in scenarios where genotype data is unavailable, such as in low-coverage 

whole-genome sequencing, PCs computed based on genotype likelihoods can be effectively 

incorporated into t-SNE and UMAP analyses. This adaptability further underscores the 

versatility of these dimensionality reduction techniques in various genomic data contexts. 

 

Although at different computing costs between t-SNE and UMAP, both techniques 

integrating principal components of genotype data were previously applied to large datasets 

(e.g., [Diaz-Papkovich et al., 2020]), providing a more comprehensive view of inferring 

population genetic structure in plants (Fu et al., 2022; Ma et al., 2021), invertebrates 

(Anopheles gambiae 1000 Genomes Consortium, 2020; Schmidt et al., 2020, 2021; Simon 

et al., 2021), and extensively in humans (Černý et al., 2023; Chyleński et al., 2019; Diaz-

Papkovich et al., 2019; Halldorsson et al., 2022; Margaryan et al., 2020; Sengupta et al., 

2021; Sohail et al., 2023). Interestingly, despite being available for several years, t-SNE and 

UMAP have not been widely adopted in population genomics research for non-human 

vertebrates. This is likely due to researchers being unfamiliar with these techniques and the 

difficulties associated with determining the optimal parameter settings and interpreting the 

resulting visualizations in the context of wildlife population genomics. As a result, in the field 

of conservation genomics for species at risk, there exists a notable underutilization of non-

linear dimensionality reduction methods. Additionally, the potential benefits of integrating 

these methods with genotype likelihood approaches (and hence low-coverage sequencing) 

in conservation genomics present a promising research direction that remains to be fully 

investigated. 

 

To contribute to the current state of knowledge, this paper demonstrates the application of t-

SNE and UMAP to two previously published medium to low-coverage whole genome 

resequencing datasets. These datasets originate from two distinct vertebrate groups: the 
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captive populations of the scimitar-horned oryx, a mammal species once extinct in the wild, 

and Galápagos giant tortoises, a reptilian taxa facing varying levels of threats. We explored 

the impact of reduced sequencing depths (down to 0.5x) on the discernibility of clustering 

patterns when employing these dimensionality reduction methodologies in comparison to 

classical PCAs. Additionally, we have developed a comprehensive guideline that includes 

Python-based codes, as well as a guide for optimizing parameters, to facilitate the adoption 

of these analytical techniques to a wide range of organisms. We see particular potential for 

these techniques in the field of conservation genomics, where identifying fine-scale 

population structure, coupled with traditional statistical approaches, can potentially serve for 

better management strategies of the species at risk. 

 

2. Materials and Methods 

2.1 Case system 1: Scimitar-horned oryx 

The scimitar-horned oryx (Oryx dammah) is a large antelope that once roamed widely 

across North Africa (Bertram, 1988). However, the iconic animals experienced a precipitous 

decline in the 20th century due to drought, hunting, and land-use competition (Dixon et al., 

1991), leading to their extinction in the wild (IUCN SSC Antelope Specialist Group, 2016). 

Before their disappearance, captive breeding began with fewer than 100 oryxes from Chad, 

expanding the ex-situ global population to about 15,000 individuals (Gilbert, 2019). While 

1,000 are in coordinated breeding programs, many reside in places with minimal genetic 

management (Humble et al., 2023). Due to the success of reintroduction programs in Chad, 

the species was recently downlisted to Endangered by the IUCN Red List (IUCN SSC 

Antelope Specialist Group, 2023). To understand the genetic consequences of different 

conservation management strategies, (Humble et al., 2023) sequenced the whole genomes 

of 49 oryxes from populations with varying genetic management levels, notably from EAZA 

Ex Situ Programmes (EEP, n = 8), USA (n=17), and two unmanaged collections in the 

United Arab Emirates (EAD A, n = 9 & EAD B, n = 15).  

 

2.1.1 Whole-genome resequencing data analysis 

We obtained the raw whole-genome re-sequencing data of 46 genetically unrelated scimitar-

horned oryx individuals from (Humble et al., 2023) (NCBI BioProject PRJEB37295), which 

were also utilized as the final dataset in the PCA analysis presented in the referenced study 

((Humble et al., 2023); Table S1). Subsequent data processing was performed using the  

ATLAS Pipeline v7 (Link et al., 2017; Marchi et al., 2022; https://atlaswiki.netlify.app/atlas-

pipeline), involving the Gaia, Rhea, and Perses workflows. In Gaia, individual sequencing 

data underwent quality trimming using TrimGalore v0.6.6 (Krueger, 2016) with default 

settings and was aligned to the Oryx dammah reference genome, SCBI_Odam_1.1 (NCBI 
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RefSeq GCF_014754425.2) (Humble et al., 2020) employing BWA-MEM v0.7.17 (Li & 

Durbin, 2009) in paired-end mode. Within the Rhea workflow, local re-alignment was 

conducted using GATK v3.8 (McKenna et al., 2010) (Table S1). Subsequently, the Perses 

workflow facilitated the merging of forward and reverse reads into single reads per fragment 

using the tool ATLAS v0.9 (Link et al., 2017), avoiding pseudo-duplicated bases where 

original reads overlapped. 

 

To reproduce the PCA results as detailed in (Humble et al., 2023), we implemented 

downsampling with ATLAS (Link et al., 2017) (task=downsample) to standardize the 

coverage across individuals, setting high-coverage samples to an average coverage of 6x 

while preserving the original coverage levels for low-coverage individuals in accordance with 

the methodology outlined in the cited study. We designated the primary dataset as "SO_6x". 

In this set, we maintained the 20 samples with coverage below the 6x average and 

downsampled the remaining 26 to the target of ~6x (Table S1). For subsequent analyses to 

explore the effect of lower sequencing coverage, we created "SO_2x" and "SO_0.5x", where 

we downsampled all samples to about 2x and 0.5x, respectively. 

 

2.1.2 Genotype likelihood estimation and PCA 

We estimated genotype likelihoods using ANGSD v0.940 (Korneliussen et al., 2014) with the 

three distinct datasets described above, each characterized by varying levels of average 

coverage (6x, 2x, 0.5x). Following the methodology of (Humble et al., 2023), we employed 

ANGSD (Korneliussen et al., 2014) using the GATK model (-GL 2) to infer major and minor 

alleles (-doMajorMinor 1, -doMaf 1). We restricted this analysis to the 28 chromosome-length 

autosomes (Table S1) and included only regions with Phred quality and mapping scores 

exceeding 30. We utilized properly paired (-only_proper_pairs 1) and unique reads (-

uniqueOnly 1) while retaining only biallelic sites (-skipTrialleleic 1). Sites with read coverage 

in less than 60% of the samples were excluded (-minInd 30, allowed missingness 60%), and 

we retained only polymorphic sites with a genotype likelihood p-value less than 1e-6 (-

SNP_pval 1e-6). Lastly, we applied thinning for the variant sites, ensuring a minimum 

distance of 1Kb between two sites with a custom bash script. Using thinned sites only, we 

reestimated genotype likelihoods (with the -sites option in ANGSD). 

 

Then, we performed principal component analysis with PCAngsd v1.11 (Meisner & 

Albrechtsen, 2018) by using default settings where the minor allele frequency cut-off is 5%.  

 

2.1.3 Non-linear dimensionality reduction analyses 
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We used Jupyter Notebook (Kluyver et al., 2016), Python v3.11.4 (Van Rossum & Drake, 

2009), and a set of Python libraries for the t-SNE and UMAP analyses. We decomposed the 

covariance matrix output of PCAngsd (Meisner & Albrechtsen, 2018) by using NumPy 

(v1.24.4) (Harris et al., 2020) to obtain eigenvectors and eigenvalues for each dataset. Then, 

we calculated principal components and performed PCA-t-SNE and PCA-UMAP in libraries 

scikit-learn (v1.3.0) (Pedregosa et al., 2016) and umap-learn (v0.5.3) (McInnes, Healy, & 

Melville, 2018), respectively. From this point on, for readability, we will refer to the 

techniques of PCA-t-SNE and PCA-UMAP as t-SNE and UMAP, respectively. 

 

We optimized hyperparameters for t-SNE and UMAP using grid search to examine 

dimensionality reduction trends. For t-SNE, we adjusted the perplexity (perp), which 

influences the number of effective neighbors and typically ranges from 5 to 50 (van der 

Maaten & Hinton, 2008). In UMAP, we changed two hyperparameters: the number of 

neighbors (NN, default 15) and the minimum distance (MD, default 0.1) (McInnes, Healy, & 

Melville, 2018). Both perp and NN balance local versus global data structure representation, 

with smaller values focusing on local and larger ones on the global structure. The MD 

parameter controls data point separation, with lower values tightening clustering and higher 

values dispersing data points for global structure preservation. 

 

We tested various combinations of perp, NN, and MD values across three datasets. For t-

SNE, we used perp values of 5, 10, and 23 (half the total number of individuals), while for 

UMAP, we employed NN values of 5, 10, and 23, along with MD values of 0.01, 0.1 (the 

default), and 0.5. These parameters were combined with a set of top PCs. For each dataset, 

we established the set of PCs to be used by determining the minimum as well as the 

maximum number of available PCs, as suggested by (Diaz-Papkovich et al., 2019). We 

employed the elbow method to identify the minimum number of PCs using the 'KneeLocator' 

function from the Python package 'kneed' v0.8.5 (Satopaa et al., 2011) with a polynomial fit 

method. This technique identifies the ‘elbow point’ by smoothing the PCs’ explained variance 

curve with polynomial interpolation and selecting the point where the rate of increase 

significantly diminishes (Figure S1). For our datasets, this approach suggested using 

between 5 to 46 PCs. For instance, in the SO_6x dataset, we applied 6 (the elbow point) and 

46 PCs (the maximum available, as shown in Figure S1A); similarly, for both SO_2x and 

SO_0.5x datasets, we used 5 and 46 PCs (Figure S1B & C). Employing this method allowed 

us to systematically assess the impact of different hyperparameters and PC selections on 

the non-linear dimensionality reduction results, thereby enhancing the robustness and 

reproducibility of our analyses. 
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All visuals of dimensionality reduction analyses were plotted with the seaborn library 

(v0.11.2) (Waskom, 2021). To ensure accessibility in visual data representation, we used a 

color palette generated by the online tool, which is available at 

https://medialab.github.io/iwanthue/.  

 

2.2 Case system 2: Galápagos giant tortoises 

Galápagos giant tortoises are endemic to the geologically young Galápagos Archipelago 

(Van Denburgh, 1914). There are 14 named taxa, most of which originate from distinct 

islands, and each of them is a subject of conservation concern, with listings on the IUCN 

Red List ranging from Vulnerable to Critically Endangered, and some even declared Extinct 

(IUCN, 2023). Their population decline during the 19th and 20th centuries can be attributed 

to various factors, including human exploitation, habitat degradation, and the detrimental 

influence of invasive species (Hamann, 1993; Pritchard, 1996). While recent taxonomic 

revisions have merged these tortoises into a single species (Turtle Taxonomy Working 

Group, 2021), findings from a whole-genome sequencing approach (Gaughran et al., 2023) 

suggest multiple species within the genus Chelonoidis. To minimize confusion, we mostly 

employed English common names and scientific epithets for each taxon when necessary 

throughout the text (e.g., darwini for Chelonidis darwini / Chelonidis niger darwini), following 

(Gaughran et al., 2023). 

 

Galápagos giant tortoises exhibit a continuum of carapace shapes, spanning from domed 

forms prevalent in humid high-altitude environments to saddleback variants typically residing 

in drier, lower elevation habitats; notably, two taxa occupy an intermediate position on this 

morphological spectrum, known as "semi-saddleback" (Chiari, 2021). A recent genomic 

investigation aimed to provide genomic evidence for the rediscovery of the Fernandina 

Island Galápagos giant tortoise (phantasticus) and to infer the whole genome phylogeny of 

extinct and extant 13 Galápagos giant tortoises (Jensen et al., 2022). This study also 

revealed that the Fernandina tortoises form a monophyletic group, clustering together all 

lineages exhibiting a saddleback carapace morphology, along with one displaying a semi-

saddleback morphology (Jensen et al., 2022). The remaining taxa constituted a distinct 

group, wherein all lineages characterized by a domed-shaped carapace morphology 

clustered together along with another semi-saddleback tortoise. The overall clustering 

pattern within each carapace morphology group appeared to be largely influenced by 

geographical factors, mainly the islands inhabited by these tortoises (Jensen et al., 2022). 

 

2.2.1 Analysis of whole-genome resequencing data 
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We acquired whole-genome resequencing data from (Jensen et al., 2021), where 

demographic history and patterns of molecular evolution of all extant Galápagos giant 

tortoises were explored. Additionally, we downloaded the resequencing data of the 

contemporary phantasticus sample from (Jensen et al., 2022) (NCBI BioProject 

PRJNA761229). Overall the acquired dataset comprised three individuals per each of 10 

Galápagos giant tortoise taxa, six individuals from becki (three from each of the two 

lineages, PBL and PBR [Garrick et al., 2014]), one from the extinct abingdonii, and another 

one from the recently rediscovered phantasticus. In total, the dataset encompasses 38 

individuals, of which eight are saddlebacked, 24 are domed, and six are semi-saddlebacked 

(Table S2, Figure 4A).  

 

To mirror the PCA of (Jensen et al., 2022), with genotype likelihood approaches, we mostly 

followed our approach in the Scimitar-horned oryx. Namely, adapter trimming, reference 

genome alignment, indel realignment, and merging of the read groups were performed with 

ATLAS Pipeline (Link et al., 2017; Marchi et al., 2022; https://atlaswiki.netlify.app/atlas-

pipeline). To decrease the computational complexity of downstream analyses caused by 

high numbers of scaffolds (particularly in indel realignment), we aligned sequencing reads to 

the chromosome-level assembly of the Aldabra giant tortoise (AldGig_1.0, NCBI GenBank 

GCA_026122505.1) (Çilingir et al., 2022a) instead of using the Galápagos giant tortoise 

reference genome (ASM359739v1, NCBI RefSeq GCF_003597395.1) (Quesada et al., 

2019). Then, we performed downsampling with ATLAS (Link et al., 2017) and produced 

three datasets with average sequencing coverages of 8x (close to minimal coverage), 2x, 

and 0.5x. We named the primary dataset "GT_8x". Here, we kept a single sample with 

coverage less than ~8x and adjusted the other 37 to approximate the 8x target (Table S2). 

Next, we created datasets "GT_2x" and "GT_0.5x" by downsampling all sample coverage 

levels to ~2x and ~0.5x, respectively. 

 

2.2.2 Genotype likelihood estimation and dimensionality reduction analyses 

We performed genotype likelihood analysis as described above for the Oryx dataset; we 

restricted the whole analysis to the 26 pseudo-chromosomes (Table S2) and allowed 40% 

missingness (-minInd 30).  

 

For the three datasets with varying sequencing coverages, we conducted PCA, UMAP, and 

t-SNE analyses as described above, but with some adjustments due to differences in the 

number of individuals and populations sampled. For t-SNE, we applied perp values of 3, 5, 

and 10 (~a quarter of the total number of individuals). For UMAP, we used the NN values of 

3, 5, and 10; and MD values were set at 0.01, 0.1, and 0.5. A NN value of 3 instead of 5 was 
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chosen because the sample size per species was, in most cases, three. We systematically 

combined these parameter configurations with varying numbers of PCs (minimal number of 

PCs again assessed using the elbow method as implemented in the function 'KneeLocator' 

in package kneed): 9 and 38 for the GT_8x dataset; 7 and 38 for GT_2x and; 4 and 38 for 

GT_0.5x (Figures S2A-C). This approach also mirrors the strategy we employed for the Oryx 

datasets to determine the appropriate range of PCs. 

 

All intermediate files and codes required to reproduce our analyses are available at 

https://github.com/fgcilingir/lcUMAPtSNE. 

 

3. Results 

3.1 Scimitar-horned oryx 

After quality filtering, we retained an average of 99% of the raw sequencing data coming 

from 46 scimitar-horned oryx individuals. After mapping and deduplication, an average of 

81% (range: 77-87%) of these high-quality reads mapped to the reference genome. The 

approximate individual-level coverage varied from ~4.6x to ~20.6x (Table S1).  

 

SO_6x (dataset with coverage 4.6x-6x) yielded a total of 1,415,641 variant sites with a minor 

allele frequency (MAF) of greater than 0.05 and a minimal pairwise distance of 1kb. SO_2x 

yielded 1,516,230, and SO_0.5x yielded 23,129 variant sites with MAF > 0.05 and distance > 

1kb. The PCA performed was insensitive to coverage, with all three coverage datasets 

mirroring the PCA results reported in Humble et al. (2023), where PC1 separated the 

genetically unmanaged population EAD_B from the rest, PC2 separated the other 

genetically unmanaged population EAD_A from the cluster of genetically managed 

populations (EEP + USA) and PC3 separated the genetically managed EEP population from 

the others (Figures 1A-C, Figures S3A-C). The cumulative variance explained by PC1 and 

PC2 for the SO_6x, SO_2x, and SO_0.5x datasets were 21.9%, 20.3%, and 19.2%, 

respectively. 
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Figure 1 The PCA plot of the SO_6x (A), SO_2x (B), and SO_0.5x (C) datasets using the 

first two PCs. Each dot represents a single individual. Colors indicate populations as follows: 

Light green: EAD_A, purple: EAD_B (both genetically unmanaged, depicted with the 

crosses), turquoise: EEP, and orange: USA (genetically managed, depicted with circles). 

 

The minimum (N=5) and maximum number of PCs (N=46) incorporated in the t-SNE and 

UMAP analyses of SO_6x, SO_2x, and SO_0.5x corresponded to 35.3-99.8%, 26.6-99.3%, 

and 24.0-98.8% cumulative variance explained, respectively. To ensure clarity, we present in 

the main figures results acquired using the mid-range parameters selected for t-SNE and 

UMAP (perp 10, NN 10, MD 0.1) coupled with the top PCs obtained with the elbow method 

unless stated otherwise, as these parameters effectively capture the overall trends observed 

across the hyperparameter space we explored. See the Supplementary Material for a 

comprehensive overview of the parameter space we explored. 

 

The t-SNE and UMAP analyses of all three datasets of varying coverages confirmed the two 

distinct groups formed by the genetically unmanaged populations and their separation from 

the unmanaged populations  (Figure 2 & 3; Figures S4-9). Additionally, the SO_6x and 

SO_2x datasets allowed the differentiation between the two genetically managed, thus 

outperforming the corresponding top two PC projections (as in PCA) (Figure 2; Figures S4-

7). For both datasets, as anticipated, the cohesiveness of the clusters improved with 

combinations of local parameters. Lowering the perp, NN, or MD values led to clustering at a 

finer scale, while increasing these values helped to visualize more global patterns, 

suggesting higher genetic similarity between one unmanaged population (EAD_B) and the 

two managed populations than each of these with the other genetically unmanaged 

population (EAD_A) (Figures S4–7). The increase in the number of PCs did not influence the 

clustering patterns obtained using either technique (Figures S4–7). 
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Figure 2 t-SNE and UMAP representations of SO_6x (A, B) with 6 PCs and of SO_2x (C, D) 

with 5 PCs (minimum number of significant PCs based on elbow method). Each dot 

represents a single individual. Colors indicate populations as in Figure 1: Light green: 

EAD_A, purple: EAD_B (both genetically unmanaged, depicted with the crosses), turquoise: 

EEP, and orange: USA (genetically managed, depicted with circles).  

 

For the SO_0.5x dataset, both t-SNE and UMAP separated the two genetically managed 

populations (Figure 3A & B; Figure S8 & S9) as opposed to the corresponding PCA (Figure 

1C). However, t-SNE analyses provided poorer local structure when compared to UMAP 

(Figure 3A & C). Notably, when we increased the number of PCs, the clustering efficacy of 

UMAP was reduced as opposed to the trends observed with SO_6x and SO_2x (Figure 3C 

& D; Figure S9). 
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Figure 3 t-SNE and UMAP representations of SO_0.5x with 5 PCs (minimum number of 

significant PCs, A, B) and with 46 PCs (maximum number of PCs, C. D). Each dot 

represents a single individual. Colors indicate populations as in Figures 1 and 2: Light green: 

EAD_A, purple: EAD_B (both genetically unmanaged, depicted with the crosses), turquoise: 

EEP, and orange: USA (genetically managed, depicted with circles).  

 

3.2 Galápagos giant tortoises 

After processing the raw sequencing data of 38 Galápagos giant tortoise individuals to 

remove adapters and improve quality, 99.97% of the initial data was preserved. Post 

mapping and deduplication, about 79.5% (with a range of 57.4-84.2%) of these reads 

aligned to the reference genome. Individual coverage varied between ~2.6x and ~40.2x 

(Table S2). 

 

GT_8x yielded a total of 854,967 variant sites with a minor allele frequency (MAF) greater 

than 0.05. GT_2x yielded 957,108, and GT_0.5x yielded 14,219 variant sites with MAF > 

0.05. The PCA performed with GT_8x and GT_2x mirrored the PCA results reported by 

Jensen et al. (2022), where PC1 mostly separated the Galápagos giant tortoise taxa from 

each other, and PC2 improved the distinction mainly by separating two taxa from the rest 

(Figure 4B & C). One point of difference was darwini individuals clustered with becki-PBR 
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instead of becki-PBL; however, this was also the case in the phylogenetic trees reported in 

the same study (Jensen et al., 2022) and in a more recent species delimitation study 

(Gaughran et al., 2023). On the contrary, GT_0.5x showed remarkably decreased clustering 

power, revealing three loose clusters, separating Isabela Island taxa into two groups and 

grouping Santa Cruz taxa with all saddlebacked and one semi-saddlebacked taxa (Figure 

4D). 

 

Figure 4  A) Map of Galápagos Archipelago showing the locations of each Galápagos giant 

tortoise lineage in the sample set used in this study (adapted from Jensen et al. 2021; 2022). 

Island and taxon names are colored yellow and white, respectively. B) PCA plot of the 

GT_8x, (C) GT_2x, and (D) GT_0.5x datasets using the first two PCs. Each marker 

represents a single individual. Each shape represents a single taxon, and the color depicts 

the shell shape: red for saddlebacked, green semi-saddlebacked, and purple for domed-

shell lineages. 
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The minimum (N=7) and maximum number of PCs (N=38) incorporated in the t-SNE and 

UMAP analyses of GT_8x, GT_2x, and GT_0.5x corresponded to 35.3-99.8%, 26.6-99.3%, 

and 24.0-98.8% cumulative variance explained, respectively. When applying t-SNE and 

UMAP to the GT_8x and GT_2x with local parameter settings (with lower perp, MD, NN 

values), UMAP was able to discern all taxa except for abingdonii, phantasticus, and 

chathamensis (Figure 5A & B; Figures S10-13). Note that the former two have only one 

sample each in our sample set, and also, the PCA was unable to discern phantasticus and 

chathamensis clearly. On the other hand, t-SNE, with the most local parameter setting (perp 

3), was less efficient in separating the different taxa (Figure 5C & D; Figures S10-13). 

Increasing the number of PCs typically did not have a significant effect on the form of 

clusters but their relative position to each other (Figures S10-13).  

 

When we allowed the t-SNE and UMAP analyses to capture more global clustering patterns 

(with higher perp, MD, NN values) in GT_8x (Figure 5E & G) and GT_2x (Figure 5F & H), 

Santa Cruz taxa and all Isabela Island taxa except both lineages of becki formed two distinct 

clusters. Interestingly, the third cluster consisted of all domed-shell, two semi-saddlebacked, 

and two lineages of becki, a group of taxa that was also discerned from the other dome-

shelled taxa in the latest phylogenomics study using all extant Galápagos giant tortoise taxa 

(Gaughran et al., 2023). 

Figure 5 UMAP (A, B, E, F) and t-SNE analyses (C, D, G, H) of GT_8x and GT_2x 

emphasizing the most local (top row) and more global (bottom row) parameter settings in the 

hyperparameter space explored. 
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Our UMAP and t-SNE analyses with GT_0.5x showed a loss of local resolution compared to 

GT_8x and GT_2x (Figure 6A & B; Figure S14 & 15). However, the results obtained with 

global parameter settings were still comparable to the PCAs with 8x and 2x, suggesting 

genetic similarities among the domed shelled taxa on Isabella Island (except becki, which 

grouped with darwini), among the two domed shelled taxa on Santa Cruz and among the 

saddleback taxa together with the semi-saddlebacked chathamensis (Figure 6C & D). In 

particular, both t-SNE and UMAP successfully distinguished the Santa Cruz taxa from 

others, a task where the PCA with 0.5x coverage failed (Figure 6 & 4D; Figure S14). Overall, 

t-SNE and UMAP outperformed the PCA at 0.5x coverage and allowed comparable 

resolution as the PCAs of higher coverage. Also, as opposed to our findings with GT_8x and 

GT_2x, in all t-SNE trials, adding more PCs into the analyses led to a tendency of over-

clustering the groups that were separated when fewer PCs were used, while UMAP primarily 

exhibited a similar pattern with global settings (Figure S15). 

 

Figure 6 t-SNE (A, C) and UMAP projections (B, D) of GT_0.5x focusing on emphasizing 

local clustering patterns (top row) and glocal patterns (bottom row). 

 

3.3 Overview of the online guidelines 
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Our online guideline initiates with the process of estimating genotype likelihoods and 

conducting PCA for the SO_2x dataset. This step incorporates the generation of the 

corresponding scree plots to facilitate the visualization of the cumulative explained variation 

by each PC of the data. It progresses to detailing the rationale behind selecting specific 

hyperparameters for this dataset (e.g., considering the number of individuals in the 

populations, etc.) in conjunction with determining the number of PCs derived from the scree 

plot. To aid practical application, we offer several Jupyter notebooks enabling users to input 

their covariance matrix, compute principal components, and subsequently apply t-SNE and 

UMAP techniques using pre-determined hyperparameters. These notebooks were crafted to 

manage multiple input files simultaneously, streamlining the analysis of diverse datasets with 

varied parameter configurations, thereby enhancing efficiency in handling extensive genomic 

datasets. 

 

4. Discussion 

In the context of conservation genetics, analyzing the genetic structure of populations is 

crucial for understanding how populations are interconnected, what their demographic 

histories looked like, and what genotype-phenotype associations may exist. This knowledge 

is essential for developing effective conservation strategies, managing genetic diversity, and 

identifying adaptive traits essential for species survival. High-coverage sequencing, while 

comprehensive, can be prohibitively expensive for such studies. Simulation studies have 

shown that low-coverage sequencing across a larger number of individuals can yield more 

accurate estimates of many population parameters, despite genotype uncertainty (Alex 

Buerkle & Gompert, 2013; Fumagalli, 2013). This approach not only reduces sequencing 

costs but also allows for more representative sampling; thereby, genotype likelihood-based 

analyses have been increasingly used in conservation genomics projects to address 

questions related to population genetic structure, demographic and evolutionary history, 

phylogeny/species delimitation, mutation load, and the genomic basis of trait variation (e.g., 

giant water lily [Smith et al., 2022], honey bees [Qiu et al., 2023] reef-building corals [Cooke 

et al., 2020], Pacific salmon [Prince et al., 2017], Aldabra giant tortoises [Çilingir et al., 

2022a; 2022b], setophaga warblers [Baiz et al., 2021], Seychelles paradise flycather brown 

hyenas [Westbury et al., 2018], polar bears [Liu et al., 2014], muskox [Pečnerová et al., 

2024], African and Asiatic cheetahs [Prost et al., 2022], Eurasian lynx [Mueller et al., 2022]). 

 

PCA is widely recognized as a fundamental tool for analyzing and visualizing population 

genetic structure. Its utility extends beyond direct analysis, as PCA often serves as a 

preparatory step for non-linear dimensionality reduction techniques, such as initialization of t-

SNE and UMAP (Kobak & Linderman, 2021), by denoising data and lowering computational 
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burden (Diaz-Papkovich et al., 2019). While the application of these techniques has 

predominantly been explored within the context of single-cell transcriptomics (Becht et al., 

2018; Kobak & Berens, 2019) and human population genetic structure analyses (Diaz-

Papkovich et al., 2020), their use in the study of wildlife species remains limited. 

Remarkably, there is a lack of research that leverages these techniques in conjunction with 

genotype likelihoods derived from low to medium-coverage sequencing data, particularly in 

the context of conservation genomics. 

 

In this study, we focused on two case studies: the endangered scimitar oryx and the 

Galápagos giant tortoises, which face varying degrees of threat. Previous work on these 

species combined population structure analysis with mutation load analysis (Humble et al., 

2023) and phylogenetic techniques (Gaughran et al., 2023; Jensen et al., 2022), yielding 

insights critical for their conservation. Building on these biologically relevant foundational 

findings, our project investigated the effectiveness of UMAP and t-SNE in analyzing low-

coverage genetic data. By comparing our results with those of earlier studies, we assessed 

the biological relevance of the non-linear dimensionality reduction outcomes for conservation 

purposes. We showed that t-SNE and UMAP outperform PCA in terms of population/species 

discernment both at medium and low coverage. In the case of the Oryx data, UMAP and t-

SNE discerned genetically managed populations with all three tested coverages (6x, 2x, 

0.5x), outperforming their PCA. For the Galápagos data at medium coverage, t-SNE and 

UMAP were able to clearly discern taxa, which were more weakly clustered by PCA. At low 

coverage (0.5x), both t-SNE and UMAP were again able to separate taxa, resulting in a 

visualization comparable to PCAs of higher coverage for both systems, while the PCA 

allowed only poor resolution (Figure 4D).  More global parameters revealed clustering that 

could be explained partly by geography and partly by phenotype, but the scope of this work 

was not to reinterpret previous studies on Galápagos phylogeny but to show the potential of 

t-SNE and UMAP. 

 

In the case of the oryx example, it may be argued that plotting PC3 allowed the same 

additional resolution; hence, the added benefit of using t-SNE or UMAP may be questioned. 

It is indeed also possible to apply 3D PCAs, plot PC1 vs PC3 and PC4, or perform local 

PCAs (e.g., [Manjón et al., 2013]) to have a more resolved picture. However, 3D plots are 

often difficult to read, and the two methods described here provide more resolution beyond 

PC4, all summarized in one plot, and grid search allows exploring the clustering patterns. 

We would like to point out that t-SNE and UMAP are not always performing better than PCA, 

especially when the first two principal components explain a large proportion of variance 

(Diaz-Papkovich et al., 2019). We further observed that the relative positions of clusters vary 
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with parameters, and this, in the case of local parametrization, may not be a good proxy for 

genetic distance. However, it is essential to recognize that genomic data often have only a 

small proportion of variance explained by the first principal components, making the ability of 

t-SNE and UMAP to incorporate a broader variance spectrum and thus enhance resolution 

at lower coverage which could be considered as an advantage of these approaches. 

 

Importance of parameter optimization/grid search and recommendations 

Previous studies have highlighted default values for parameters such as perp, NN, and MD, 

which were effective in analyses involving human datasets worked well for their datasets, but 

most of these studies were working with human datasets characterized by large sample 

sizes (Diaz-Papkovich et al., 2019, 2020). However, in conservation genomics studies, 

sample sizes are generally much smaller, necessitating a tailored approach in using t-SNE 

and UMAP techniques. Recognizing this need, we offer a Jupyter Notebook to assist in 

conducting a grid search, recommending a systematic exploration of parameter ranges, as 

we have done in our study. This exploration is crucial for understanding the impact of local 

(e.g., a low number of neighbors, lower perplexity) versus global (e.g., a high number of 

neighbors, higher perplexity) parameter settings, each offering unique insights into the data 

structure. Furthermore, while previous studies advise using as many PCs as computational 

resources allow (Diaz-Papkovich et al., 2019, 2020), we found that the top critical number of 

PCs provided consistent results in our analysis, particularly for the 0.5x datasets, where 

adding more PCs even included noise (Figure S9 & S15), likely due to the added uncertainty 

of genotype likelihoods with 0.5x (Meisner & Albrechtsen, 2018). Therefore, we also 

recommend experimenting with a range of PCs and employing the elbow method as a 

preliminary step to determine the most effective number of PCs for capturing the essential 

variance without incorporating excess noise, thus optimizing the analysis for conservation 

genomics studies with varying data characteristics. 

 

Limitations 

An important caveat to note is the necessity of maintaining focus on the biological relevance 

of clustering results while cautioning against the potential for "over-separation" of genetic 

groups. Techniques such as UMAP and t-SNE try to find a lower-dimensional representation 

that preserves the distances between the points in the neighborhood; in other words, they 

are prone to highlighting similarities while exaggerating differences, which may lead to an 

“over-separation” of genetically similar individuals. Accordingly, it is essential to consider the 

biological relevance of the observed clustering patterns. Also, when population structure is 

detected, a thorough evaluation of the influences of genetic drift versus local adaptation is 

crucial for deriving appropriate conservation strategies. Additionally, although PCA 
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initialization may provide insights into the global structure of clusters, the interpretation of 

global structure with these non-linear techniques remains highly sensitive to parameter 

adjustments, rendering distances between groups not directly interpretable. Finally, the 

inherent limitations of PCA, a linear dimensionality reduction method, when used in 

conjunction with non-linear methods, may sometimes exacerbate data distortion (Chari & 

Pachter, 2023). An alternative approach may involve directly employing a distance matrix 

based on genotype likelihoods rather than relying on PCA. The Jupyter notebook that we 

provided is designed for flexible adaptation to incorporate such methodologies, enhancing 

the analysis of population genetic structure. 

 

Conclusion and general implications 

In our study, we explored the potential of non-linear dimensionality reduction techniques for 

exploring population structure from low-coverage genomic data based on genotype 

likelihoods. Our findings reveal that these methods can outperform the classical PCA in 

revealing subtle genetic structure, particularly when low read depth results in the loss of local 

information in classical PCAs. Our results demonstrate that t-SNE and UMAP are valuable 

supplements to PCAs rather than substitutes. By gaining resolution in low-coverage studies, 

these two techniques can lead to cost and computational savings or support the analysis of 

larger sample sizes, thereby increasing the information content (Alex Buerkle & Gompert, 

2013; Fumagalli, 2013). However, it is crucial to recognize that both linear and non-linear 

approaches to dimensionality reduction can result in data distortion, each presenting unique 

benefits and challenges. As such, careful handling of data and biologically relevant 

interpretation of the results are imperative.  
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